/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2007 Oracle. All rights reserved. */ #ifndef BTRFS_INODE_H #define BTRFS_INODE_H #include #include #include "extent_map.h" #include "extent_io.h" #include "ordered-data.h" #include "delayed-inode.h" /* * Since we search a directory based on f_pos (struct dir_context::pos) we have * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()). */ #define BTRFS_DIR_START_INDEX 2 /* * ordered_data_close is set by truncate when a file that used * to have good data has been truncated to zero. When it is set * the btrfs file release call will add this inode to the * ordered operations list so that we make sure to flush out any * new data the application may have written before commit. */ enum { BTRFS_INODE_FLUSH_ON_CLOSE, BTRFS_INODE_DUMMY, BTRFS_INODE_IN_DEFRAG, BTRFS_INODE_HAS_ASYNC_EXTENT, /* * Always set under the VFS' inode lock, otherwise it can cause races * during fsync (we start as a fast fsync and then end up in a full * fsync racing with ordered extent completion). */ BTRFS_INODE_NEEDS_FULL_SYNC, BTRFS_INODE_COPY_EVERYTHING, BTRFS_INODE_IN_DELALLOC_LIST, BTRFS_INODE_HAS_PROPS, BTRFS_INODE_SNAPSHOT_FLUSH, /* * Set and used when logging an inode and it serves to signal that an * inode does not have xattrs, so subsequent fsyncs can avoid searching * for xattrs to log. This bit must be cleared whenever a xattr is added * to an inode. */ BTRFS_INODE_NO_XATTRS, /* * Set when we are in a context where we need to start a transaction and * have dirty pages with the respective file range locked. This is to * ensure that when reserving space for the transaction, if we are low * on available space and need to flush delalloc, we will not flush * delalloc for this inode, because that could result in a deadlock (on * the file range, inode's io_tree). */ BTRFS_INODE_NO_DELALLOC_FLUSH, /* * Set when we are working on enabling verity for a file. Computing and * writing the whole Merkle tree can take a while so we want to prevent * races where two separate tasks attempt to simultaneously start verity * on the same file. */ BTRFS_INODE_VERITY_IN_PROGRESS, /* Set when this inode is a free space inode. */ BTRFS_INODE_FREE_SPACE_INODE, }; /* in memory btrfs inode */ struct btrfs_inode { /* which subvolume this inode belongs to */ struct btrfs_root *root; /* key used to find this inode on disk. This is used by the code * to read in roots of subvolumes */ struct btrfs_key location; /* * Lock for counters and all fields used to determine if the inode is in * the log or not (last_trans, last_sub_trans, last_log_commit, * logged_trans), to access/update new_delalloc_bytes and to update the * VFS' inode number of bytes used. */ spinlock_t lock; /* the extent_tree has caches of all the extent mappings to disk */ struct extent_map_tree extent_tree; /* the io_tree does range state (DIRTY, LOCKED etc) */ struct extent_io_tree io_tree; /* special utility tree used to record which mirrors have already been * tried when checksums fail for a given block */ struct rb_root io_failure_tree; spinlock_t io_failure_lock; /* * Keep track of where the inode has extent items mapped in order to * make sure the i_size adjustments are accurate */ struct extent_io_tree file_extent_tree; /* held while logging the inode in tree-log.c */ struct mutex log_mutex; /* used to order data wrt metadata */ struct btrfs_ordered_inode_tree ordered_tree; /* list of all the delalloc inodes in the FS. There are times we need * to write all the delalloc pages to disk, and this list is used * to walk them all. */ struct list_head delalloc_inodes; /* node for the red-black tree that links inodes in subvolume root */ struct rb_node rb_node; unsigned long runtime_flags; /* Keep track of who's O_SYNC/fsyncing currently */ atomic_t sync_writers; /* full 64 bit generation number, struct vfs_inode doesn't have a big * enough field for this. */ u64 generation; /* * transid of the trans_handle that last modified this inode */ u64 last_trans; /* * transid that last logged this inode */ u64 logged_trans; /* * log transid when this inode was last modified */ int last_sub_trans; /* a local copy of root's last_log_commit */ int last_log_commit; /* * Total number of bytes pending delalloc, used by stat to calculate the * real block usage of the file. This is used only for files. */ u64 delalloc_bytes; union { /* * Total number of bytes pending delalloc that fall within a file * range that is either a hole or beyond EOF (and no prealloc extent * exists in the range). This is always <= delalloc_bytes and this * is used only for files. */ u64 new_delalloc_bytes; /* * The offset of the last dir index key that was logged. * This is used only for directories. */ u64 last_dir_index_offset; }; /* * total number of bytes pending defrag, used by stat to check whether * it needs COW. */ u64 defrag_bytes; /* * the size of the file stored in the metadata on disk. data=ordered * means the in-memory i_size might be larger than the size on disk * because not all the blocks are written yet. */ u64 disk_i_size; /* * If this is a directory then index_cnt is the counter for the index * number for new files that are created. For an empty directory, this * must be initialized to BTRFS_DIR_START_INDEX. */ u64 index_cnt; /* Cache the directory index number to speed the dir/file remove */ u64 dir_index; /* the fsync log has some corner cases that mean we have to check * directories to see if any unlinks have been done before * the directory was logged. See tree-log.c for all the * details */ u64 last_unlink_trans; /* * The id/generation of the last transaction where this inode was * either the source or the destination of a clone/dedupe operation. * Used when logging an inode to know if there are shared extents that * need special care when logging checksum items, to avoid duplicate * checksum items in a log (which can lead to a corruption where we end * up with missing checksum ranges after log replay). * Protected by the vfs inode lock. */ u64 last_reflink_trans; /* * Number of bytes outstanding that are going to need csums. This is * used in ENOSPC accounting. */ u64 csum_bytes; /* Backwards incompatible flags, lower half of inode_item::flags */ u32 flags; /* Read-only compatibility flags, upper half of inode_item::flags */ u32 ro_flags; /* * Counters to keep track of the number of extent item's we may use due * to delalloc and such. outstanding_extents is the number of extent * items we think we'll end up using, and reserved_extents is the number * of extent items we've reserved metadata for. */ unsigned outstanding_extents; struct btrfs_block_rsv block_rsv; /* * Cached values of inode properties */ unsigned prop_compress; /* per-file compression algorithm */ /* * Force compression on the file using the defrag ioctl, could be * different from prop_compress and takes precedence if set */ unsigned defrag_compress; struct btrfs_delayed_node *delayed_node; /* File creation time. */ struct timespec64 i_otime; /* Hook into fs_info->delayed_iputs */ struct list_head delayed_iput; struct rw_semaphore i_mmap_lock; struct inode vfs_inode; }; static inline struct btrfs_inode *BTRFS_I(const struct inode *inode) { return container_of(inode, struct btrfs_inode, vfs_inode); } static inline unsigned long btrfs_inode_hash(u64 objectid, const struct btrfs_root *root) { u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME); #if BITS_PER_LONG == 32 h = (h >> 32) ^ (h & 0xffffffff); #endif return (unsigned long)h; } #if BITS_PER_LONG == 32 /* * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so * we use the inode's location objectid which is a u64 to avoid truncation. */ static inline u64 btrfs_ino(const struct btrfs_inode *inode) { u64 ino = inode->location.objectid; /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */ if (inode->location.type == BTRFS_ROOT_ITEM_KEY) ino = inode->vfs_inode.i_ino; return ino; } #else static inline u64 btrfs_ino(const struct btrfs_inode *inode) { return inode->vfs_inode.i_ino; } #endif static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size) { i_size_write(&inode->vfs_inode, size); inode->disk_i_size = size; } static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode) { return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags); } static inline bool is_data_inode(struct inode *inode) { return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID; } static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode, int mod) { lockdep_assert_held(&inode->lock); inode->outstanding_extents += mod; if (btrfs_is_free_space_inode(inode)) return; trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode), mod); } /* * Called every time after doing a buffered, direct IO or memory mapped write. * * This is to ensure that if we write to a file that was previously fsynced in * the current transaction, then try to fsync it again in the same transaction, * we will know that there were changes in the file and that it needs to be * logged. */ static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode) { spin_lock(&inode->lock); inode->last_sub_trans = inode->root->log_transid; spin_unlock(&inode->lock); } /* * Should be called while holding the inode's VFS lock in exclusive mode or in a * context where no one else can access the inode concurrently (during inode * creation or when loading an inode from disk). */ static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode) { set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); /* * The inode may have been part of a reflink operation in the last * transaction that modified it, and then a fsync has reset the * last_reflink_trans to avoid subsequent fsyncs in the same * transaction to do unnecessary work. So update last_reflink_trans * to the last_trans value (we have to be pessimistic and assume a * reflink happened). * * The ->last_trans is protected by the inode's spinlock and we can * have a concurrent ordered extent completion update it. Also set * last_reflink_trans to ->last_trans only if the former is less than * the later, because we can be called in a context where * last_reflink_trans was set to the current transaction generation * while ->last_trans was not yet updated in the current transaction, * and therefore has a lower value. */ spin_lock(&inode->lock); if (inode->last_reflink_trans < inode->last_trans) inode->last_reflink_trans = inode->last_trans; spin_unlock(&inode->lock); } static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation) { bool ret = false; spin_lock(&inode->lock); if (inode->logged_trans == generation && inode->last_sub_trans <= inode->last_log_commit && inode->last_sub_trans <= inode->root->last_log_commit) ret = true; spin_unlock(&inode->lock); return ret; } /* * Check if the inode has flags compatible with compression */ static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode) { if (inode->flags & BTRFS_INODE_NODATACOW || inode->flags & BTRFS_INODE_NODATASUM) return false; return true; } /* * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two * separate