/* * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_alloc.h" #include "xfs_dmapi.h" #include "xfs_quota.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_bmap.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_itable.h" #include "xfs_rw.h" #include "xfs_acl.h" #include "xfs_attr.h" #include "xfs_inode_item.h" #include "xfs_buf_item.h" #include "xfs_utils.h" #include "xfs_iomap.h" #include "xfs_vnodeops.h" #include <linux/capability.h> #include <linux/mount.h> #include <linux/writeback.h> #if defined(XFS_RW_TRACE) void xfs_rw_enter_trace( int tag, xfs_inode_t *ip, void *data, size_t segs, loff_t offset, int ioflags) { if (ip->i_rwtrace == NULL) return; ktrace_enter(ip->i_rwtrace, (void *)(unsigned long)tag, (void *)ip, (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)), (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)), (void *)data, (void *)((unsigned long)segs), (void *)((unsigned long)((offset >> 32) & 0xffffffff)), (void *)((unsigned long)(offset & 0xffffffff)), (void *)((unsigned long)ioflags), (void *)((unsigned long)((ip->i_new_size >> 32) & 0xffffffff)), (void *)((unsigned long)(ip->i_new_size & 0xffffffff)), (void *)((unsigned long)current_pid()), (void *)NULL, (void *)NULL, (void *)NULL, (void *)NULL); } void xfs_inval_cached_trace( xfs_inode_t *ip, xfs_off_t offset, xfs_off_t len, xfs_off_t first, xfs_off_t last) { if (ip->i_rwtrace == NULL) return; ktrace_enter(ip->i_rwtrace, (void *)(__psint_t)XFS_INVAL_CACHED, (void *)ip, (void *)((unsigned long)((offset >> 32) & 0xffffffff)), (void *)((unsigned long)(offset & 0xffffffff)), (void *)((unsigned long)((len >> 32) & 0xffffffff)), (void *)((unsigned long)(len & 0xffffffff)), (void *)((unsigned long)((first >> 32) & 0xffffffff)), (void *)((unsigned long)(first & 0xffffffff)), (void *)((unsigned long)((last >> 32) & 0xffffffff)), (void *)((unsigned long)(last & 0xffffffff)), (void *)((unsigned long)current_pid()), (void *)NULL, (void *)NULL, (void *)NULL, (void *)NULL, (void *)NULL); } #endif /* * xfs_iozero * * xfs_iozero clears the specified range of buffer supplied, * and marks all the affected blocks as valid and modified. If * an affected block is not allocated, it will be allocated. If * an affected block is not completely overwritten, and is not * valid before the operation, it will be read from disk before * being partially zeroed. */ STATIC int xfs_iozero( struct xfs_inode *ip, /* inode */ loff_t pos, /* offset in file */ size_t count) /* size of data to zero */ { struct page *page; struct address_space *mapping; int status; mapping = VFS_I(ip)->i_mapping; do { unsigned offset, bytes; void *fsdata; offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ bytes = PAGE_CACHE_SIZE - offset; if (bytes > count) bytes = count; status = pagecache_write_begin(NULL, mapping, pos, bytes, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); if (status) break; zero_user(page, offset, bytes); status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, page, fsdata); WARN_ON(status <= 0); /* can't return less than zero! */ pos += bytes; count -= bytes; status = 0; } while (count); return (-status); } ssize_t /* bytes read, or (-) error */ xfs_read( xfs_inode_t *ip, struct kiocb *iocb, const struct iovec *iovp, unsigned int segs, loff_t *offset, int ioflags) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; xfs_mount_t *mp = ip->i_mount; size_t size = 0; ssize_t ret = 0; xfs_fsize_t n; unsigned long seg; XFS_STATS_INC(xs_read_calls); /* START copy & waste from filemap.c */ for (seg = 0; seg < segs; seg++) { const struct iovec *iv = &iovp[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ size += iv->iov_len; if (unlikely((ssize_t)(size|iv->iov_len) < 0)) return XFS_ERROR(-EINVAL); } /* END copy & waste from filemap.c */ if (unlikely(ioflags & IO_ISDIRECT)) { xfs_buftarg_t *target = XFS_IS_REALTIME_INODE(ip) ? mp->m_rtdev_targp : mp->m_ddev_targp; if ((*offset & target->bt_smask) || (size & target->bt_smask)) { if (*offset == ip->i_size) { return (0); } return -XFS_ERROR(EINVAL); } } n = XFS_MAXIOFFSET(mp) - *offset; if ((n <= 0) || (size == 