// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ext4/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ext4.h" #include "ext4_extents.h" /* Needed for trace points definition */ #include "ext4_jbd2.h" #include "xattr.h" #include "acl.h" #include "mballoc.h" #include "fsmap.h" #define CREATE_TRACE_POINTS #include static struct ext4_lazy_init *ext4_li_info; static DEFINE_MUTEX(ext4_li_mtx); static struct ratelimit_state ext4_mount_msg_ratelimit; static int ext4_load_journal(struct super_block *, struct ext4_super_block *, unsigned long journal_devnum); static int ext4_show_options(struct seq_file *seq, struct dentry *root); static void ext4_update_super(struct super_block *sb); static int ext4_commit_super(struct super_block *sb); static int ext4_mark_recovery_complete(struct super_block *sb, struct ext4_super_block *es); static int ext4_clear_journal_err(struct super_block *sb, struct ext4_super_block *es); static int ext4_sync_fs(struct super_block *sb, int wait); static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); static int ext4_unfreeze(struct super_block *sb); static int ext4_freeze(struct super_block *sb); static inline int ext2_feature_set_ok(struct super_block *sb); static inline int ext3_feature_set_ok(struct super_block *sb); static void ext4_destroy_lazyinit_thread(void); static void ext4_unregister_li_request(struct super_block *sb); static void ext4_clear_request_list(void); static struct inode *ext4_get_journal_inode(struct super_block *sb, unsigned int journal_inum); static int ext4_validate_options(struct fs_context *fc); static int ext4_check_opt_consistency(struct fs_context *fc, struct super_block *sb); static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); static int ext4_get_tree(struct fs_context *fc); static int ext4_reconfigure(struct fs_context *fc); static void ext4_fc_free(struct fs_context *fc); static int ext4_init_fs_context(struct fs_context *fc); static const struct fs_parameter_spec ext4_param_specs[]; /* * Lock ordering * * page fault path: * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start * -> page lock -> i_data_sem (rw) * * buffered write path: * sb_start_write -> i_mutex -> mmap_lock * sb_start_write -> i_mutex -> transaction start -> page lock -> * i_data_sem (rw) * * truncate: * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> * page lock * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> * i_data_sem (rw) * * direct IO: * sb_start_write -> i_mutex -> mmap_lock * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) * * writepages: * transaction start -> page lock(s) -> i_data_sem (rw) */ static const struct fs_context_operations ext4_context_ops = { .parse_param = ext4_parse_param, .get_tree = ext4_get_tree, .reconfigure = ext4_reconfigure, .free = ext4_fc_free, }; #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) static struct file_system_type ext2_fs_type = { .owner = THIS_MODULE, .name = "ext2", .init_fs_context = ext4_init_fs_context, .parameters = ext4_param_specs, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("ext2"); MODULE_ALIAS("ext2"); #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) #else #define IS_EXT2_SB(sb) (0) #endif static struct file_system_type ext3_fs_type = { .owner = THIS_MODULE, .name = "ext3", .init_fs_context = ext4_init_fs_context, .parameters = ext4_param_specs, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("ext3"); MODULE_ALIAS("ext3"); #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) { /* * buffer's verified bit is no longer valid after reading from * disk again due to write out error, clear it to make sure we * recheck the buffer contents. */ clear_buffer_verified(bh); bh->b_end_io = end_io ? end_io : end_buffer_read_sync; get_bh(bh); submit_bh(REQ_OP_READ | op_flags, bh); } void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) { BUG_ON(!buffer_locked(bh)); if (ext4_buffer_uptodate(bh)) { unlock_buffer(bh); return; } __ext4_read_bh(bh, op_flags, end_io); } int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) { BUG_ON(!buffer_locked(bh)); if (ext4_buffer_uptodate(bh)) { unlock_buffer(bh); return 0; } __ext4_read_bh(bh, op_flags, end_io); wait_on_buffer(bh); if (buffer_uptodate(bh)) return 0; return -EIO; } int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) { lock_buffer(bh); if (!wait) { ext4_read_bh_nowait(bh, op_flags, NULL); return 0; } return ext4_read_bh(bh, op_flags, NULL); } /* * This works like __bread_gfp() except it uses ERR_PTR for error * returns. Currently with sb_bread it's impossible to distinguish * between ENOMEM and EIO situations (since both result in a NULL * return. */ static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, sector_t block, blk_opf_t op_flags, gfp_t gfp) { struct buffer_head *bh; int ret; bh = sb_getblk_gfp(sb, block, gfp); if (bh == NULL) return ERR_PTR(-ENOMEM); if (ext4_buffer_uptodate(bh)) return bh; ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); if (ret) { put_bh(bh); return ERR_PTR(ret); } return bh; } struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, blk_opf_t op_flags) { return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); } struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, sector_t block) { return __ext4_sb_bread_gfp(sb, block, 0, 0); } void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) { struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); if (likely(bh)) { if (trylock_buffer(bh)) ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); brelse(bh); } } static int ext4_verify_csum_type(struct super_block *sb, struct ext4_super_block *es) { if (!ext4_has_feature_metadata_csum(sb)) return 1; return es->s_checksum_type == EXT4_CRC32C_CHKSUM; } __le32 ext4_superblock_csum(struct super_block *sb, struct ext4_super_block *es) { struct ext4_sb_info *sbi = EXT4_SB(sb); int offset = offsetof(struct ext4_super_block, s_checksum); __u32 csum; csum = ext4_chksum(sbi, ~0, (char *)es, offset); return cpu_to_le32(csum); } static int ext4_superblock_csum_verify(struct super_block *sb, struct ext4_super_block *es) { if (!ext4_has_metadata_csum(sb)) return 1; return es->s_checksum == ext4_superblock_csum(sb, es); } void ext4_superblock_csum_set(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; if (!ext4_has_metadata_csum(sb)) return; es->s_checksum = ext4_superblock_csum(sb, es); } ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_block_bitmap_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_bitmap_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_table(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_table_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); } __u32 ext4_free_group_clusters(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_free_blocks_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); } __u32 ext4_free_inodes_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_free_inodes_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); } __u32 ext4_used_dirs_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_used_dirs_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); } __u32 ext4_itable_unused_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_itable_unused_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); } void ext4_block_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_table_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_table_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); } void ext4_free_group_clusters_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); } void ext4_free_inodes_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); } void ext4_used_dirs_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); } void ext4_itable_unused_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); } static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) { now = clamp_val(now, 0, (1ull << 40) - 1); *lo = cpu_to_le32(lower_32_bits(now)); *hi = upper_32_bits(now); } static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) { return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); } #define ext4_update_tstamp(es, tstamp) \ __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ ktime_get_real_seconds()) #define ext4_get_tstamp(es, tstamp) \ __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) /* * The del_gendisk() function uninitializes the disk-specific data * structures, including the bdi structure, without telling anyone * else. Once this happens, any attempt to call mark_buffer_dirty() * (for example, by ext4_commit_super), will cause a kernel OOPS. * This is a kludge to prevent these oops until we can put in a proper * hook in del_gendisk() to inform the VFS and file system layers. */ static int block_device_ejected(struct super_block *sb) { struct inode *bd_inode = sb->s_bdev->bd_inode; struct backing_dev_info *bdi = inode_to_bdi(bd_inode); return bdi->dev == NULL; } static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); int error = is_journal_aborted(journal); struct ext4_journal_cb_entry *jce; BUG_ON(txn->t_state == T_FINISHED); ext4_process_freed_data(sb, txn->t_tid); spin_lock(&sbi->s_md_lock); while (!list_empty(&txn->t_private_list)) { jce = list_entry(txn->t_private_list.next, struct ext4_journal_cb_entry, jce_list); list_del_init(&jce->jce_list); spin_unlock(&sbi->s_md_lock); jce->jce_func(sb, jce, error); spin_lock(&sbi->s_md_lock); } spin_unlock(&sbi->s_md_lock); } /* * This writepage callback for write_cache_pages() * takes care of a few cases after page cleaning. * * write_cache_pages() already checks for dirty pages * and calls clear_page_dirty_for_io(), which we want, * to write protect the pages. * * However, we may have to redirty a page (see below.) */ static int ext4_journalled_writepage_callback(struct folio *folio, struct writeback_control *wbc, void *data) { transaction_t *transaction = (transaction_t *) data; struct buffer_head *bh, *head; struct journal_head *jh; bh = head = folio_buffers(folio); do { /* * We have to redirty a page in these cases: * 1) If buffer is dirty, it means the page was dirty because it * contains a buffer that needs checkpointing. So the dirty bit * needs to be preserved so that checkpointing writes the buffer * properly. * 2) If buffer is not part of the committing transaction * (we may have just accidentally come across this buffer because * inode range tracking is not exact) or if the currently running * transaction already contains this buffer as well, dirty bit * needs to be preserved so that the buffer gets writeprotected * properly on running transaction's commit. */ jh = bh2jh(bh); if (buffer_dirty(bh) || (jh && (jh->b_transaction != transaction || jh->b_next_transaction))) { folio_redirty_for_writepage(wbc, folio); goto out; } } while ((bh = bh->b_this_page) != head); out: return AOP_WRITEPAGE_ACTIVATE; } static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) { struct address_space *mapping = jinode->i_vfs_inode->i_mapping; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .range_start = jinode->i_dirty_start, .range_end = jinode->i_dirty_end, }; return write_cache_pages(mapping, &wbc, ext4_journalled_writepage_callback, jinode->i_transaction); } static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) { int ret; if (ext4_should_journal_data(jinode->i_vfs_inode)) ret = ext4_journalled_submit_inode_data_buffers(jinode); else ret = ext4_normal_submit_inode_data_buffers(jinode); return ret; } static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) { int ret = 0; if (!ext4_should_journal_data(jinode->i_vfs_inode)) ret = jbd2_journal_finish_inode_data_buffers(jinode); return ret; } static bool system_going_down(void) { return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || system_state == SYSTEM_RESTART; } struct ext4_err_translation { int code; int errno; }; #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } static struct ext4_err_translation err_translation[] = { EXT4_ERR_TRANSLATE(EIO), EXT4_ERR_TRANSLATE(ENOMEM), EXT4_ERR_TRANSLATE(EFSBADCRC), EXT4_ERR_TRANSLATE(EFSCORRUPTED), EXT4_ERR_TRANSLATE(ENOSPC), EXT4_ERR_TRANSLATE(ENOKEY), EXT4_ERR_TRANSLATE(EROFS), EXT4_ERR_TRANSLATE(EFBIG), EXT4_ERR_TRANSLATE(EEXIST), EXT4_ERR_TRANSLATE(ERANGE), EXT4_ERR_TRANSLATE(EOVERFLOW), EXT4_ERR_TRANSLATE(EBUSY), EXT4_ERR_TRANSLATE(ENOTDIR), EXT4_ERR_TRANSLATE(ENOTEMPTY), EXT4_ERR_TRANSLATE(ESHUTDOWN), EXT4_ERR_TRANSLATE(EFAULT), }; static int ext4_errno_to_code(int errno) { int i; for (i = 0; i < ARRAY_SIZE(err_translation); i++) if (err_translation[i].errno == errno) return err_translation[i].code; return EXT4_ERR_UNKNOWN; } static void save_error_info(struct super_block *sb, int error, __u32 ino, __u64 block, const char *func, unsigned int line) { struct ext4_sb_info *sbi = EXT4_SB(sb); /* We default to EFSCORRUPTED error... */ if (error == 0) error = EFSCORRUPTED; spin_lock(&sbi->s_error_lock); sbi->s_add_error_count++; sbi->s_last_error_code = error; sbi->s_last_error_line = line; sbi->s_last_error_ino = ino; sbi->s_last_error_block = block; sbi->s_last_error_func = func; sbi->s_last_error_time = ktime_get_real_seconds(); if (!sbi->s_first_error_time) { sbi->s_first_error_code = error; sbi->s_first_error_line = line; sbi->s_first_error_ino = ino; sbi->s_first_error_block = block; sbi->s_first_error_func = func; sbi->s_first_error_time = sbi->s_last_error_time; } spin_unlock(&sbi->s_error_lock); } /* Deal with the reporting of failure conditions on a filesystem such as * inconsistencies detected or read IO failures. * * On ext2, we can store the error state of the filesystem in the * superblock. That is not possible on ext4, because we may have other * write ordering constraints on the superblock which prevent us from * writing it out straight away; and given that the journal is about to * be aborted, we can't rely on the current, or future, transactions to * write out the superblock safely. * * We'll just use the jbd2_journal_abort() error code to record an error in * the journal instead. On recovery, the journal will complain about * that error until we've noted it down and cleared it. * * If force_ro is set, we unconditionally force the filesystem into an * ABORT|READONLY state, unless the error response on the fs has been set to * panic in which case we take the easy way out and panic immediately. This is * used to deal with unrecoverable failures such as journal IO errors or ENOMEM * at a critical moment in log management. */ static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, __u32 ino, __u64 block, const char *func, unsigned int line) { journal_t *journal = EXT4_SB(sb)->s_journal; bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; if (test_opt(sb, WARN_ON_ERROR)) WARN_ON_ONCE(1); if (!continue_fs && !sb_rdonly(sb)) { ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); if (journal) jbd2_journal_abort(journal, -EIO); } if (!bdev_read_only(sb->s_bdev)) { save_error_info(sb, error, ino, block, func, line); /* * In case the fs should keep running, we need to writeout * superblock through the journal. Due to lock ordering * constraints, it may not be safe to do it right here so we * defer superblock flushing to a workqueue. */ if (continue_fs && journal) schedule_work(&EXT4_SB(sb)->s_error_work); else ext4_commit_super(sb); } /* * We force ERRORS_RO behavior when system is rebooting. Otherwise we * could panic during 'reboot -f' as the underlying device got already * disabled. */ if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { panic("EXT4-fs (device %s): panic forced after error\n", sb->s_id); } if (sb_rdonly(sb) || continue_fs) return; ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); /* * Make sure updated value of ->s_mount_flags will be visible before * ->s_flags update */ smp_wmb(); sb->s_flags |= SB_RDONLY; } static void flush_stashed_error_work(struct work_struct *work) { struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, s_error_work); journal_t *journal = sbi->s_journal; handle_t *handle; /* * If the journal is still running, we have to write out superblock * through the journal to avoid collisions of other journalled sb * updates. * * We use directly jbd2 functions here to avoid recursing back into * ext4 error handling code during handling of previous errors. */ if (!sb_rdonly(sbi->s_sb) && journal) { struct buffer_head *sbh = sbi->s_sbh; handle = jbd2_journal_start(journal, 1); if (IS_ERR(handle)) goto write_directly; if (jbd2_journal_get_write_access(handle, sbh)) { jbd2_journal_stop(handle); goto write_directly; } ext4_update_super(sbi->s_sb); if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " "superblock detected"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } if (jbd2_journal_dirty_metadata(handle, sbh)) { jbd2_journal_stop(handle); goto write_directly; } jbd2_journal_stop(handle); ext4_notify_error_sysfs(sbi); return; } write_directly: /* * Write through journal failed. Write sb directly to get error info * out and hope for the best. */ ext4_commit_super(sbi->s_sb); ext4_notify_error_sysfs(sbi); } #define ext4_error_ratelimit(sb) \ ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ "EXT4-fs error") void __ext4_error(struct super_block *sb, const char *function, unsigned int line, bool force_ro, int error, __u64 block, const char *fmt, ...) { struct va_format vaf; va_list args; if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) return; trace_ext4_error(sb, function, line); if (ext4_error_ratelimit(sb)) { va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", sb->s_id, function, line, current->comm, &vaf); va_end(args); } fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); ext4_handle_error(sb, force_ro, error, 0, block, function, line); } void __ext4_error_inode(struct inode *inode, const char *function, unsigned int line, ext4_fsblk_t block, int error, const char *fmt, ...) { va_list args; struct va_format vaf; if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return; trace_ext4_error(inode->i_sb, function, line); if (ext4_error_ratelimit(inode->i_sb)) { va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (block) printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " "inode #%lu: block %llu: comm %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, block, current->comm, &vaf); else printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, current->comm, &vaf); va_end(args); } fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, function, line); } void __ext4_error_file(struct file *file, const char *function, unsigned int line, ext4_fsblk_t block, const char *fmt, ...) { va_list args; struct va_format vaf; struct inode *inode = file_inode(file); char pathname[80], *path; if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return; trace_ext4_error(inode->i_sb, function, line); if (ext4_error_ratelimit(inode->i_sb)) { path = file_path(file, pathname, sizeof(pathname)); if (IS_ERR(path)) path = "(unknown)"; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (block) printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: " "block %llu: comm %s: path %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, block, current->comm, path, &vaf); else printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: " "comm %s: path %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, current->comm, path, &vaf); va_end(args); } fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, function, line); } const char *ext4_decode_error(struct super_block *sb, int errno, char nbuf[16]) { char *errstr = NULL; switch (errno) { case -EFSCORRUPTED: errstr = "Corrupt filesystem"; break; case -EFSBADCRC: errstr = "Filesystem failed CRC"; break; case -EIO: errstr = "IO failure"; break; case -ENOMEM: errstr = "Out of memory"; break; case -EROFS: if (!sb || (EXT4_SB(sb)->s_journal && EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) errstr = "Journal has aborted"; else errstr = "Readonly filesystem"; break; default: /* If the caller passed in an extra buffer for unknown * errors, textualise them now. Else we just return * NULL. */ if (nbuf) { /* Check for truncated error codes... */ if (snprintf(nbuf, 16, "error %d", -errno) >= 0) errstr = nbuf; } break; } return errstr; } /* __ext4_std_error decodes expected errors from journaling functions * automatically and invokes the appropriate error response. */ void __ext4_std_error(struct super_block *sb, const char *function, unsigned int line, int errno) { char nbuf[16]; const char *errstr; if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) return; /* Special case: if the error is EROFS, and we're not already * inside a transaction, then there's really no point in logging * an error. */ if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) return; if (ext4_error_ratelimit(sb)) { errstr = ext4_decode_error(sb, errno, nbuf); printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", sb->s_id, function, line, errstr); } fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); ext4_handle_error(sb, false, -errno, 0, 0, function, line); } void __ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) { struct va_format vaf; va_list args; if (sb) { atomic_inc(&EXT4_SB(sb)->s_msg_count); if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) return; } va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (sb) printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); else printk("%sEXT4-fs: %pV\n", prefix, &vaf); va_end(args); } static int ext4_warning_ratelimit(struct super_block *sb) { atomic_inc(&EXT4_SB(sb)->s_warning_count); return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), "EXT4-fs warning"); } void __ext4_warning(struct super_block *sb, const char *function, unsigned int line, const char *fmt, ...) { struct va_format vaf; va_list args; if (!ext4_warning_ratelimit(sb)) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", sb->s_id, function, line, &vaf); va_end(args); } void __ext4_warning_inode(const struct inode *inode, const char *function, unsigned int line, const char *fmt, ...) { struct va_format vaf; va_list args; if (!ext4_warning_ratelimit(inode->i_sb)) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, function, line, inode->i_ino, current->comm, &vaf); va_end(args); } void __ext4_grp_locked_error(const char *function, unsigned int line, struct super_block *sb, ext4_group_t grp, unsigned long ino, ext4_fsblk_t block, const char *fmt, ...) __releases(bitlock) __acquires(bitlock) { struct va_format vaf; va_list args; if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) return; trace_ext4_error(sb, function, line); if (ext4_error_ratelimit(sb)) { va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", sb->s_id, function, line, grp); if (ino) printk(KERN_CONT "inode %lu: ", ino); if (block) printk(KERN_CONT "block %llu:", (unsigned long long) block); printk(KERN_CONT "%pV\n", &vaf); va_end(args); } if (test_opt(sb, ERRORS_CONT)) { if (test_opt(sb, WARN_ON_ERROR)) WARN_ON_ONCE(1); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; if (!bdev_read_only(sb->s_bdev)) { save_error_info(sb, EFSCORRUPTED, ino, block, function, line); schedule_work(&EXT4_SB(sb)->s_error_work); } return; } ext4_unlock_group(sb, grp); ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); /* * We only get here in the ERRORS_RO case; relocking the group * may be dangerous, but nothing bad will happen since the * filesystem will have already been marked read/only and the * journal has been aborted. We return 1 as a hint to callers * who might what to use the return value from * ext4_grp_locked_error() to distinguish between the * ERRORS_CONT and ERRORS_RO case, and perhaps return more * aggressively from the ext4 function in question, with a * more appropriate error code. */ ext4_lock_group(sb, grp); return; } void ext4_mark_group_bitmap_corrupted(struct super_block *sb, ext4_group_t group, unsigned int flags) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_info *grp = ext4_get_group_info(sb, group); struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); int ret; if (!grp || !gdp) return; if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); if (!ret) percpu_counter_sub(&sbi->s_freeclusters_counter, grp->bb_free); } if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); if (!ret && gdp) { int count; count = ext4_free_inodes_count(sb, gdp); percpu_counter_sub(&sbi->s_freeinodes_counter, count); } } } void ext4_update_dynamic_rev(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) return; ext4_warning(sb, "updating to rev %d because of new feature flag, " "running e2fsck is recommended", EXT4_DYNAMIC_REV); es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); /* leave es->s_feature_*compat flags alone */ /* es->s_uuid will be set by e2fsck if empty */ /* * The rest of the superblock fields should be zero, and if not it * means they are likely already in use, so leave them alone. We * can leave it up to e2fsck to clean up any inconsistencies there. */ } /* * Open the external journal device */ static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) { struct block_device *bdev; bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); if (IS_ERR(bdev)) goto fail; return bdev; fail: ext4_msg(sb, KERN_ERR, "failed to open journal device unknown-block(%u,%u) %ld", MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); return NULL; } /* * Release the journal device */ static void ext4_blkdev_put(struct block_device *bdev) { blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); } static void ext4_blkdev_remove(struct ext4_sb_info *sbi) { struct block_device *bdev; bdev = sbi->s_journal_bdev; if (bdev) { /* * Invalidate the journal device's buffers. We don't want them * floating about in memory - the physical journal device may * hotswapped, and it breaks the `ro-after' testing code. */ invalidate_bdev(bdev); ext4_blkdev_put(bdev); sbi->s_journal_bdev = NULL; } } static inline struct inode *orphan_list_entry(struct list_head *l) { return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; } static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) { struct list_head *l; ext4_msg(sb, KERN_ERR, "sb orphan head is %d", le32_to_cpu(sbi->s_es->s_last_orphan)); printk(KERN_ERR "sb_info orphan list:\n"); list_for_each(l, &sbi->s_orphan) { struct inode *inode = orphan_list_entry(l); printk(KERN_ERR " " "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", inode->i_sb->s_id, inode->i_ino, inode, inode->i_mode, inode->i_nlink, NEXT_ORPHAN(inode)); } } #ifdef CONFIG_QUOTA static int ext4_quota_off(struct super_block *sb, int type); static inline void ext4_quota_off_umount(struct super_block *sb) { int type; /* Use our quota_off function to clear inode flags etc. */ for (type = 0; type < EXT4_MAXQUOTAS; type++) ext4_quota_off(sb, type); } /* * This is a helper function which is used in the mount/remount * codepaths (which holds s_umount) to fetch the quota file name. */ static inline char *get_qf_name(struct super_block *sb, struct ext4_sb_info *sbi, int type) { return rcu_dereference_protected(sbi->s_qf_names[type], lockdep_is_held(&sb->s_umount)); } #else static inline void ext4_quota_off_umount(struct super_block *sb) { } #endif static int ext4_percpu_param_init(struct ext4_sb_info *sbi) { ext4_fsblk_t block; int err; block = ext4_count_free_clusters(sbi->s_sb); ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); err = percpu_counter_init(&sbi->s_freeclusters_counter, block, GFP_KERNEL); if (!err) { unsigned long freei = ext4_count_free_inodes(sbi->s_sb); sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, GFP_KERNEL); } if (!err) err = percpu_counter_init(&sbi->s_dirs_counter, ext4_count_dirs(sbi->s_sb), GFP_KERNEL); if (!err) err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, GFP_KERNEL); if (!err) err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, GFP_KERNEL); if (!err) err = percpu_init_rwsem(&sbi->s_writepages_rwsem); if (err) ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); return err; } static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) { percpu_counter_destroy(&sbi->s_freeclusters_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); percpu_counter_destroy(&sbi->s_dirtyclusters_counter); percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); percpu_free_rwsem(&sbi->s_writepages_rwsem); } static void ext4_group_desc_free(struct ext4_sb_info *sbi) { struct buffer_head **group_desc; int i; rcu_read_lock(); group_desc = rcu_dereference(sbi->s_group_desc); for (i = 0; i < sbi->s_gdb_count; i++) brelse(group_desc[i]); kvfree(group_desc); rcu_read_unlock(); } static void ext4_flex_groups_free(struct ext4_sb_info *sbi) { struct flex_groups **flex_groups; int i; rcu_read_lock(); flex_groups = rcu_dereference(sbi->s_flex_groups); if (flex_groups) { for (i = 0; i < sbi->s_flex_groups_allocated; i++) kvfree(flex_groups[i]); kvfree(flex_groups); } rcu_read_unlock(); } static void ext4_put_super(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int aborted = 0; int err; /* * Unregister sysfs before destroying jbd2 journal. * Since we could still access attr_journal_task attribute via sysfs * path which could have sbi->s_journal->j_task as NULL * Unregister sysfs before flush sbi->s_error_work. * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If * read metadata verify failed then will queue error work. * flush_stashed_error_work will call start_this_handle may trigger * BUG_ON. */ ext4_unregister_sysfs(sb); if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", &sb->s_uuid); ext4_unregister_li_request(sb); ext4_quota_off_umount(sb); flush_work(&sbi->s_error_work); destroy_workqueue(sbi->rsv_conversion_wq); ext4_release_orphan_info(sb); if (sbi->s_journal) { aborted = is_journal_aborted(sbi->s_journal); err = jbd2_journal_destroy(sbi->s_journal); sbi->s_journal = NULL; if ((err < 0) && !aborted) { ext4_abort(sb, -err, "Couldn't clean up the journal"); } } ext4_es_unregister_shrinker(sbi); timer_shutdown_sync(&sbi->s_err_report); ext4_release_system_zone(sb); ext4_mb_release(sb); ext4_ext_release(sb); if (!sb_rdonly(sb) && !aborted) { ext4_clear_feature_journal_needs_recovery(sb); ext4_clear_feature_orphan_present(sb); es->s_state = cpu_to_le16(sbi->s_mount_state); } if (!sb_rdonly(sb)) ext4_commit_super(sb); ext4_group_desc_free(sbi); ext4_flex_groups_free(sbi); ext4_percpu_param_destroy(sbi); #ifdef CONFIG_QUOTA for (int i = 0; i < EXT4_MAXQUOTAS; i++) kfree(get_qf_name(sb, sbi, i)); #endif /* Debugging code just in case the in-memory inode orphan list * isn't empty. The on-disk one can be non-empty if we've * detected an error and taken the fs readonly, but the * in-memory list had better be clean by this point. */ if (!list_empty(&sbi->s_orphan)) dump_orphan_list(sb, sbi); ASSERT(list_empty(&sbi->s_orphan)); sync_blockdev(sb->s_bdev); invalidate_bdev(sb->s_bdev); if (sbi->s_journal_bdev) { sync_blockdev(sbi->s_journal_bdev); ext4_blkdev_remove(sbi); } ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); sbi->s_ea_inode_cache = NULL; ext4_xattr_destroy_cache(sbi->s_ea_block_cache); sbi->s_ea_block_cache = NULL; ext4_stop_mmpd(sbi); brelse(sbi->s_sbh); sb->s_fs_info = NULL; /* * Now that we are completely done shutting down the * superblock, we need to actually destroy the kobject. */ kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); kfree(sbi->s_blockgroup_lock); fs_put_dax(sbi->s_daxdev, NULL); fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); #if IS_ENABLED(CONFIG_UNICODE) utf8_unload(sb->s_encoding); #endif kfree(sbi); } static struct kmem_cache *ext4_inode_cachep; /* * Called inside transaction, so use GFP_NOFS */ static struct inode *ext4_alloc_inode(struct super_block *sb) { struct ext4_inode_info *ei; ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); if (!ei) return NULL; inode_set_iversion(&ei->vfs_inode, 1); ei->i_flags = 0; spin_lock_init(&ei->i_raw_lock); ei->i_prealloc_node = RB_ROOT; atomic_set(&ei->i_prealloc_active, 0); rwlock_init(&ei->i_prealloc_lock); ext4_es_init_tree(&ei->i_es_tree); rwlock_init(&ei->i_es_lock); INIT_LIST_HEAD(&ei->i_es_list); ei->i_es_all_nr = 0; ei->i_es_shk_nr = 0; ei->i_es_shrink_lblk = 0; ei->i_reserved_data_blocks = 0; spin_lock_init(&(ei->i_block_reservation_lock)); ext4_init_pending_tree(&ei->i_pending_tree); #ifdef CONFIG_QUOTA ei->i_reserved_quota = 0; memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); #endif ei->jinode = NULL; INIT_LIST_HEAD(&ei->i_rsv_conversion_list); spin_lock_init(&ei->i_completed_io_lock); ei->i_sync_tid = 0; ei->i_datasync_tid = 0; atomic_set(&ei->i_unwritten, 0); INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); ext4_fc_init_inode(&ei->vfs_inode); mutex_init(&ei->i_fc_lock); return &ei->vfs_inode; } static int ext4_drop_inode(struct inode *inode) { int drop = generic_drop_inode(inode); if (!drop) drop = fscrypt_drop_inode(inode); trace_ext4_drop_inode(inode, drop); return drop; } static void ext4_free_in_core_inode(struct inode *inode) { fscrypt_free_inode(inode); if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { pr_warn("%s: inode %ld still in fc list", __func__, inode->i_ino); } kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); } static void ext4_destroy_inode(struct inode *inode) { if (!list_empty(&(EXT4_I(inode)->i_orphan))) { ext4_msg(inode->i_sb, KERN_ERR, "Inode %lu (%p): orphan list check failed!", inode->i_ino, EXT4_I(inode)); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, EXT4_I(inode), sizeof(struct ext4_inode_info), true); dump_stack(); } if (EXT4_I(inode)->i_reserved_data_blocks) ext4_msg(inode->i_sb, KERN_ERR, "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", inode->i_ino, EXT4_I(inode), EXT4_I(inode)->i_reserved_data_blocks); } static void init_once(void *foo) { struct ext4_inode_info *ei = foo; INIT_LIST_HEAD(&ei->i_orphan); init_rwsem(&ei->xattr_sem); init_rwsem(&ei->i_data_sem); inode_init_once(&ei->vfs_inode); ext4_fc_init_inode(&ei->vfs_inode); } static int __init init_inodecache(void) { ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", sizeof(struct ext4_inode_info), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| SLAB_ACCOUNT), offsetof(struct ext4_inode_info, i_data), sizeof_field(struct ext4_inode_info, i_data), init_once); if (ext4_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(ext4_inode_cachep); } void ext4_clear_inode(struct inode *inode) { ext4_fc_del(inode); invalidate_inode_buffers(inode); clear_inode(inode); ext4_discard_preallocations(inode, 0); ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); dquot_drop(inode); if (EXT4_I(inode)->jinode) { jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), EXT4_I(inode)->jinode); jbd2_free_inode(EXT4_I(inode)->jinode); EXT4_I(inode)->jinode = NULL; } fscrypt_put_encryption_info(inode); fsverity_cleanup_inode(inode); } static struct inode *ext4_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct inode *inode; /* * Currently we don't know the generation for parent directory, so * a generation of 0 means "accept any" */ inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); if (IS_ERR(inode)) return ERR_CAST(inode); if (generation && inode->i_generation != generation) { iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ext4_nfs_get_inode); } static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, ext4_nfs_get_inode); } static int ext4_nfs_commit_metadata(struct inode *inode) { struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL }; trace_ext4_nfs_commit_metadata(inode); return ext4_write_inode(inode, &wbc); } #ifdef CONFIG_QUOTA static const char * const quotatypes[] = INITQFNAMES; #define QTYPE2NAME(t) (quotatypes[t]) static int ext4_write_dquot(struct dquot *dquot); static int ext4_acquire_dquot(struct dquot *dquot); static int ext4_release_dquot(struct dquot *dquot); static int ext4_mark_dquot_dirty(struct dquot *dquot); static int ext4_write_info(struct super_block *sb, int type); static int ext4_quota_on(struct super_block *sb, int type, int format_id, const struct path *path); static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off); static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off); static int ext4_quota_enable(struct super_block *sb, int type, int format_id, unsigned int flags); static struct dquot **ext4_get_dquots(struct inode *inode) { return EXT4_I(inode)->i_dquot; } static const struct dquot_operations ext4_quota_operations = { .get_reserved_space = ext4_get_reserved_space, .write_dquot = ext4_write_dquot, .acquire_dquot = ext4_acquire_dquot, .release_dquot = ext4_release_dquot, .mark_dirty = ext4_mark_dquot_dirty, .write_info = ext4_write_info, .alloc_dquot = dquot_alloc, .destroy_dquot = dquot_destroy, .get_projid = ext4_get_projid, .get_inode_usage = ext4_get_inode_usage, .get_next_id = dquot_get_next_id, }; static const struct quotactl_ops ext4_qctl_operations = { .quota_on = ext4_quota_on, .quota_off = ext4_quota_off, .quota_sync = dquot_quota_sync, .get_state = dquot_get_state, .set_info = dquot_set_dqinfo, .get_dqblk = dquot_get_dqblk, .set_dqblk = dquot_set_dqblk, .get_nextdqblk = dquot_get_next_dqblk, }; #endif static const struct super_operations ext4_sops = { .alloc_inode = ext4_alloc_inode, .free_inode = ext4_free_in_core_inode, .destroy_inode = ext4_destroy_inode, .write_inode = ext4_write_inode, .dirty_inode = ext4_dirty_inode, .drop_inode = ext4_drop_inode, .evict_inode = ext4_evict_inode, .put_super = ext4_put_super, .sync_fs = ext4_sync_fs, .freeze_fs = ext4_freeze, .unfreeze_fs = ext4_unfreeze, .statfs = ext4_statfs, .show_options = ext4_show_options, #ifdef CONFIG_QUOTA .quota_read = ext4_quota_read, .quota_write = ext4_quota_write, .get_dquots = ext4_get_dquots, #endif }; static const struct export_operations ext4_export_ops = { .fh_to_dentry = ext4_fh_to_dentry, .fh_to_parent = ext4_fh_to_parent, .get_parent = ext4_get_parent, .commit_metadata = ext4_nfs_commit_metadata, }; enum { Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, Opt_resgid, Opt_resuid, Opt_sb, Opt_nouid32, Opt_debug, Opt_removed, Opt_user_xattr, Opt_acl, Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, Opt_inlinecrypt, Opt_usrjquota, Opt_grpjquota, Opt_quota, Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, Opt_inode_readahead_blks, Opt_journal_ioprio, Opt_dioread_nolock, Opt_dioread_lock, Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, #ifdef CONFIG_EXT4_DEBUG Opt_fc_debug_max_replay, Opt_fc_debug_force #endif }; static const struct constant_table ext4_param_errors[] = { {"continue", EXT4_MOUNT_ERRORS_CONT}, {"panic", EXT4_MOUNT_ERRORS_PANIC}, {"remount-ro", EXT4_MOUNT_ERRORS_RO}, {} }; static const struct constant_table ext4_param_data[] = { {"journal", EXT4_MOUNT_JOURNAL_DATA}, {"ordered", EXT4_MOUNT_ORDERED_DATA}, {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, {} }; static const struct constant_table ext4_param_data_err[] = { {"abort", Opt_data_err_abort}, {"ignore", Opt_data_err_ignore}, {} }; static const struct constant_table ext4_param_jqfmt[] = { {"vfsold", QFMT_VFS_OLD}, {"vfsv0", QFMT_VFS_V0}, {"vfsv1", QFMT_VFS_V1}, {} }; static const struct constant_table ext4_param_dax[] = { {"always", Opt_dax_always}, {"inode", Opt_dax_inode}, {"never", Opt_dax_never}, {} }; /* String parameter that allows empty argument */ #define fsparam_string_empty(NAME, OPT) \ __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL) /* * Mount option specification * We don't use fsparam_flag_no because of the way we set the * options and the way we show them in _ext4_show_options(). To * keep the changes to a minimum, let's keep the negative options * separate for now. */ static const struct fs_parameter_spec ext4_param_specs[] = { fsparam_flag ("bsddf", Opt_bsd_df), fsparam_flag ("minixdf", Opt_minix_df), fsparam_flag ("grpid", Opt_grpid), fsparam_flag ("bsdgroups", Opt_grpid), fsparam_flag ("nogrpid", Opt_nogrpid), fsparam_flag ("sysvgroups", Opt_nogrpid), fsparam_u32 ("resgid", Opt_resgid), fsparam_u32 ("resuid", Opt_resuid), fsparam_u32 ("sb", Opt_sb), fsparam_enum ("errors", Opt_errors, ext4_param_errors), fsparam_flag ("nouid32", Opt_nouid32), fsparam_flag ("debug", Opt_debug), fsparam_flag ("oldalloc", Opt_removed), fsparam_flag ("orlov", Opt_removed), fsparam_flag ("user_xattr", Opt_user_xattr), fsparam_flag ("acl", Opt_acl), fsparam_flag ("norecovery", Opt_noload), fsparam_flag ("noload", Opt_noload), fsparam_flag ("bh", Opt_removed), fsparam_flag ("nobh", Opt_removed), fsparam_u32 ("commit", Opt_commit), fsparam_u32 ("min_batch_time", Opt_min_batch_time), fsparam_u32 ("max_batch_time", Opt_max_batch_time), fsparam_u32 ("journal_dev", Opt_journal_dev), fsparam_bdev ("journal_path", Opt_journal_path), fsparam_flag ("journal_checksum", Opt_journal_checksum), fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), fsparam_flag ("journal_async_commit",Opt_journal_async_commit), fsparam_flag ("abort", Opt_abort), fsparam_enum ("data", Opt_data, ext4_param_data), fsparam_enum ("data_err", Opt_data_err, ext4_param_data_err), fsparam_string_empty ("usrjquota", Opt_usrjquota), fsparam_string_empty ("grpjquota", Opt_grpjquota), fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), fsparam_flag ("grpquota", Opt_grpquota), fsparam_flag ("quota", Opt_quota), fsparam_flag ("noquota", Opt_noquota), fsparam_flag ("usrquota", Opt_usrquota), fsparam_flag ("prjquota", Opt_prjquota), fsparam_flag ("barrier", Opt_barrier), fsparam_u32 ("barrier", Opt_barrier), fsparam_flag ("nobarrier", Opt_nobarrier), fsparam_flag ("i_version", Opt_removed), fsparam_flag ("dax", Opt_dax), fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), fsparam_u32 ("stripe", Opt_stripe), fsparam_flag ("delalloc", Opt_delalloc), fsparam_flag ("nodelalloc", Opt_nodelalloc), fsparam_flag ("warn_on_error", Opt_warn_on_error), fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), fsparam_u32 ("debug_want_extra_isize", Opt_debug_want_extra_isize), fsparam_flag ("mblk_io_submit", Opt_removed), fsparam_flag ("nomblk_io_submit", Opt_removed), fsparam_flag ("block_validity", Opt_block_validity), fsparam_flag ("noblock_validity", Opt_noblock_validity), fsparam_u32 ("inode_readahead_blks", Opt_inode_readahead_blks), fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), fsparam_flag ("dioread_nolock", Opt_dioread_nolock), fsparam_flag ("nodioread_nolock", Opt_dioread_lock), fsparam_flag ("dioread_lock", Opt_dioread_lock), fsparam_flag ("discard", Opt_discard), fsparam_flag ("nodiscard", Opt_nodiscard), fsparam_u32 ("init_itable", Opt_init_itable), fsparam_flag ("init_itable", Opt_init_itable), fsparam_flag ("noinit_itable", Opt_noinit_itable), #ifdef CONFIG_EXT4_DEBUG fsparam_flag ("fc_debug_force", Opt_fc_debug_force), fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), #endif fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), fsparam_flag ("test_dummy_encryption", Opt_test_dummy_encryption), fsparam_string ("test_dummy_encryption", Opt_test_dummy_encryption), fsparam_flag ("inlinecrypt", Opt_inlinecrypt), fsparam_flag ("nombcache", Opt_nombcache), fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ fsparam_flag ("prefetch_block_bitmaps", Opt_removed), fsparam_flag ("no_prefetch_block_bitmaps", Opt_no_prefetch_block_bitmaps), fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ {} }; #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) #define MOPT_SET 0x0001 #define MOPT_CLEAR 0x0002 #define MOPT_NOSUPPORT 0x0004 #define MOPT_EXPLICIT 0x0008 #ifdef CONFIG_QUOTA #define MOPT_Q 0 #define MOPT_QFMT 0x0010 #else #define MOPT_Q MOPT_NOSUPPORT #define MOPT_QFMT MOPT_NOSUPPORT #endif #define MOPT_NO_EXT2 0x0020 #define MOPT_NO_EXT3 0x0040 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) #define MOPT_SKIP 0x0080 #define MOPT_2 0x0100 static const struct mount_opts { int token; int mount_opt; int flags; } ext4_mount_opts[] = { {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_EXT4_ONLY | MOPT_SET}, {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_EXT4_ONLY | MOPT_CLEAR}, {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_EXT4_ONLY | MOPT_CLEAR}, {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, {Opt_commit, 0, MOPT_NO_EXT2}, {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_EXT4_ONLY | MOPT_CLEAR}, {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, {Opt_dax_type, 0, MOPT_EXT4_ONLY}, {Opt_journal_dev, 0, MOPT_NO_EXT2}, {Opt_journal_path, 0, MOPT_NO_EXT2}, {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, {Opt_data, 0, MOPT_NO_EXT2}, {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, #ifdef CONFIG_EXT4_FS_POSIX_ACL {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, #else {Opt_acl, 0, MOPT_NOSUPPORT}, #endif {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, MOPT_SET | MOPT_Q}, {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, MOPT_SET | MOPT_Q}, {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), MOPT_CLEAR | MOPT_Q}, {Opt_usrjquota, 0, MOPT_Q}, {Opt_grpjquota, 0, MOPT_Q}, {Opt_jqfmt, 0, MOPT_QFMT}, {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, MOPT_SET}, #ifdef CONFIG_EXT4_DEBUG {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, #endif {Opt_err, 0, 0} }; #if IS_ENABLED(CONFIG_UNICODE) static const struct ext4_sb_encodings { __u16 magic; char *name; unsigned int version; } ext4_sb_encoding_map[] = { {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, }; static const struct ext4_sb_encodings * ext4_sb_read_encoding(const struct ext4_super_block *es) { __u16 magic = le16_to_cpu(es->s_encoding); int i; for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) if (magic == ext4_sb_encoding_map[i].magic) return &ext4_sb_encoding_map[i]; return NULL; } #endif #define EXT4_SPEC_JQUOTA (1 << 0) #define EXT4_SPEC_JQFMT (1 << 1) #define EXT4_SPEC_DATAJ (1 << 2) #define EXT4_SPEC_SB_BLOCK (1 << 3) #define EXT4_SPEC_JOURNAL_DEV (1 << 4) #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) #define EXT4_SPEC_s_want_extra_isize (1 << 7) #define EXT4_SPEC_s_max_batch_time (1 << 8) #define EXT4_SPEC_s_min_batch_time (1 << 9) #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) #define EXT4_SPEC_s_li_wait_mult (1 << 11) #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) #define EXT4_SPEC_s_stripe (1 << 13) #define EXT4_SPEC_s_resuid (1 << 14) #define EXT4_SPEC_s_resgid (1 << 15) #define EXT4_SPEC_s_commit_interval (1 << 16) #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) #define EXT4_SPEC_s_sb_block (1 << 18) #define EXT4_SPEC_mb_optimize_scan (1 << 19) struct ext4_fs_context { char *s_qf_names[EXT4_MAXQUOTAS]; struct fscrypt_dummy_policy dummy_enc_policy; int s_jquota_fmt; /* Format of quota to use */ #ifdef CONFIG_EXT4_DEBUG int s_fc_debug_max_replay; #endif unsigned short qname_spec; unsigned long vals_s_flags; /* Bits to set in s_flags */ unsigned long mask_s_flags; /* Bits changed in s_flags */ unsigned long journal_devnum; unsigned long s_commit_interval; unsigned long s_stripe; unsigned int s_inode_readahead_blks; unsigned int s_want_extra_isize; unsigned int s_li_wait_mult; unsigned int s_max_dir_size_kb; unsigned int journal_ioprio; unsigned int vals_s_mount_opt; unsigned int mask_s_mount_opt; unsigned int vals_s_mount_opt2; unsigned int mask_s_mount_opt2; unsigned long vals_s_mount_flags; unsigned long mask_s_mount_flags; unsigned int opt_flags; /* MOPT flags */ unsigned int spec; u32 s_max_batch_time; u32 s_min_batch_time; kuid_t s_resuid; kgid_t s_resgid; ext4_fsblk_t s_sb_block; }; static void ext4_fc_free(struct fs_context *fc) { struct ext4_fs_context *ctx = fc->fs_private; int i; if (!ctx) return; for (i = 0; i < EXT4_MAXQUOTAS; i++) kfree(ctx->s_qf_names[i]); fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); kfree(ctx); } int ext4_init_fs_context(struct fs_context *fc) { struct ext4_fs_context *ctx; ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); if (!ctx) return -ENOMEM; fc->fs_private = ctx; fc->ops = &ext4_context_ops; return 0; } #ifdef CONFIG_QUOTA /* * Note the name of the specified quota file. */ static int note_qf_name(struct fs_context *fc, int qtype, struct fs_parameter *param) { struct ext4_fs_context *ctx = fc->fs_private; char *qname; if (param->size < 1) { ext4_msg(NULL, KERN_ERR, "Missing quota name"); return -EINVAL; } if (strchr(param->string, '/')) { ext4_msg(NULL, KERN_ERR, "quotafile must be on filesystem root"); return -EINVAL; } if (ctx->s_qf_names[qtype]) { if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { ext4_msg(NULL, KERN_ERR, "%s quota file already specified", QTYPE2NAME(qtype)); return -EINVAL; } return 0; } qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); if (!qname) { ext4_msg(NULL, KERN_ERR, "Not enough memory for storing quotafile name"); return -ENOMEM; } ctx->s_qf_names[qtype] = qname; ctx->qname_spec |= 1 << qtype; ctx->spec |= EXT4_SPEC_JQUOTA; return 0; } /* * Clear the name of the specified quota file. */ static int unnote_qf_name(struct fs_context *fc, int qtype) { struct ext4_fs_context *ctx = fc->fs_private; if (ctx->s_qf_names[qtype]) kfree(ctx->s_qf_names[qtype]); ctx->s_qf_names[qtype] = NULL; ctx->qname_spec |= 1 << qtype; ctx->spec |= EXT4_SPEC_JQUOTA; return 0; } #endif static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, struct ext4_fs_context *ctx) { int err; if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { ext4_msg(NULL, KERN_WARNING, "test_dummy_encryption option not supported"); return -EINVAL; } err = fscrypt_parse_test_dummy_encryption(param, &ctx->dummy_enc_policy); if (err == -EINVAL) { ext4_msg(NULL, KERN_WARNING, "Value of option \"%s\" is unrecognized", param->key); } else if (err == -EEXIST) { ext4_msg(NULL, KERN_WARNING, "Conflicting test_dummy_encryption options"); return -EINVAL; } return err; } #define EXT4_SET_CTX(name) \ static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ unsigned long flag) \ { \ ctx->mask_s_##name |= flag; \ ctx->vals_s_##name |= flag; \ } #define EXT4_CLEAR_CTX(name) \ static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ unsigned long flag) \ { \ ctx->mask_s_##name |= flag; \ ctx->vals_s_##name &= ~flag; \ } #define EXT4_TEST_CTX(name) \ static inline unsigned long \ ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ { \ return (ctx->vals_s_##name & flag); \ } EXT4_SET_CTX(flags); /* set only */ EXT4_SET_CTX(mount_opt); EXT4_CLEAR_CTX(mount_opt); EXT4_TEST_CTX(mount_opt); EXT4_SET_CTX(mount_opt2); EXT4_CLEAR_CTX(mount_opt2); EXT4_TEST_CTX(mount_opt2); static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit) { set_bit(bit, &ctx->mask_s_mount_flags); set_bit(bit, &ctx->vals_s_mount_flags); } static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct ext4_fs_context *ctx = fc->fs_private; struct fs_parse_result result; const struct mount_opts *m; int is_remount; kuid_t uid; kgid_t gid; int token; token = fs_parse(fc, ext4_param_specs, param, &result); if (token < 0) return token; is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; for (m = ext4_mount_opts; m->token != Opt_err; m++) if (token == m->token) break; ctx->opt_flags |= m->flags; if (m->flags & MOPT_EXPLICIT) { if (m->mount_opt & EXT4_MOUNT_DELALLOC) { ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); } else return -EINVAL; } if (m->flags & MOPT_NOSUPPORT) { ext4_msg(NULL, KERN_ERR, "%s option not supported", param->key); return 0; } switch (token) { #ifdef CONFIG_QUOTA case Opt_usrjquota: if (!*param->string) return unnote_qf_name(fc, USRQUOTA); else return note_qf_name(fc, USRQUOTA, param); case Opt_grpjquota: if (!*param->string) return unnote_qf_name(fc, GRPQUOTA); else return note_qf_name(fc, GRPQUOTA, param); #endif case Opt_sb: if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { ext4_msg(NULL, KERN_WARNING, "Ignoring %s option on remount", param->key); } else { ctx->s_sb_block = result.uint_32; ctx->spec |= EXT4_SPEC_s_sb_block; } return 0; case Opt_removed: ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", param->key); return 0; case Opt_abort: ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED); return 0; case Opt_inlinecrypt: #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT ctx_set_flags(ctx, SB_INLINECRYPT); #else ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); #endif return 0; case Opt_errors: ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); ctx_set_mount_opt(ctx, result.uint_32); return 0; #ifdef CONFIG_QUOTA case Opt_jqfmt: ctx->s_jquota_fmt = result.uint_32; ctx->spec |= EXT4_SPEC_JQFMT; return 0; #endif case Opt_data: ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); ctx_set_mount_opt(ctx, result.uint_32); ctx->spec |= EXT4_SPEC_DATAJ; return 0; case Opt_commit: if (result.uint_32 == 0) result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; else if (result.uint_32 > INT_MAX / HZ) { ext4_msg(NULL, KERN_ERR, "Invalid commit interval %d, " "must be smaller than %d", result.uint_32, INT_MAX / HZ); return -EINVAL; } ctx->s_commit_interval = HZ * result.uint_32; ctx->spec |= EXT4_SPEC_s_commit_interval; return 0; case Opt_debug_want_extra_isize: if ((result.uint_32 & 1) || (result.uint_32 < 4)) { ext4_msg(NULL, KERN_ERR, "Invalid want_extra_isize %d", result.uint_32); return -EINVAL; } ctx->s_want_extra_isize = result.uint_32; ctx->spec |= EXT4_SPEC_s_want_extra_isize; return 0; case Opt_max_batch_time: ctx->s_max_batch_time = result.uint_32; ctx->spec |= EXT4_SPEC_s_max_batch_time; return 0; case Opt_min_batch_time: ctx->s_min_batch_time = result.uint_32; ctx->spec |= EXT4_SPEC_s_min_batch_time; return 0; case Opt_inode_readahead_blks: if (result.uint_32 && (result.uint_32 > (1 << 30) || !is_power_of_2(result.uint_32))) { ext4_msg(NULL, KERN_ERR, "EXT4-fs: inode_readahead_blks must be " "0 or a power of 2 smaller than 2^31"); return -EINVAL; } ctx->s_inode_readahead_blks = result.uint_32; ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; return 0; case Opt_init_itable: ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; if (param->type == fs_value_is_string) ctx->s_li_wait_mult = result.uint_32; ctx->spec |= EXT4_SPEC_s_li_wait_mult; return 0; case Opt_max_dir_size_kb: ctx->s_max_dir_size_kb = result.uint_32; ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; return 0; #ifdef CONFIG_EXT4_DEBUG case Opt_fc_debug_max_replay: ctx->s_fc_debug_max_replay = result.uint_32; ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; return 0; #endif case Opt_stripe: ctx->s_stripe = result.uint_32; ctx->spec |= EXT4_SPEC_s_stripe; return 0; case Opt_resuid: uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(uid)) { ext4_msg(NULL, KERN_ERR, "Invalid uid value %d", result.uint_32); return -EINVAL; } ctx->s_resuid = uid; ctx->spec |= EXT4_SPEC_s_resuid; return 0; case Opt_resgid: gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(gid)) { ext4_msg(NULL, KERN_ERR, "Invalid gid value %d", result.uint_32); return -EINVAL; } ctx->s_resgid = gid; ctx->spec |= EXT4_SPEC_s_resgid; return 0; case Opt_journal_dev: if (is_remount) { ext4_msg(NULL, KERN_ERR, "Cannot specify journal on remount"); return -EINVAL; } ctx->journal_devnum = result.uint_32; ctx->spec |= EXT4_SPEC_JOURNAL_DEV; return 0; case Opt_journal_path: { struct inode *journal_inode; struct path path; int error; if (is_remount) { ext4_msg(NULL, KERN_ERR, "Cannot specify journal on remount"); return -EINVAL; } error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); if (error) { ext4_msg(NULL, KERN_ERR, "error: could not find " "journal device path"); return -EINVAL; } journal_inode = d_inode(path.dentry); ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); ctx->spec |= EXT4_SPEC_JOURNAL_DEV; path_put(&path); return 0; } case Opt_journal_ioprio: if (result.uint_32 > 7) { ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" " (must be 0-7)"); return -EINVAL; } ctx->journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; return 0; case Opt_test_dummy_encryption: return ext4_parse_test_dummy_encryption(param, ctx); case Opt_dax: case Opt_dax_type: #ifdef CONFIG_FS_DAX { int type = (token == Opt_dax) ? Opt_dax : result.uint_32; switch (type) { case Opt_dax: case Opt_dax_always: ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); break; case Opt_dax_never: ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); break; case Opt_dax_inode: ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); /* Strictly for printing options */ ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); break; } return 0; } #else ext4_msg(NULL, KERN_INFO, "dax option not supported"); return -EINVAL; #endif case Opt_data_err: if (result.uint_32 == Opt_data_err_abort) ctx_set_mount_opt(ctx, m->mount_opt); else if (result.uint_32 == Opt_data_err_ignore) ctx_clear_mount_opt(ctx, m->mount_opt); return 0; case Opt_mb_optimize_scan: if (result.int_32 == 1) { ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); ctx->spec |= EXT4_SPEC_mb_optimize_scan; } else if (result.int_32 == 0) { ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); ctx->spec |= EXT4_SPEC_mb_optimize_scan; } else { ext4_msg(NULL, KERN_WARNING, "mb_optimize_scan should be set to 0 or 1."); return -EINVAL; } return 0; } /* * At this point we should only be getting options requiring MOPT_SET, * or MOPT_CLEAR. Anything else is a bug */ if (m->token == Opt_err) { ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", param->key); WARN_ON(1); return -EINVAL; } else { unsigned int set = 0; if ((param->type == fs_value_is_flag) || result.uint_32 > 0) set = 1; if (m->flags & MOPT_CLEAR) set = !set; else if (unlikely(!