u32s. These two functions convert between the two representations. */ static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags) { return (flags | ((u64)ro_flags << 32)); } static inline void btrfs_inode_split_flags(u64 inode_item_flags, u32 *flags, u32 *ro_flags) { *flags = (u32)inode_item_flags; *ro_flags = (u32)(inode_item_flags >> 32); } /* Array of bytes with variable length, hexadecimal format 0x1234 */ #define CSUM_FMT "0x%*phN" #define CSUM_FMT_VALUE(size, bytes) size, bytes void btrfs_submit_data_write_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num); void btrfs_submit_data_read_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num, enum btrfs_compression_type compress_type); void btrfs_submit_dio_repair_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num); blk_status_t btrfs_submit_bio_start(struct btrfs_inode *inode, struct bio *bio); blk_status_t btrfs_submit_bio_start_direct_io(struct btrfs_inode *inode, struct bio *bio, u64 dio_file_offset); int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, u32 pgoff, u8 *csum, const u8 * const csum_expected); int btrfs_check_data_csum(struct btrfs_inode *inode, struct btrfs_bio *bbio, u32 bio_offset, struct page *page, u32 pgoff); unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, u32 bio_offset, struct page *page, u64 start, u64 end); noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, u64 *orig_start, u64 *orig_block_len, u64 *ram_bytes, bool nowait, bool strict); void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode); struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); int btrfs_unlink_inode(struct btrfs_trans_handle *trans, struct btrfs_inode *dir, struct btrfs_inode *inode, const struct fscrypt_str *name); int btrfs_add_link(struct btrfs_trans_handle *trans, struct btrfs_inode *parent_inode, struct btrfs_inode *inode, const struct fscrypt_str *name, int add_backref, u64 index); int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, int front); int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, bool in_reclaim_context); int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, unsigned int extra_bits, struct extent_state **cached_state); struct btrfs_new_inode_args { /* Input */ struct inode *dir; struct dentry *dentry; struct inode *inode; bool orphan; bool subvol; /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */ struct posix_acl *default_acl; struct posix_acl *acl; struct fscrypt_name fname; }; int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, unsigned int *trans_num_items); int btrfs_create_new_inode(struct btrfs_trans_handle *trans, struct btrfs_new_inode_args *args); void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, struct inode *dir); void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, u32 bits); void btrfs_clear_delalloc_extent(struct inode *inode, struct extent_state *state, u32 bits); void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, struct extent_state *other); void btrfs_split_delalloc_extent(struct inode *inode, struct extent_state *orig, u64 split); void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); void btrfs_evict_inode(struct inode *inode); struct inode *btrfs_alloc_inode(struct super_block *sb); void btrfs_destroy_inode(struct inode *inode); void btrfs_free_inode(struct inode *inode); int btrfs_drop_inode(struct inode *inode); int __init btrfs_init_cachep(void); void __cold btrfs_destroy_cachep(void); struct inode *btrfs_iget_path(struct super_block *s, u64 ino, struct btrfs_root *root, struct btrfs_path *path); struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, struct page *page, size_t pg_offset, u64 start, u64 end); int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode); int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode); int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); int btrfs_orphan_cleanup(struct btrfs_root *root); int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); void btrfs_add_delayed_iput(struct inode *inode); void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); int btrfs_prealloc_file_range(struct inode *inode, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_prealloc_file_range_trans(struct inode *inode, struct btrfs_trans_handle *trans, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, u64 start, u64 end, int *page_started, unsigned long *nr_written, struct writeback_control *wbc); int btrfs_writepage_cow_fixup(struct page *page); void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, struct page *page, u64 start, u64 end, bool uptodate); int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, int compress_type); int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 disk_io_size, struct page **pages); ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, struct btrfs_ioctl_encoded_io_args *encoded); ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, const struct btrfs_ioctl_encoded_io_args *encoded); ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); extern const struct dentry_operations btrfs_dentry_operations; /* Inode locking type flags, by default the exclusive lock is taken. */ enum btrfs_ilock_type { ENUM_BIT(BTRFS_ILOCK_SHARED), ENUM_BIT(BTRFS_ILOCK_TRY), ENUM_BIT(BTRFS_ILOCK_MMAP), }; int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags); void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags); void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, const u64 del_bytes); void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); #endif