0)) return 0; if (n < size) size = n; if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; if (unlikely(ioflags & IO_ISDIRECT)) mutex_lock(&inode->i_mutex); xfs_ilock(ip, XFS_IOLOCK_SHARED); if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) { int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags); int iolock = XFS_IOLOCK_SHARED; ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *offset, size, dmflags, &iolock); if (ret) { xfs_iunlock(ip, XFS_IOLOCK_SHARED); if (unlikely(ioflags & IO_ISDIRECT)) mutex_unlock(&inode->i_mutex); return ret; } } if (unlikely(ioflags & IO_ISDIRECT)) { if (inode->i_mapping->nrpages) ret = -xfs_flushinval_pages(ip, (*offset & PAGE_CACHE_MASK), -1, FI_REMAPF_LOCKED); mutex_unlock(&inode->i_mutex); if (ret) { xfs_iunlock(ip, XFS_IOLOCK_SHARED); return ret; } } xfs_rw_enter_trace(XFS_READ_ENTER, ip, (void *)iovp, segs, *offset, ioflags); iocb->ki_pos = *offset; ret = generic_file_aio_read(iocb, iovp, segs, *offset); if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO)) ret = wait_on_sync_kiocb(iocb); if (ret > 0) XFS_STATS_ADD(xs_read_bytes, ret); xfs_iunlock(ip, XFS_IOLOCK_SHARED); return ret; } ssize_t xfs_splice_read( xfs_inode_t *ip, struct file *infilp, loff_t *ppos, struct pipe_inode_info *pipe, size_t count, int flags, int ioflags) { xfs_mount_t *mp = ip->i_mount; ssize_t ret; XFS_STATS_INC(xs_read_calls); if (XFS_FORCED_SHUTDOWN(ip->i_mount)) return -EIO; xfs_ilock(ip, XFS_IOLOCK_SHARED); if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) { int iolock = XFS_IOLOCK_SHARED; int error; error = XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *ppos, count, FILP_DELAY_FLAG(infilp), &iolock); if (error) { xfs_iunlock(ip, XFS_IOLOCK_SHARED); return -error; } } xfs_rw_enter_trace(XFS_SPLICE_READ_ENTER, ip, pipe, count, *ppos, ioflags); ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); if (ret > 0) XFS_STATS_ADD(xs_read_bytes, ret); xfs_iunlock(ip, XFS_IOLOCK_SHARED); return ret; } ssize_t xfs_splice_write( xfs_inode_t *ip, struct pipe_inode_info *pipe, struct file *outfilp, loff_t *ppos, size_t count, int flags, int ioflags) { xfs_mount_t *mp = ip->i_mount; ssize_t ret; struct inode *inode = outfilp->f_mapping->host; xfs_fsize_t isize, new_size; XFS_STATS_INC(xs_write_calls); if (XFS_FORCED_SHUTDOWN(ip->i_mount)) return -EIO; xfs_ilock(ip, XFS_IOLOCK_EXCL); if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) { int iolock = XFS_IOLOCK_EXCL; int error; error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip, *ppos, count, FILP_DELAY_FLAG(outfilp), &iolock); if (error) { xfs_iunlock(ip, XFS_IOLOCK_EXCL); return -error; } } new_size = *ppos + count; xfs_ilock(ip, XFS_ILOCK_EXCL); if (new_size > ip->i_size) ip->i_new_size = new_size; xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_rw_enter_trace(XFS_SPLICE_WRITE_ENTER, ip, pipe, count, *ppos, ioflags); ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); if (ret > 0) XFS_STATS_ADD(xs_write_bytes, ret); isize = i_size_read(inode); if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize)) *ppos = isize; if (*ppos > ip->i_size) { xfs_ilock(ip, XFS_ILOCK_EXCL); if (*ppos > ip->i_size) ip->i_size = *ppos; xfs_iunlock(ip, XFS_ILOCK_EXCL); } if (ip->i_new_size) { xfs_ilock(ip, XFS_ILOCK_EXCL); ip->i_new_size = 0; if (ip->i_d.di_size > ip->i_size) ip->i_d.di_size = ip->i_size; xfs_iunlock(ip, XFS_ILOCK_EXCL); } xfs_iunlock(ip, XFS_IOLOCK_EXCL); return ret; } /* * This routine is called to handle zeroing any space in the last * block of the file that is beyond the EOF. We do this since the * size is being increased without writing anything to that block * and we don't want anyone to read the garbage on the disk. */ STATIC int /* error (positive) */ xfs_zero_last_block( xfs_inode_t *ip, xfs_fsize_t offset, xfs_fsize_t isize) { xfs_fileoff_t last_fsb; xfs_mount_t *mp = ip->i_mount; int nimaps; int zero_offset; int zero_len; int error = 0; xfs_bmbt_irec_t imap; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); zero_offset = XFS_B_FSB_OFFSET(mp, isize); if (zero_offset == 0) { /* * There are no extra bytes in the