(m->flags & MOPT_SET))) { ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", param->key); WARN_ON(1); return -EINVAL; } if (m->flags & MOPT_2) { if (set != 0) ctx_set_mount_opt2(ctx, m->mount_opt); else ctx_clear_mount_opt2(ctx, m->mount_opt); } else { if (set != 0) ctx_set_mount_opt(ctx, m->mount_opt); else ctx_clear_mount_opt(ctx, m->mount_opt); } } return 0; } static int parse_options(struct fs_context *fc, char *options) { struct fs_parameter param; int ret; char *key; if (!options) return 0; while ((key = strsep(&options, ",")) != NULL) { if (*key) { size_t v_len = 0; char *value = strchr(key, '='); param.type = fs_value_is_flag; param.string = NULL; if (value) { if (value == key) continue; *value++ = 0; v_len = strlen(value); param.string = kmemdup_nul(value, v_len, GFP_KERNEL); if (!param.string) return -ENOMEM; param.type = fs_value_is_string; } param.key = key; param.size = v_len; ret = ext4_parse_param(fc, ¶m); if (param.string) kfree(param.string); if (ret < 0) return ret; } } ret = ext4_validate_options(fc); if (ret < 0) return ret; return 0; } static int parse_apply_sb_mount_options(struct super_block *sb, struct ext4_fs_context *m_ctx) { struct ext4_sb_info *sbi = EXT4_SB(sb); char *s_mount_opts = NULL; struct ext4_fs_context *s_ctx = NULL; struct fs_context *fc = NULL; int ret = -ENOMEM; if (!sbi->s_es->s_mount_opts[0]) return 0; s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, sizeof(sbi->s_es->s_mount_opts), GFP_KERNEL); if (!s_mount_opts) return ret; fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); if (!fc) goto out_free; s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); if (!s_ctx) goto out_free; fc->fs_private = s_ctx; fc->s_fs_info = sbi; ret = parse_options(fc, s_mount_opts); if (ret < 0) goto parse_failed; ret = ext4_check_opt_consistency(fc, sb); if (ret < 0) { parse_failed: ext4_msg(sb, KERN_WARNING, "failed to parse options in superblock: %s", s_mount_opts); ret = 0; goto out_free; } if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) m_ctx->journal_devnum = s_ctx->journal_devnum; if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) m_ctx->journal_ioprio = s_ctx->journal_ioprio; ext4_apply_options(fc, sb); ret = 0; out_free: if (fc) { ext4_fc_free(fc); kfree(fc); } kfree(s_mount_opts); return ret; } static void ext4_apply_quota_options(struct fs_context *fc, struct super_block *sb) { #ifdef CONFIG_QUOTA bool quota_feature = ext4_has_feature_quota(sb); struct ext4_fs_context *ctx = fc->fs_private; struct ext4_sb_info *sbi = EXT4_SB(sb); char *qname; int i; if (quota_feature) return; if (ctx->spec & EXT4_SPEC_JQUOTA) { for (i = 0; i < EXT4_MAXQUOTAS; i++) { if (!(ctx->qname_spec & (1 << i))) continue; qname = ctx->s_qf_names[i]; /* May be NULL */ if (qname) set_opt(sb, QUOTA); ctx->s_qf_names[i] = NULL; qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, lockdep_is_held(&sb->s_umount)); if (qname) kfree_rcu_mightsleep(qname); } } if (ctx->spec & EXT4_SPEC_JQFMT) sbi->s_jquota_fmt = ctx->s_jquota_fmt; #endif } /* * Check quota settings consistency. */ static int ext4_check_quota_consistency(struct fs_context *fc, struct super_block *sb) { #ifdef CONFIG_QUOTA struct ext4_fs_context *ctx = fc->fs_private; struct ext4_sb_info *sbi = EXT4_SB(sb); bool quota_feature = ext4_has_feature_quota(sb); bool quota_loaded = sb_any_quota_loaded(sb); bool usr_qf_name, grp_qf_name, usrquota, grpquota; int quota_flags, i; /* * We do the test below only for project quotas. 'usrquota' and * 'grpquota' mount options are allowed even without quota feature * to support legacy quotas in quota files. */ if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && !ext4_has_feature_project(sb)) { ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " "Cannot enable project quota enforcement."); return -EINVAL; } quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; if (quota_loaded && ctx->mask_s_mount_opt & quota_flags && !ctx_test_mount_opt(ctx, quota_flags)) goto err_quota_change; if (ctx->spec & EXT4_SPEC_JQUOTA) { for (i = 0; i < EXT4_MAXQUOTAS; i++) { if (!(ctx->qname_spec & (1 << i))) continue; if (quota_loaded && !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) goto err_jquota_change; if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && strcmp(get_qf_name(sb, sbi, i), ctx->s_qf_names[i]) != 0) goto err_jquota_specified; } if (quota_feature) { ext4_msg(NULL, KERN_INFO, "Journaled quota options ignored when " "QUOTA feature is enabled"); return 0; } } if (ctx->spec & EXT4_SPEC_JQFMT) { if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) goto err_jquota_change; if (quota_feature) { ext4_msg(NULL, KERN_INFO, "Quota format mount options " "ignored when QUOTA feature is enabled"); return 0; } } /* Make sure we don't mix old and new quota format */ usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || ctx->s_qf_names[USRQUOTA]); grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || ctx->s_qf_names[GRPQUOTA]); usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || test_opt(sb, USRQUOTA)); grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || test_opt(sb, GRPQUOTA)); if (usr_qf_name) { ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); usrquota = false; } if (grp_qf_name) { ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); grpquota = false; } if (usr_qf_name || grp_qf_name) { if (usrquota || grpquota) { ext4_msg(NULL, KERN_ERR, "old and new quota " "format mixing"); return -EINVAL; } if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { ext4_msg(NULL, KERN_ERR, "journaled quota format " "not specified"); return -EINVAL; } } return 0; err_quota_change: ext4_msg(NULL, KERN_ERR, "Cannot change quota options when quota turned on"); return -EINVAL; err_jquota_change: ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " "options when quota turned on"); return -EINVAL; err_jquota_specified: ext4_msg(NULL, KERN_ERR, "%s quota file already specified", QTYPE2NAME(i)); return -EINVAL; #else return 0; #endif } static int ext4_check_test_dummy_encryption(const struct fs_context *fc, struct super_block *sb) { const struct ext4_fs_context *ctx = fc->fs_private; const struct ext4_sb_info *sbi = EXT4_SB(sb); if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) return 0; if (!ext4_has_feature_encrypt(sb)) { ext4_msg(NULL, KERN_WARNING, "test_dummy_encryption requires encrypt feature"); return -EINVAL; } /* * This mount option is just for testing, and it's not worthwhile to * implement the extra complexity (e.g. RCU protection) that would be * needed to allow it to be set or changed during remount. We do allow * it to be specified during remount, but only if there is no change. */ if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, &ctx->dummy_enc_policy)) return 0; ext4_msg(NULL, KERN_WARNING, "Can't set or change test_dummy_encryption on remount"); return -EINVAL; } /* Also make sure s_mount_opts didn't contain a conflicting value. */ if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, &ctx->dummy_enc_policy)) return 0; ext4_msg(NULL, KERN_WARNING, "Conflicting test_dummy_encryption options"); return -EINVAL; } return 0; } static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, struct super_block *sb) { if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || /* if already set, it was already verified to be the same */ fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) return; EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); } static int ext4_check_opt_consistency(struct fs_context *fc, struct super_block *sb) { struct ext4_fs_context *ctx = fc->fs_private; struct ext4_sb_info *sbi = fc->s_fs_info; int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; int err; if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { ext4_msg(NULL, KERN_ERR, "Mount option(s) incompatible with ext2"); return -EINVAL; } if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { ext4_msg(NULL, KERN_ERR, "Mount option(s) incompatible with ext3"); return -EINVAL; } if (ctx->s_want_extra_isize > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { ext4_msg(NULL, KERN_ERR, "Invalid want_extra_isize %d", ctx->s_want_extra_isize); return -EINVAL; } if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) { int blocksize = BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); if (blocksize < PAGE_SIZE) ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an " "experimental mount option 'dioread_nolock' " "for blocksize < PAGE_SIZE"); } err = ext4_check_test_dummy_encryption(fc, sb); if (err) return err; if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { if (!sbi->s_journal) { ext4_msg(NULL, KERN_WARNING, "Remounting file system with no journal " "so ignoring journalled data option"); ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != test_opt(sb, DATA_FLAGS)) { ext4_msg(NULL, KERN_ERR, "Cannot change data mode " "on remount"); return -EINVAL; } } if (is_remount) { if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { ext4_msg(NULL, KERN_ERR, "can't mount with " "both data=journal and dax"); return -EINVAL; } if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { fail_dax_change_remount: ext4_msg(NULL, KERN_ERR, "can't change " "dax mount option while remounting"); return -EINVAL; } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { goto fail_dax_change_remount; } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { goto fail_dax_change_remount; } } return ext4_check_quota_consistency(fc, sb); } static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) { struct ext4_fs_context *ctx = fc->fs_private; struct ext4_sb_info *sbi = fc->s_fs_info; sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; sbi->s_mount_opt |= ctx->vals_s_mount_opt; sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; sbi->s_mount_flags &= ~ctx->mask_s_mount_flags; sbi->s_mount_flags |= ctx->vals_s_mount_flags; sb->s_flags &= ~ctx->mask_s_flags; sb->s_flags |= ctx->vals_s_flags; #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) APPLY(s_commit_interval); APPLY(s_stripe); APPLY(s_max_batch_time); APPLY(s_min_batch_time); APPLY(s_want_extra_isize); APPLY(s_inode_readahead_blks); APPLY(s_max_dir_size_kb); APPLY(s_li_wait_mult); APPLY(s_resgid); APPLY(s_resuid); #ifdef CONFIG_EXT4_DEBUG APPLY(s_fc_debug_max_replay); #endif ext4_apply_quota_options(fc, sb); ext4_apply_test_dummy_encryption(ctx, sb); } static int ext4_validate_options(struct fs_context *fc) { #ifdef CONFIG_QUOTA struct ext4_fs_context *ctx = fc->fs_private; char *usr_qf_name, *grp_qf_name; usr_qf_name = ctx->s_qf_names[USRQUOTA]; grp_qf_name = ctx->s_qf_names[GRPQUOTA]; if (usr_qf_name || grp_qf_name) { if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { ext4_msg(NULL, KERN_ERR, "old and new quota " "format mixing"); return -EINVAL; } } #endif return 1; } static inline void ext4_show_quota_options(struct seq_file *seq, struct super_block *sb) { #if defined(CONFIG_QUOTA) struct ext4_sb_info *sbi = EXT4_SB(sb); char *usr_qf_name, *grp_qf_name; if (sbi->s_jquota_fmt) { char *fmtname = ""; switch (sbi->s_jquota_fmt) { case QFMT_VFS_OLD: fmtname = "vfsold"; break; case QFMT_VFS_V0: fmtname = "vfsv0"; break; case QFMT_VFS_V1: fmtname = "vfsv1"; break; } seq_printf(seq, ",jqfmt=%s", fmtname); } rcu_read_lock(); usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); if (usr_qf_name) seq_show_option(seq, "usrjquota", usr_qf_name); if (grp_qf_name) seq_show_option(seq, "grpjquota", grp_qf_name); rcu_read_unlock(); #endif } static const char *token2str(int token) { const struct fs_parameter_spec *spec; for (spec = ext4_param_specs; spec->name != NULL; spec++) if (spec->opt == token && !spec->type) break; return spec->name; } /* * Show an option if * - it's set to a non-default value OR * - if the per-sb default is different from the global default */ static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, int nodefs) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int def_errors; const struct mount_opts *m; char sep = nodefs ? '\n' : ','; #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) if (sbi->s_sb_block != 1) SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); for (m = ext4_mount_opts; m->token != Opt_err; m++) { int want_set = m->flags & MOPT_SET; int opt_2 = m->flags & MOPT_2; unsigned int mount_opt, def_mount_opt; if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || m->flags & MOPT_SKIP) continue; if (opt_2) { mount_opt = sbi->s_mount_opt2; def_mount_opt = sbi->s_def_mount_opt2; } else { mount_opt = sbi->s_mount_opt; def_mount_opt = sbi->s_def_mount_opt; } /* skip if same as the default */ if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) continue; /* select Opt_noFoo vs Opt_Foo */ if ((want_set && (mount_opt & m->mount_opt) != m->mount_opt) || (!want_set && (mount_opt & m->mount_opt))) continue; SEQ_OPTS_PRINT("%s", token2str(m->token)); } if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) SEQ_OPTS_PRINT("resuid=%u", from_kuid_munged(&init_user_ns, sbi->s_resuid)); if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) SEQ_OPTS_PRINT("resgid=%u", from_kgid_munged(&init_user_ns, sbi->s_resgid)); def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) SEQ_OPTS_PUTS("errors=remount-ro"); if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) SEQ_OPTS_PUTS("errors=continue"); if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) SEQ_OPTS_PUTS("errors=panic"); if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); if (nodefs || sbi->s_stripe) SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); if (nodefs || EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) SEQ_OPTS_PUTS("data=journal"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) SEQ_OPTS_PUTS("data=ordered"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) SEQ_OPTS_PUTS("data=writeback"); } if (nodefs || sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) SEQ_OPTS_PRINT("inode_readahead_blks=%u", sbi->s_inode_readahead_blks); if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); if (nodefs || sbi->s_max_dir_size_kb) SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); if (test_opt(sb, DATA_ERR_ABORT)) SEQ_OPTS_PUTS("data_err=abort"); fscrypt_show_test_dummy_encryption(seq, sep, sb); if (sb->s_flags & SB_INLINECRYPT) SEQ_OPTS_PUTS("inlinecrypt"); if (test_opt(sb, DAX_ALWAYS)) { if (IS_EXT2_SB(sb)) SEQ_OPTS_PUTS("dax"); else SEQ_OPTS_PUTS("dax=always"); } else if (test_opt2(sb, DAX_NEVER)) { SEQ_OPTS_PUTS("dax=never"); } else if (test_opt2(sb, DAX_INODE)) { SEQ_OPTS_PUTS("dax=inode"); } if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && !test_opt2(sb, MB_OPTIMIZE_SCAN)) { SEQ_OPTS_PUTS("mb_optimize_scan=0"); } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && test_opt2(sb, MB_OPTIMIZE_SCAN)) { SEQ_OPTS_PUTS("mb_optimize_scan=1"); } ext4_show_quota_options(seq, sb); return 0; } static int ext4_show_options(struct seq_file *seq, struct dentry *root) { return _ext4_show_options(seq, root->d_sb, 0); } int ext4_seq_options_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; int rc; seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); rc = _ext4_show_options(seq, sb, 1); seq_puts(seq, "\n"); return rc; } static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, int read_only) { struct ext4_sb_info *sbi = EXT4_SB(sb); int err = 0; if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { ext4_msg(sb, KERN_ERR, "revision level too high, " "forcing read-only mode"); err = -EROFS; goto done; } if (read_only) goto done; if (!