last block on disk to * zero, so return. */ return 0; } last_fsb = XFS_B_TO_FSBT(mp, isize); nimaps = 1; error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap, &nimaps, NULL, NULL); if (error) { return error; } ASSERT(nimaps > 0); /* * If the block underlying isize is just a hole, then there * is nothing to zero. */ if (imap.br_startblock == HOLESTARTBLOCK) { return 0; } /* * Zero the part of the last block beyond the EOF, and write it * out sync. We need to drop the ilock while we do this so we * don't deadlock when the buffer cache calls back to us. */ xfs_iunlock(ip, XFS_ILOCK_EXCL); zero_len = mp->m_sb.sb_blocksize - zero_offset; if (isize + zero_len > offset) zero_len = offset - isize; error = xfs_iozero(ip, isize, zero_len); xfs_ilock(ip, XFS_ILOCK_EXCL); ASSERT(error >= 0); return error; } /* * Zero any on disk space between the current EOF and the new, * larger EOF. This handles the normal case of zeroing the remainder * of the last block in the file and the unusual case of zeroing blocks * out beyond the size of the file. This second case only happens * with fixed size extents and when the system crashes before the inode * size was updated but after blocks were allocated. If fill is set, * then any holes in the range are filled and zeroed. If not, the holes * are left alone as holes. */ int /* error (positive) */ xfs_zero_eof( xfs_inode_t *ip, xfs_off_t offset, /* starting I/O offset */ xfs_fsize_t isize) /* current inode size */ { xfs_mount_t *mp = ip->i_mount; xfs_fileoff_t start_zero_fsb; xfs_fileoff_t end_zero_fsb; xfs_fileoff_t zero_count_fsb; xfs_fileoff_t last_fsb; xfs_fileoff_t zero_off; xfs_fsize_t zero_len; int nimaps; int error = 0; xfs_bmbt_irec_t imap; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); ASSERT(offset > isize); /* * First handle zeroing the block on which isize resides. * We only zero a part of that block so it is handled specially. */ error = xfs_zero_last_block(ip, offset, isize); if (error) { ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); return error; } /* * Calculate the range between the new size and the old * where blocks needing to be zeroed may exist. To get the * block where the last byte in the file currently resides, * we need to subtract one from the size and truncate back * to a block boundary. We subtract 1 in case the size is * exactly on a block boundary. */ last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); if (last_fsb == end_zero_fsb) { /* * The size was only incremented on its last block. * We took care of that above, so just return. */ return 0; } ASSERT(start_zero_fsb <= end_zero_fsb); while (start_zero_fsb <= end_zero_fsb) { nimaps = 1; zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb, 0, NULL, 0, &imap, &nimaps, NULL, NULL); if (error) { ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); return error; } ASSERT(nimaps > 0); if (imap.br_state == XFS_EXT_UNWRITTEN || imap.br_startblock == HOLESTARTBLOCK) { /* * This loop handles initializing pages that were * partially initialized by the code below this * loop. It basically zeroes the part of the page * that sits on a hole and sets the page as P_HOLE * and calls remapf if it is a mapped file. */ start_zero_fsb = imap.br_startoff + imap.br_blockcount; ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); continue; } /* * There are blocks we need to zero. * Drop the inode lock while we're doing the I/O. * We'll still have the iolock to protect us. */ xfs_iunlock(ip, XFS_ILOCK_EXCL); zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); if ((zero_off + zero_len) > offset) zero_len = offset - zero_off; error = xfs_iozero(ip, zero_off, zero_len); if (error) { goto out_lock; } start_zero_fsb = imap.br_startoff + imap.br_blockcount; ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); xfs_ilock(ip, XFS_ILOCK_EXCL); } return 0; out_lock: xfs_ilock(ip, XFS_ILOCK_EXCL); ASSERT(error >= 0); return error; } ssize_t /* bytes written, or (-) error */ xfs_write( struct xfs_inode *xip, struct kiocb *iocb, const struct iovec *iovp, unsigned int nsegs, loff_t *offset, int