(sbi->s_mount_state & EXT4_VALID_FS)) ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " "running e2fsck is recommended"); else if (sbi->s_mount_state & EXT4_ERROR_FS) ext4_msg(sb, KERN_WARNING, "warning: mounting fs with errors, " "running e2fsck is recommended"); else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && le16_to_cpu(es->s_mnt_count) >= (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) ext4_msg(sb, KERN_WARNING, "warning: maximal mount count reached, " "running e2fsck is recommended"); else if (le32_to_cpu(es->s_checkinterval) && (ext4_get_tstamp(es, s_lastcheck) + le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) ext4_msg(sb, KERN_WARNING, "warning: checktime reached, " "running e2fsck is recommended"); if (!sbi->s_journal) es->s_state &= cpu_to_le16(~EXT4_VALID_FS); if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); le16_add_cpu(&es->s_mnt_count, 1); ext4_update_tstamp(es, s_mtime); if (sbi->s_journal) { ext4_set_feature_journal_needs_recovery(sb); if (ext4_has_feature_orphan_file(sb)) ext4_set_feature_orphan_present(sb); } err = ext4_commit_super(sb); done: if (test_opt(sb, DEBUG)) printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", sb->s_blocksize, sbi->s_groups_count, EXT4_BLOCKS_PER_GROUP(sb), EXT4_INODES_PER_GROUP(sb), sbi->s_mount_opt, sbi->s_mount_opt2); return err; } int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct flex_groups **old_groups, **new_groups; int size, i, j; if (!sbi->s_log_groups_per_flex) return 0; size = ext4_flex_group(sbi, ngroup - 1) + 1; if (size <= sbi->s_flex_groups_allocated) return 0; new_groups = kvzalloc(roundup_pow_of_two(size * sizeof(*sbi->s_flex_groups)), GFP_KERNEL); if (!new_groups) { ext4_msg(sb, KERN_ERR, "not enough memory for %d flex group pointers", size); return -ENOMEM; } for (i = sbi->s_flex_groups_allocated; i < size; i++) { new_groups[i] = kvzalloc(roundup_pow_of_two( sizeof(struct flex_groups)), GFP_KERNEL); if (!new_groups[i]) { for (j = sbi->s_flex_groups_allocated; j < i; j++) kvfree(new_groups[j]); kvfree(new_groups); ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", size); return -ENOMEM; } } rcu_read_lock(); old_groups = rcu_dereference(sbi->s_flex_groups); if (old_groups) memcpy(new_groups, old_groups, (sbi->s_flex_groups_allocated * sizeof(struct flex_groups *))); rcu_read_unlock(); rcu_assign_pointer(sbi->s_flex_groups, new_groups); sbi->s_flex_groups_allocated = size; if (old_groups) ext4_kvfree_array_rcu(old_groups); return 0; } static int ext4_fill_flex_info(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_desc *gdp = NULL; struct flex_groups *fg; ext4_group_t flex_group; int i, err; sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { sbi->s_log_groups_per_flex = 0; return 1; } err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); if (err) goto failed; for (i = 0; i < sbi->s_groups_count; i++) { gdp = ext4_get_group_desc(sb, i, NULL); flex_group = ext4_flex_group(sbi, i); fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); atomic64_add(ext4_free_group_clusters(sb, gdp), &fg->free_clusters); atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); } return 1; failed: return 0; } static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, struct ext4_group_desc *gdp) { int offset = offsetof(struct ext4_group_desc, bg_checksum); __u16 crc = 0; __le32 le_group = cpu_to_le32(block_group); struct ext4_sb_info *sbi = EXT4_SB(sb); if (ext4_has_metadata_csum(sbi->s_sb)) { /* Use new metadata_csum algorithm */ __u32 csum32; __u16 dummy_csum = 0; csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, sizeof(le_group)); csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, sizeof(dummy_csum)); offset += sizeof(dummy_csum); if (offset < sbi->s_desc_size) csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, sbi->s_desc_size - offset); crc = csum32 & 0xFFFF; goto out; } /* old crc16 code */ if (!ext4_has_feature_gdt_csum(sb)) return 0; crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); crc = crc16(crc, (__u8 *)gdp, offset); offset += sizeof(gdp->bg_checksum); /* skip checksum */ /* for checksum of struct ext4_group_desc do the rest...*/ if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) crc = crc16(crc, (__u8 *)gdp + offset, sbi->s_desc_size - offset); out: return cpu_to_le16(crc); } int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, struct ext4_group_desc *gdp) { if (ext4_has_group_desc_csum(sb) && (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) return 0; return 1; } void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, struct ext4_group_desc *gdp) { if (!ext4_has_group_desc_csum(sb)) return; gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); } /* Called at mount-time, super-block is locked */ static int ext4_check_descriptors(struct super_block *sb, ext4_fsblk_t sb_block, ext4_group_t *first_not_zeroed) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); ext4_fsblk_t last_block; ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); ext4_fsblk_t block_bitmap; ext4_fsblk_t inode_bitmap; ext4_fsblk_t inode_table; int flexbg_flag = 0; ext4_group_t i, grp = sbi->s_groups_count; if (ext4_has_feature_flex_bg(sb)) flexbg_flag = 1; ext4_debug("Checking group descriptors"); for (i = 0; i < sbi->s_groups_count; i++) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); if (i == sbi->s_groups_count - 1 || flexbg_flag) last_block = ext4_blocks_count(sbi->s_es) - 1; else last_block = first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); if ((grp == sbi->s_groups_count) && !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) grp = i; block_bitmap = ext4_block_bitmap(sb, gdp); if (block_bitmap == sb_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Block bitmap for group %u overlaps " "superblock", i); if (!sb_rdonly(sb)) return 0; } if (block_bitmap >= sb_block + 1 && block_bitmap <= last_bg_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Block bitmap for group %u overlaps " "block group descriptors", i); if (!sb_rdonly(sb)) return 0; } if (block_bitmap < first_block || block_bitmap > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Block bitmap for group %u not in group " "(block %llu)!", i, block_bitmap); return 0; } inode_bitmap = ext4_inode_bitmap(sb, gdp); if (inode_bitmap == sb_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode bitmap for group %u overlaps " "superblock", i); if (!sb_rdonly(sb)) return 0; } if (inode_bitmap >= sb_block + 1 && inode_bitmap <= last_bg_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode bitmap for group %u overlaps " "block group descriptors", i); if (!sb_rdonly(sb)) return 0; } if (inode_bitmap < first_block || inode_bitmap > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode bitmap for group %u not in group " "(block %llu)!", i, inode_bitmap); return 0; } inode_table = ext4_inode_table(sb, gdp); if (inode_table == sb_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode table for group %u overlaps " "superblock", i); if (!sb_rdonly(sb)) return 0; } if (inode_table >= sb_block + 1 && inode_table <= last_bg_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode table for group %u overlaps " "block group descriptors", i); if (!sb_rdonly(sb)) return 0; } if (inode_table < first_block || inode_table + sbi->s_itb_per_group - 1 > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode table for group %u not in group " "(block %llu)!", i, inode_table); return 0; } ext4_lock_group(sb, i); if (!ext4_group_desc_csum_verify(sb, i, gdp)) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Checksum for group %u failed (%u!=%u)", i, le16_to_cpu(ext4_group_desc_csum(sb, i, gdp)), le16_to_cpu(gdp->bg_checksum)); if (!sb_rdonly(sb)) { ext4_unlock_group(sb, i); return 0; } } ext4_unlock_group(sb, i); if (!flexbg_flag) first_block += EXT4_BLOCKS_PER_GROUP(sb); } if (NULL != first_not_zeroed) *first_not_zeroed = grp; return 1; } /* * Maximal extent format file size. * Resulting logical blkno at s_maxbytes must fit in our on-disk * extent format containers, within a sector_t, and within i_blocks * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, * so that won't be a limiting factor. * * However there is other limiting factor. We do store extents in the form * of starting block and length, hence the resulting length of the extent * covering maximum file size must fit into on-disk format containers as * well. Given that length is always by 1 unit bigger than max unit (because * we count 0 as well) we have to lower the s_maxbytes by one fs block. * * Note, this does *not* consider any metadata overhead for vfs i_blocks. */ static loff_t ext4_max_size(int blkbits, int has_huge_files) { loff_t res; loff_t upper_limit = MAX_LFS_FILESIZE; BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); if (!has_huge_files) { upper_limit = (1LL << 32) - 1; /* total blocks in file system block size */ upper_limit >>= (blkbits - 9); upper_limit <<= blkbits; } /* * 32-bit extent-start container, ee_block. We lower the maxbytes * by one fs block, so ee_len can cover the extent of maximum file * size */ res = (1LL << 32) - 1; res <<= blkbits; /* Sanity check against vm- & vfs- imposed limits */ if (res > upper_limit) res = upper_limit; return res; } /* * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. * We need to be 1 filesystem block less than the 2^48 sector limit. */ static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) { loff_t upper_limit, res = EXT4_NDIR_BLOCKS; int meta_blocks; unsigned int ppb = 1 << (bits - 2); /* * This is calculated to be the largest file size for a dense, block * mapped file such that the file's total number of 512-byte sectors, * including data and all indirect blocks, does not exceed (2^48 - 1). * * __u32 i_blocks_lo and _u16 i_blocks_high represent the total * number of 512-byte sectors of the file. */ if (!has_huge_files) { /* * !has_huge_files or implies that the inode i_block field * represents total file blocks in 2^32 512-byte sectors == * size of vfs inode i_blocks * 8 */ upper_limit = (1LL << 32) - 1; /* total blocks in file system block size */ upper_limit >>= (bits - 9); } else { /* * We use 48 bit ext4_inode i_blocks * With EXT4_HUGE_FILE_FL set the i_blocks * represent total number of blocks in * file system block size */ upper_limit = (1LL << 48) - 1; } /* Compute how many blocks we can address by block tree */ res += ppb; res += ppb * ppb; res += ((loff_t)ppb) * ppb * ppb; /* Compute how many metadata blocks are needed */ meta_blocks = 1; meta_blocks += 1 + ppb; meta_blocks += 1 + ppb + ppb * ppb; /* Does block tree limit file size? */ if (res + meta_blocks <= upper_limit) goto check_lfs; res = upper_limit; /* How many metadata blocks are needed for addressing upper_limit? */ upper_limit -= EXT4_NDIR_BLOCKS; /* indirect blocks */ meta_blocks = 1; upper_limit -= ppb; /* double indirect blocks */ if (upper_limit < ppb * ppb) { meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); res -= meta_blocks; goto check_lfs; } meta_blocks += 1 + ppb; upper_limit -= ppb * ppb; /* tripple indirect blocks for the rest */ meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); res -= meta_blocks; check_lfs: res <<= bits; if (res > MAX_LFS_FILESIZE) res = MAX_LFS_FILESIZE; return res; } static ext4_fsblk_t descriptor_loc(struct super_block *sb, ext4_fsblk_t logical_sb_block, int nr) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_group_t bg, first_meta_bg; int has_super = 0; first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) return logical_sb_block + nr + 1; bg = sbi->s_desc_per_block * nr; if (ext4_bg_has_super(sb, bg)) has_super = 1; /* * If we have a meta_bg fs with 1k blocks, group 0's GDT is at * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled * on modern mke2fs or blksize > 1k on older mke2fs) then we must * compensate. */ if (sb->s_blocksize == 1024 && nr == 0 && le32_to_cpu(sbi->s_es->s_first_data_block) == 0) has_super++; return (has_super + ext4_group_first_block_no(sb, bg)); } /** * ext4_get_stripe_size: Get the stripe size. * @sbi: In memory super block info * * If we have specified it via mount option, then * use the mount option value. If the value specified at mount time is * greater than the blocks per group use the super block value. * If the super block value is greater than blocks per group return 0. * Allocator needs it be less than blocks per group. * */ static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) { unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); unsigned long stripe_width = le32_to_cpu(sbi->s_es->s_raid_stripe_width); int ret; if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) ret = sbi->s_stripe; else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) ret = stripe_width; else if (stride && stride <= sbi->s_blocks_per_group) ret = stride; else ret = 0; /* * If the stripe width is 1, this makes no sense and * we set it to 0 to turn off stripe handling code. */ if (ret <= 1) ret = 0; return ret; } /* * Check whether this filesystem can be mounted based on * the features present and the RDONLY/RDWR mount requested. * Returns 1 if this filesystem can be mounted as requested, * 0 if it cannot be. */ int ext4_feature_set_ok(struct super_block *sb, int readonly) { if (ext4_has_unknown_ext4_incompat_features(sb)) { ext4_msg(sb, KERN_ERR, "Couldn't mount because of " "unsupported optional features (%x)", (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & ~EXT4_FEATURE_INCOMPAT_SUPP)); return 0; } #if !IS_ENABLED(CONFIG_UNICODE) if (ext4_has_feature_casefold(sb)) { ext4_msg(sb, KERN_ERR, "Filesystem with casefold feature cannot be " "mounted without CONFIG_UNICODE"); return 0; } #endif if (readonly) return 1; if (ext4_has_feature_readonly(sb)) { ext4_msg(sb, KERN_INFO, "filesystem is read-only"); sb->s_flags |= SB_RDONLY; return 1; } /* Check that feature set is OK for a read-write mount */ if (ext4_has_unknown_ext4_ro_compat_features(sb)) { ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " "unsupported optional features (%x)", (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & ~EXT4_FEATURE_RO_COMPAT_SUPP)); return 0; } if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { ext4_msg(sb, KERN_ERR, "Can't support bigalloc feature without " "extents feature\n"); return 0; } #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) if (!readonly && (ext4_has_feature_quota(sb) || ext4_has_feature_project(sb))) { ext4_msg(sb, KERN_ERR, "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); return 0; } #endif /* CONFIG_QUOTA */ return 1; } /* * This function is called once a day if we have errors logged * on the file system */ static void print_daily_error_info(struct timer_list *t) { struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); struct super_block *sb = sbi->s_sb; struct ext4_super_block *es = sbi->s_es; if (es->s_error_count) /* fsck newer than v1.41.13 is needed to clean this condition. */ ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", le32_to_cpu(es->s_error_count)); if (es->s_first_error_time) { printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", sb->s_id, ext4_get_tstamp(es, s_first_error_time), (int) sizeof(es->s_first_error_func), es->s_first_error_func, le32_to_cpu(es->s_first_error_line)); if (es->s_first_error_ino) printk(KERN_CONT ": inode %u", le32_to_cpu(es->s_first_error_ino)); if (es->s_first_error_block) printk(KERN_CONT ": block %llu", (unsigned long long) le64_to_cpu(es->s_first_error_block)); printk(KERN_CONT "\n"); } if (es->s_last_error_time) { printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", sb->s_id, ext4_get_tstamp(es, s_last_error_time), (int) sizeof(es->s_last_error_func), es->s_last_error_func, le32_to_cpu(es->s_last_error_line)); if (es->s_last_error_ino) printk(KERN_CONT ": inode %u", le32_to_cpu(es->s_last_error_ino)); if (es->s_last_error_block) printk(KERN_CONT ": block %llu", (unsigned long long) le64_to_cpu(es->s_last_error_block)); printk(KERN_CONT "\n"); } mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ } /* Find next suitable group and run ext4_init_inode_table */ static int ext4_run_li_request(struct ext4_li_request *elr) { struct ext4_group_desc *gdp = NULL; struct super_block *sb = elr->lr_super; ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; ext4_group_t group = elr->lr_next_group; unsigned int prefetch_ios = 0; int ret = 0; int nr = EXT4_SB(sb)->s_mb_prefetch; u64 start_time; if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); if (group >= elr->lr_next_group) { ret = 1; if (elr->lr_first_not_zeroed != ngroups && !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { elr->lr_next_group = elr->lr_first_not_zeroed; elr->lr_mode = EXT4_LI_MODE_ITABLE; ret = 0; } } return ret; } for (; group < ngroups; group++) { gdp = ext4_get_group_desc(sb, group, NULL); if (!gdp) { ret = 1; break; } if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) break; } if (group >= ngroups) ret = 1; if (!ret) { start_time = ktime_get_real_ns(); ret = ext4_init_inode_table(sb, group, elr->lr_timeout ? 0 : 1); trace_ext4_lazy_itable_init(sb, group); if (elr->lr_timeout == 0) { elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * EXT4_SB(elr->lr_super)->s_li_wait_mult); } elr->lr_next_sched = jiffies + elr->lr_timeout; elr->lr_next_group = group + 1; } return ret; } /* * Remove lr_request from the list_request and free the * request structure. Should be called with li_list_mtx held */ static void ext4_remove_li_request(struct ext4_li_request *elr) { if (!elr) return; list_del(&elr->lr_request); EXT4_SB(elr->lr_super)->s_li_request = NULL; kfree(elr); } static void ext4_unregister_li_request(struct super_block *sb) { mutex_lock(&ext4_li_mtx); if (!ext4_li_info) { mutex_unlock(&ext4_li_mtx); return; } mutex_lock(&ext4_li_info->li_list_mtx); ext4_remove_li_request(EXT4_SB(sb)->s_li_request); mutex_unlock(&ext4_li_info->li_list_mtx); mutex_unlock(&ext4_li_mtx); } static struct task_struct *ext4_lazyinit_task; /* * This is the function where ext4lazyinit thread lives. It walks * through the request list searching for next scheduled filesystem. * When such a fs is found, run the lazy initialization request * (ext4_rn_li_request) and keep track of the time spend in this * function. Based on that time we compute next schedule time of * the request. When walking through the list is complete, compute * next waking time and put itself into sleep. */ static int ext4_lazyinit_thread(void *arg) { struct ext4_lazy_init *eli = arg; struct list_head *pos, *n; struct ext4_li_request *elr; unsigned long next_wakeup, cur; BUG_ON(NULL == eli); set_freezable(); cont_thread: while (true) { next_wakeup = MAX_JIFFY_OFFSET; mutex_lock(&eli->li_list_mtx); if (list_empty(&eli->li_request_list)) { mutex_unlock(&eli->li_list_mtx); goto exit_thread; } list_for_each_safe(pos, n, &eli->li_request_list) { int err = 0; int progress = 0; elr = list_entry(pos, struct ext4_li_request, lr_request); if (time_before(jiffies, elr->lr_next_sched)) { if (time_before(elr->lr_next_sched, next_wakeup)) next_wakeup = elr->lr_next_sched; continue; } if (down_read_trylock(&elr->lr_super->s_umount)) { if (sb_start_write_trylock(elr->lr_super)) { progress = 1; /* * We hold sb->s_umount, sb can not * be removed from the list, it is * now safe to drop li_list_mtx */ mutex_unlock(&eli->li_list_mtx); err = ext4_run_li_request(elr); sb_end_write(elr->lr_super); mutex_lock(&eli->li_list_mtx); n = pos->next; } up_read((&elr->lr_super->s_umount)); } /* error, remove the lazy_init job */ if (err) { ext4_remove_li_request(elr); continue; } if (!progress) { elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); } if (time_before(elr->lr_next_sched, next_wakeup)) next_wakeup = elr->lr_next_sched; } mutex_unlock(&eli->li_list_mtx); try_to_freeze(); cur = jiffies; if ((time_after_eq(cur, next_wakeup)) || (MAX_JIFFY_OFFSET == next_wakeup)) { cond_resched(); continue; } schedule_timeout_interruptible(next_wakeup - cur); if (kthread_should_stop()) { ext4_clear_request_list(); goto exit_thread; } } exit_thread: /* * It looks like the request list is empty, but we need * to check it under the li_list_mtx lock, to prevent any * additions into it, and of course we should lock ext4_li_mtx * to atomically free the list and ext4_li_info, because at * this point another ext4 filesystem could be registering * new one. */ mutex_lock(&ext4_li_mtx); mutex_lock(&eli->li_list_mtx); if (!list_empty(&eli->li_request_list)) { mutex_unlock(&eli->li_list_mtx); mutex_unlock(&ext4_li_mtx); goto cont_thread; } mutex_unlock(&eli->li_list_mtx); kfree(ext4_li_info); ext4_li_info = NULL; mutex_unlock(&ext4_li_mtx); return 0; } static void ext4_clear_request_list(void) { struct list_head *pos, *n; struct ext4_li_request *elr; mutex_lock(&ext4_li_info->li_list_mtx); list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { elr = list_entry(pos, struct ext4_li_request, lr_request); ext4_remove_li_request(elr); } mutex_unlock(&ext4_li_info->li_list_mtx); } static int ext4_run_lazyinit_thread(void) { ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit"); if (IS_ERR(ext4_lazyinit_task)) { int err = PTR_ERR(ext4_lazyinit_task); ext4_clear_request_list(); kfree(ext4_li_info); ext4_li_info = NULL; printk(KERN_CRIT "EXT4-fs: error %d creating inode table " "initialization thread\n", err); return err; } ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; return 0; } /* * Check whether it make sense to run itable init. thread or not. * If there is at least one uninitialized inode table, return * corresponding group number, else the loop goes through all * groups and return total number of groups. */ static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) { ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; struct ext4_group_desc *gdp = NULL; if (!ext4_has_group_desc_csum(sb)) return ngroups; for (group = 0; group < ngroups; group++) { gdp = ext4_get_group_desc(sb, group, NULL); if (!gdp) continue; if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) break; } return group; } static int ext4_li_info_new(void) { struct ext4_lazy_init *eli = NULL; eli = kzalloc(sizeof(*eli), GFP_KERNEL); if (!eli) return -ENOMEM; INIT_LIST_HEAD(&eli->li_request_list); mutex_init(&eli->li_list_mtx); eli->li_state |= EXT4_LAZYINIT_QUIT; ext4_li_info = eli; return 0; } static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, ext4_group_t start) { struct ext4_li_request *elr; elr = kzalloc(sizeof(*elr), GFP_KERNEL); if (!elr) return NULL; elr->lr_super = sb; elr->lr_first_not_zeroed = start; if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { elr->lr_mode = EXT4_LI_MODE_ITABLE; elr->lr_next_group = start; } else { elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; } /* * Randomize first schedule time of the request to * spread the inode table initialization requests * better. */ elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); return elr; } int ext4_register_li_request(struct super_block *sb, ext4_group_t first_not_zeroed) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_li_request *elr = NULL; ext4_group_t ngroups = sbi->s_groups_count; int ret = 0; mutex_lock(&ext4_li_mtx); if (sbi->s_li_request != NULL) { /* * Reset timeout so it can be computed again, because * s_li_wait_mult might have changed. */ sbi->s_li_request->lr_timeout = 0; goto out; } if (sb_rdonly(sb) || (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) goto out; elr = ext4_li_request_new(sb, first_not_zeroed); if (!elr) { ret = -ENOMEM; goto out; } if (NULL == ext4_li_info) { ret = ext4_li_info_new(); if (ret) goto out; } mutex_lock(&ext4_li_info->li_list_mtx); list_add(&elr->lr_request, &ext4_li_info->li_request_list); mutex_unlock(&ext4_li_info->li_list_mtx); sbi->s_li_request = elr; /* * set elr to NULL here since it has been inserted to * the request_list and the removal and free of it is * handled by ext4_clear_request_list from now on. */ elr = NULL; if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { ret = ext4_run_lazyinit_thread(); if (ret) goto out; } out: mutex_unlock(&ext4_li_mtx); if (ret) kfree(elr); return ret; } /* * We do not need to lock anything since this is called on * module unload. */ static void ext4_destroy_lazyinit_thread(void) { /* * If thread exited earlier * there's nothing to be done. */ if (!ext4_li_info || !ext4_lazyinit_task) return; kthread_stop(ext4_lazyinit_task); } static int set_journal_csum_feature_set(struct super_block *sb) { int ret = 1; int compat, incompat; struct ext4_sb_info *sbi = EXT4_SB(sb); if (ext4_has_metadata_csum(sb)) { /* journal checksum v3 */ compat = 0; incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; } else { /* journal checksum v1 */ compat = JBD2_FEATURE_COMPAT_CHECKSUM; incompat = 0; } jbd2_journal_clear_features(sbi->s_journal, JBD2_FEATURE_COMPAT_CHECKSUM, 0, JBD2_FEATURE_INCOMPAT_CSUM_V3 | JBD2_FEATURE_INCOMPAT_CSUM_V2); if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ret = jbd2_journal_set_features(sbi->s_journal, compat, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | incompat); } else if (test_opt(sb, JOURNAL_CHECKSUM)) { ret = jbd2_journal_set_features(sbi->s_journal, compat, 0, incompat); jbd2_journal_clear_features(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); } else { jbd2_journal_clear_features(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); } return ret; } /* * Note: calculating the overhead so we can be compatible with * historical BSD practice is quite difficult in the face of * clusters/bigalloc. This is because multiple metadata blocks from * different block group can end up in the same allocation cluster. * Calculating the exact overhead in the face of clustered allocation * requires either O(all block bitmaps) in memory or O(number of block * groups**2) in time. We will still calculate the superblock for * older file systems --- and if we come across with a bigalloc file * system with zero in s_overhead_clusters the estimate will be close to * correct especially for very large cluster sizes --- but for newer * file systems, it's better to calculate this figure once at mkfs * time, and store it in the superblock. If the superblock value is * present (even for non-bigalloc file systems), we will use it. */ static int count_overhead(struct super_block *sb, ext4_group_t grp, char *buf) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_desc *gdp; ext4_fsblk_t first_block, last_block, b; ext4_group_t i, ngroups = ext4_get_groups_count(sb); int s, j, count = 0; int has_super = ext4_bg_has_super(sb, grp); if (!ext4_has_feature_bigalloc(sb)) return (has_super + ext4_bg_num_gdb(sb, grp) + (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + sbi->s_itb_per_group + 2); first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + (grp * EXT4_BLOCKS_PER_GROUP(sb)); last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; for (i = 0; i < ngroups; i++) { gdp = ext4_get_group_desc(sb, i, NULL); b = ext4_block_bitmap(sb, gdp); if (b >= first_block && b <= last_block) { ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); count++; } b = ext4_inode_bitmap(sb, gdp); if (b >= first_block && b <= last_block) { ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); count++; } b = ext4_inode_table(sb, gdp); if (b >= first_block && b + sbi->s_itb_per_group <= last_block) for (j = 0; j < sbi->s_itb_per_group; j++, b++) { int c = EXT4_B2C(sbi, b - first_block); ext4_set_bit(c, buf); count++; } if (i != grp) continue; s = 0; if (ext4_bg_has_super(sb, grp)) { ext4_set_bit(s++, buf); count++; } j = ext4_bg_num_gdb(sb, grp); if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { ext4_error(sb, "Invalid number of block group " "descriptor blocks: %d", j); j = EXT4_BLOCKS_PER_GROUP(sb) - s; } count += j; for (; j > 0; j--) ext4_set_bit(EXT4_B2C(sbi, s++), buf); } if (!count) return 0; return EXT4_CLUSTERS_PER_GROUP(sb) - ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); } /* * Compute the overhead and stash it in sbi->s_overhead */ int ext4_calculate_overhead(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; struct inode *j_inode; unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); ext4_group_t i, ngroups = ext4_get_groups_count(sb); ext4_fsblk_t overhead = 0; char *buf = (char *) get_zeroed_page(GFP_NOFS); if (!buf) return -ENOMEM; /* * Compute the overhead (FS structures). This is constant * for a given filesystem unless the number of block groups * changes so we cache the previous value until it does. */ /* * All of the blocks before first_data_block are overhead */ overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); /* * Add the overhead found in each block group */ for (i = 0; i < ngroups; i++) { int blks; blks = count_overhead(sb, i, buf); overhead += blks; if (blks) memset(buf, 0, PAGE_SIZE); cond_resched(); } /* * Add the internal journal blocks whether the journal has been * loaded or not */ if (sbi->s_journal && !sbi->s_journal_bdev) overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { /* j_inum for internal journal is non-zero */ j_inode = ext4_get_journal_inode(sb, j_inum); if (j_inode) { j_blocks = j_inode->i_size >> sb->s_blocksize_bits; overhead += EXT4_NUM_B2C(sbi, j_blocks); iput(j_inode); } else { ext4_msg(sb, KERN_ERR, "can't get journal size"); } } sbi->s_overhead = overhead; smp_wmb(); free_page((unsigned