ioflags) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; unsigned long segs = nsegs; xfs_mount_t *mp; ssize_t ret = 0, error = 0; xfs_fsize_t isize, new_size; int iolock; int eventsent = 0; size_t ocount = 0, count; loff_t pos; int need_i_mutex; XFS_STATS_INC(xs_write_calls); error = generic_segment_checks(iovp, &segs, &ocount, VERIFY_READ); if (error) return error; count = ocount; pos = *offset; if (count == 0) return 0; mp = xip->i_mount; xfs_wait_for_freeze(mp, SB_FREEZE_WRITE); if (XFS_FORCED_SHUTDOWN(mp)) return -EIO; relock: if (ioflags & IO_ISDIRECT) { iolock = XFS_IOLOCK_SHARED; need_i_mutex = 0; } else { iolock = XFS_IOLOCK_EXCL; need_i_mutex = 1; mutex_lock(&inode->i_mutex); } xfs_ilock(xip, XFS_ILOCK_EXCL|iolock); start: error = -generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); if (error) { xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock); goto out_unlock_mutex; } if ((DM_EVENT_ENABLED(xip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS) && !eventsent)) { int dmflags = FILP_DELAY_FLAG(file); if (need_i_mutex) dmflags |= DM_FLAGS_IMUX; xfs_iunlock(xip, XFS_ILOCK_EXCL); error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, xip, pos, count, dmflags, &iolock); if (error) { goto out_unlock_internal; } xfs_ilock(xip, XFS_ILOCK_EXCL); eventsent = 1; /* * The iolock was dropped and reacquired in XFS_SEND_DATA * so we have to recheck the size when appending. * We will only "goto start;" once, since having sent the * event prevents another call to XFS_SEND_DATA, which is * what allows the size to change in the first place. */ if ((file->f_flags & O_APPEND) && pos != xip->i_size) goto start; } if (ioflags & IO_ISDIRECT) { xfs_buftarg_t *target = XFS_IS_REALTIME_INODE(xip) ? mp->m_rtdev_targp : mp->m_ddev_targp; if ((pos & target->bt_smask) || (count & target->bt_smask)) { xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock); return XFS_ERROR(-EINVAL); } if (!need_i_mutex && (mapping->nrpages || pos > xip->i_size)) { xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock); iolock = XFS_IOLOCK_EXCL; need_i_mutex = 1; mutex_lock(&inode->i_mutex); xfs_ilock(xip, XFS_ILOCK_EXCL|iolock); goto start; } } new_size = pos + count; if (new_size > xip->i_size) xip->i_new_size = new_size; /* * We're not supposed to change timestamps in readonly-mounted * filesystems. Throw it away if anyone asks us. */ if (likely(!(ioflags & IO_INVIS) && !mnt_want_write(file->f_path.mnt))) { xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); mnt_drop_write(file->f_path.mnt); } /* * If the offset is beyond the size of the file, we have a couple * of things to do. First, if there is already space allocated * we need to either create holes or zero the disk or ... * * If there is a page where the previous size lands, we need * to zero it out up to the new size. */ if (pos > xip->i_size) { error = xfs_zero_eof(xip, pos, xip->i_size); if (error) { xfs_iunlock(xip, XFS_ILOCK_EXCL); goto out_unlock_internal; } } xfs_iunlock(xip, XFS_ILOCK_EXCL); /* * If we're writing the file then make sure to clear the * setuid and setgid bits if the process is not being run * by root. This keeps people from modifying setuid and * setgid binaries. */ if (((xip->i_d.di_mode & S_ISUID) || ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))) && !capable(CAP_FSETID)) { error = xfs_write_clear_setuid(xip); if (likely(!error)) error = -file_remove_suid(file); if (unlikely(error)) { goto out_unlock_internal; } } retry: /* We can write back this queue in page reclaim */ current->backing_dev_info = mapping->backing_dev_info; if ((ioflags & IO_ISDIRECT)) { if (mapping->nrpages) { WARN_ON(need_i_mutex == 0); xfs_inval_cached_trace(xip, pos, -1, (pos & PAGE_CACHE_MASK), -1); error = xfs_flushinval_pages(xip, (pos & PAGE_CACHE_MASK), -1, FI_REMAPF_LOCKED); if (error) goto out_unlock_internal; } if (need_i_mutex) { /* demote the lock now the cached pages are gone */ xfs_ilock_demote(xip, XFS_IOLOCK_EXCL); mutex_unlock(&inode->i_mutex); iolock = XFS_IOLOCK_SHARED; need_i_mutex = 0; } xfs_rw_enter_trace(XFS_DIOWR_ENTER, xip, (void *)iovp, segs, *offset, ioflags); ret = generic_file_direct_write(iocb, iovp, &segs, pos, offset, count, ocount); /* * direct-io write to a hole: fall through to buffered I/O * for completing the rest of the request. */ if (ret >= 0 && ret != count) { XFS_STATS_ADD(xs_write_bytes, ret); pos += ret; count -= ret; ioflags &= ~IO_ISDIRECT; xfs_iunlock(xip, iolock); goto relock; } } else { xfs_rw_enter_trace(XFS_WRITE_ENTER, xip, (void *)iovp, segs, *offset, ioflags); ret = generic_file_buffered_write(iocb, iovp, segs, pos, offset, count, ret); } current->backing_dev_info = NULL; if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO)) ret = wait_on_sync_kiocb(iocb); if (ret == -ENOSPC && DM_EVENT_ENABLED(xip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) { xfs_iunlock(xip, iolock); if (need_i_mutex) mutex_unlock(&inode->i_mutex); error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, xip, DM_RIGHT_NULL, xip, DM_RIGHT_NULL, NULL, NULL, 0, 0, 0); /* Delay flag intentionally unused */ if (need_i_mutex) mutex_lock(&inode->i_mutex); xfs_ilock(xip, iolock); if (error) goto out_unlock_internal; pos = xip->i_size; ret = 0; goto retry; } isize = i_size_read(inode); if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize)) *offset = isize; if (*offset > xip->i_size) { xfs_ilock(xip, XFS_ILOCK_EXCL); if (*offset > xip->i_size) xip->i_size = *offset; xfs_iunlock(xip, XFS_ILOCK_EXCL); } error = -ret; if (ret <= 0) goto out_unlock_internal; XFS_STATS_ADD(xs_write_bytes, ret); /* Handle various SYNC-type writes */ if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) { int error2; xfs_iunlock(xip, iolock); if (need_i_mutex) mutex_unlock(&inode->i_mutex); error2 = sync_page_range(inode, mapping, pos, ret); if (!error) error = error2; if (need_i_mutex) mutex_lock(&inode->i_mutex); xfs_ilock(xip, iolock); error2 = xfs_write_sync_logforce(mp, xip); if (!error) error = error2; } out_unlock_internal: if (xip->i_new_size) { xfs_ilock(xip, XFS_ILOCK_EXCL); xip->i_new_size = 0; /* * If this was a direct or synchronous I/O that failed (such * as ENOSPC) then part of the I/O may have been written to * disk before the error occured. In this case the on-disk * file size may have been adjusted beyond the in-memory file * size and now needs to be truncated back. */ if (xip->i_d.di_size > xip->i_size) xip->i_d.di_size = xip->i_size; xfs_iunlock(xip, XFS_ILOCK_EXCL); } xfs_iunlock(xip, iolock); out_unlock_mutex: if (need_i_mutex) mutex_unlock(&inode->i_mutex); return -error; } /* * All xfs metadata buffers except log state machine buffers * get this attached as their b_bdstrat callback function. * This is so that we can catch a buffer * after prematurely unpinning it to forcibly shutdown the filesystem. */ int xfs_bdstrat_cb(struct xfs_buf *bp) { xfs_mount_t *mp; mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *); if (!XFS_FORCED_SHUTDOWN(mp)) { xfs_buf_iorequest(bp); return 0; } else { xfs_buftrace("XFS__BDSTRAT IOERROR", bp); /* * Metadata write that didn't get logged but * written delayed anyway. These aren't associated * with a transaction, and can be ignored. */ if (XFS_BUF_IODONE_FUNC(bp) == NULL && (XFS_BUF_ISREAD(bp)) == 0) return (xfs_bioerror_relse(bp)); else return (xfs_bioerror(bp)); } } /* * Wrapper around bdstrat so that we can stop data from going to disk in case * we are shutting down the filesystem. Typically user data goes thru this * path; one of the exceptions is the superblock. */ void xfsbdstrat( struct xfs_mount *mp, struct xfs_buf *bp) { ASSERT(mp); if (!XFS_FORCED_SHUTDOWN(mp)) { xfs_buf_iorequest(bp); return; } xfs_buftrace("XFSBDSTRAT IOERROR", bp); xfs_bioerror_relse(bp); } /* * If the underlying (data/log/rt) device is readonly, there are some * operations that cannot proceed. */ int xfs_dev_is_read_only( xfs_mount_t *mp, char *message) { if (xfs_readonly_buftarg(mp->m_ddev_targp) || xfs_readonly_buftarg(mp->m_logdev_targp) || (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { cmn_err(CE_NOTE, "XFS: %s required on read-only device.", message); cmn_err(CE_NOTE, "XFS: write access unavailable, cannot proceed."); return EROFS; } return 0; }