long) buf); return 0; } static void ext4_set_resv_clusters(struct super_block *sb) { ext4_fsblk_t resv_clusters; struct ext4_sb_info *sbi = EXT4_SB(sb); /* * There's no need to reserve anything when we aren't using extents. * The space estimates are exact, there are no unwritten extents, * hole punching doesn't need new metadata... This is needed especially * to keep ext2/3 backward compatibility. */ if (!ext4_has_feature_extents(sb)) return; /* * By default we reserve 2% or 4096 clusters, whichever is smaller. * This should cover the situations where we can not afford to run * out of space like for example punch hole, or converting * unwritten extents in delalloc path. In most cases such * allocation would require 1, or 2 blocks, higher numbers are * very rare. */ resv_clusters = (ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits); do_div(resv_clusters, 50); resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); atomic64_set(&sbi->s_resv_clusters, resv_clusters); } static const char *ext4_quota_mode(struct super_block *sb) { #ifdef CONFIG_QUOTA if (!ext4_quota_capable(sb)) return "none"; if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) return "journalled"; else return "writeback"; #else return "disabled"; #endif } static void ext4_setup_csum_trigger(struct super_block *sb, enum ext4_journal_trigger_type type, void (*trigger)( struct jbd2_buffer_trigger_type *type, struct buffer_head *bh, void *mapped_data, size_t size)) { struct ext4_sb_info *sbi = EXT4_SB(sb); sbi->s_journal_triggers[type].sb = sb; sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; } static void ext4_free_sbi(struct ext4_sb_info *sbi) { if (!sbi) return; kfree(sbi->s_blockgroup_lock); fs_put_dax(sbi->s_daxdev, NULL); kfree(sbi); } static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) { struct ext4_sb_info *sbi; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return NULL; sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, NULL, NULL); sbi->s_blockgroup_lock = kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); if (!sbi->s_blockgroup_lock) goto err_out; sb->s_fs_info = sbi; sbi->s_sb = sb; return sbi; err_out: fs_put_dax(sbi->s_daxdev, NULL); kfree(sbi); return NULL; } static void ext4_set_def_opts(struct super_block *sb, struct ext4_super_block *es) { unsigned long def_mount_opts; /* Set defaults before we parse the mount options */ def_mount_opts = le32_to_cpu(es->s_default_mount_opts); set_opt(sb, INIT_INODE_TABLE); if (def_mount_opts & EXT4_DEFM_DEBUG) set_opt(sb, DEBUG); if (def_mount_opts & EXT4_DEFM_BSDGROUPS) set_opt(sb, GRPID); if (def_mount_opts & EXT4_DEFM_UID16) set_opt(sb, NO_UID32); /* xattr user namespace & acls are now defaulted on */ set_opt(sb, XATTR_USER); #ifdef CONFIG_EXT4_FS_POSIX_ACL set_opt(sb, POSIX_ACL); #endif if (ext4_has_feature_fast_commit(sb)) set_opt2(sb, JOURNAL_FAST_COMMIT); /* don't forget to enable journal_csum when metadata_csum is enabled. */ if (ext4_has_metadata_csum(sb)) set_opt(sb, JOURNAL_CHECKSUM); if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) set_opt(sb, JOURNAL_DATA); else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) set_opt(sb, ORDERED_DATA); else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) set_opt(sb, WRITEBACK_DATA); if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) set_opt(sb, ERRORS_PANIC); else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) set_opt(sb, ERRORS_CONT); else set_opt(sb, ERRORS_RO); /* block_validity enabled by default; disable with noblock_validity */ set_opt(sb, BLOCK_VALIDITY); if (def_mount_opts & EXT4_DEFM_DISCARD) set_opt(sb, DISCARD); if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) set_opt(sb, BARRIER); /* * enable delayed allocation by default * Use -o nodelalloc to turn it off */ if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) set_opt(sb, DELALLOC); if (sb->s_blocksize == PAGE_SIZE) set_opt(sb, DIOREAD_NOLOCK); } static int ext4_handle_clustersize(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int clustersize; /* Handle clustersize */ clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); if (ext4_has_feature_bigalloc(sb)) { if (clustersize < sb->s_blocksize) { ext4_msg(sb, KERN_ERR, "cluster size (%d) smaller than " "block size (%lu)", clustersize, sb->s_blocksize); return -EINVAL; } sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - le32_to_cpu(es->s_log_block_size); sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", sbi->s_clusters_per_group); return -EINVAL; } if (sbi->s_blocks_per_group != (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " "clusters per group (%lu) inconsistent", sbi->s_blocks_per_group, sbi->s_clusters_per_group); return -EINVAL; } } else { if (clustersize != sb->s_blocksize) { ext4_msg(sb, KERN_ERR, "fragment/cluster size (%d) != " "block size (%lu)", clustersize, sb->s_blocksize); return -EINVAL; } if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { ext4_msg(sb, KERN_ERR, "#blocks per group too big: %lu", sbi->s_blocks_per_group); return -EINVAL; } sbi->s_clusters_per_group = sbi->s_blocks_per_group; sbi->s_cluster_bits = 0; } sbi->s_cluster_ratio = clustersize / sb->s_blocksize; /* Do we have standard group size of clustersize * 8 blocks ? */ if (sbi->s_blocks_per_group == clustersize << 3) set_opt2(sb, STD_GROUP_SIZE); return 0; } static void ext4_fast_commit_init(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); /* Initialize fast commit stuff */ atomic_set(&sbi->s_fc_subtid, 0); INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); sbi->s_fc_bytes = 0; ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); sbi->s_fc_ineligible_tid = 0; spin_lock_init(&sbi->s_fc_lock); memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); sbi->s_fc_replay_state.fc_regions = NULL; sbi->s_fc_replay_state.fc_regions_size = 0; sbi->s_fc_replay_state.fc_regions_used = 0; sbi->s_fc_replay_state.fc_regions_valid = 0; sbi->s_fc_replay_state.fc_modified_inodes = NULL; sbi->s_fc_replay_state.fc_modified_inodes_size = 0; sbi->s_fc_replay_state.fc_modified_inodes_used = 0; } static int ext4_inode_info_init(struct super_block *sb, struct ext4_super_block *es) { struct ext4_sb_info *sbi = EXT4_SB(sb); if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; } else { sbi->s_inode_size = le16_to_cpu(es->s_inode_size); sbi->s_first_ino = le32_to_cpu(es->s_first_ino); if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { ext4_msg(sb, KERN_ERR, "invalid first ino: %u", sbi->s_first_ino); return -EINVAL; } if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || (!is_power_of_2(sbi->s_inode_size)) || (sbi->s_inode_size > sb->s_blocksize)) { ext4_msg(sb, KERN_ERR, "unsupported inode size: %d", sbi->s_inode_size); ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); return -EINVAL; } /* * i_atime_extra is the last extra field available for * [acm]times in struct ext4_inode. Checking for that * field should suffice to ensure we have extra space * for all three. */ if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + sizeof(((struct ext4_inode *)0)->i_atime_extra)) { sb->s_time_gran = 1; sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; } else { sb->s_time_gran = NSEC_PER_SEC; sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; } sb->s_time_min = EXT4_TIMESTAMP_MIN; } if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { sbi->s_want_extra_isize = sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE; if (ext4_has_feature_extra_isize(sb)) { unsigned v, max = (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE); v = le16_to_cpu(es->s_want_extra_isize); if (v > max) { ext4_msg(sb, KERN_ERR, "bad s_want_extra_isize: %d", v); return -EINVAL; } if (sbi->s_want_extra_isize < v) sbi->s_want_extra_isize = v; v = le16_to_cpu(es->s_min_extra_isize); if (v > max) { ext4_msg(sb, KERN_ERR, "bad s_min_extra_isize: %d", v); return -EINVAL; } if (sbi->s_want_extra_isize < v) sbi->s_want_extra_isize = v; } } return 0; } #if IS_ENABLED(CONFIG_UNICODE) static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) { const struct ext4_sb_encodings *encoding_info; struct unicode_map *encoding; __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); if (!ext4_has_feature_casefold(sb) || sb->s_encoding) return 0; encoding_info = ext4_sb_read_encoding(es); if (!encoding_info) { ext4_msg(sb, KERN_ERR, "Encoding requested by superblock is unknown"); return -EINVAL; } encoding = utf8_load(encoding_info->version); if (IS_ERR(encoding)) { ext4_msg(sb, KERN_ERR, "can't mount with superblock charset: %s-%u.%u.%u " "not supported by the kernel. flags: 0x%x.", encoding_info->name, unicode_major(encoding_info->version), unicode_minor(encoding_info->version), unicode_rev(encoding_info->version), encoding_flags); return -EINVAL; } ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, unicode_major(encoding_info->version), unicode_minor(encoding_info->version), unicode_rev(encoding_info->version), encoding_flags); sb->s_encoding = encoding; sb->s_encoding_flags = encoding_flags; return 0; } #else static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) { return 0; } #endif static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) { struct ext4_sb_info *sbi = EXT4_SB(sb); /* Warn if metadata_csum and gdt_csum are both set. */ if (ext4_has_feature_metadata_csum(sb) && ext4_has_feature_gdt_csum(sb)) ext4_warning(sb, "metadata_csum and uninit_bg are " "redundant flags; please run fsck."); /* Check for a known checksum algorithm */ if (!ext4_verify_csum_type(sb, es)) { ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " "unknown checksum algorithm."); return -EINVAL; } ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, ext4_orphan_file_block_trigger); /* Load the checksum driver */ sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); if (IS_ERR(sbi->s_chksum_driver)) { int ret = PTR_ERR(sbi->s_chksum_driver); ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); sbi->s_chksum_driver = NULL; return ret; } /* Check superblock checksum */ if (!ext4_superblock_csum_verify(sb, es)) { ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " "invalid superblock checksum. Run e2fsck?"); return -EFSBADCRC; } /* Precompute checksum seed for all metadata */ if (ext4_has_feature_csum_seed(sb)) sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, sizeof(es->s_uuid)); return 0; } static int ext4_check_feature_compatibility(struct super_block *sb, struct ext4_super_block *es, int silent) { struct ext4_sb_info *sbi = EXT4_SB(sb); if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && (ext4_has_compat_features(sb) || ext4_has_ro_compat_features(sb) || ext4_has_incompat_features(sb))) ext4_msg(sb, KERN_WARNING, "feature flags set on rev 0 fs, " "running e2fsck is recommended"); if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { set_opt2(sb, HURD_COMPAT); if (ext4_has_feature_64bit(sb)) { ext4_msg(sb, KERN_ERR, "The Hurd can't support 64-bit file systems"); return -EINVAL; } /* * ea_inode feature uses l_i_version field which is not * available in HURD_COMPAT mode. */ if (ext4_has_feature_ea_inode(sb)) { ext4_msg(sb, KERN_ERR, "ea_inode feature is not supported for Hurd"); return -EINVAL; } } if (IS_EXT2_SB(sb)) { if (ext2_feature_set_ok(sb)) ext4_msg(sb, KERN_INFO, "mounting ext2 file system " "using the ext4 subsystem"); else { /* * If we're probing be silent, if this looks like * it's actually an ext[34] filesystem. */ if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) return -EINVAL; ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " "to feature incompatibilities"); return -EINVAL; } } if (IS_EXT3_SB(sb)) { if (ext3_feature_set_ok(sb)) ext4_msg(sb, KERN_INFO, "mounting ext3 file system " "using the ext4 subsystem"); else { /* * If we're probing be silent, if this looks like * it's actually an ext4 filesystem. */ if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) return -EINVAL; ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " "to feature incompatibilities"); return -EINVAL; } } /* * Check feature flags regardless of the revision level, since we * previously didn't change the revision level when setting the flags, * so there is a chance incompat flags are set on a rev 0 filesystem. */ if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) return -EINVAL; if (sbi->s_daxdev) { if (sb->s_blocksize == PAGE_SIZE) set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); else ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); } if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { if (ext4_has_feature_inline_data(sb)) { ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" " that may contain inline data"); return -EINVAL; } if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { ext4_msg(sb, KERN_ERR, "DAX unsupported by block device."); return -EINVAL; } } if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", es->s_encryption_level); return -EINVAL; } return 0; } static int ext4_check_geometry(struct super_block *sb, struct ext4_super_block *es) { struct ext4_sb_info *sbi = EXT4_SB(sb); __u64 blocks_count; int err; if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { ext4_msg(sb, KERN_ERR, "Number of reserved GDT blocks insanely large: %d", le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); return -EINVAL; } /* * Test whether we have more sectors than will fit in sector_t, * and whether the max offset is addressable by the page cache. */ err = generic_check_addressable(sb->s_blocksize_bits, ext4_blocks_count(es)); if (err) { ext4_msg(sb, KERN_ERR, "filesystem" " too large to mount safely on this system"); return err; } /* check blocks count against device size */ blocks_count = sb_bdev_nr_blocks(sb); if (blocks_count && ext4_blocks_count(es) > blocks_count) { ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " "exceeds size of device (%llu blocks)", ext4_blocks_count(es), blocks_count); return -EINVAL; } /* * It makes no sense for the first data block to be beyond the end * of the filesystem. */ if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { ext4_msg(sb, KERN_WARNING, "bad geometry: first data " "block %u is beyond end of filesystem (%llu)", le32_to_cpu(es->s_first_data_block), ext4_blocks_count(es)); return -EINVAL; } if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && (sbi->s_cluster_ratio == 1)) { ext4_msg(sb, KERN_WARNING, "bad geometry: first data " "block is 0 with a 1k block and cluster size"); return -EINVAL; } blocks_count = (ext4_blocks_count(es) - le32_to_cpu(es->s_first_data_block) + EXT4_BLOCKS_PER_GROUP(sb) - 1); do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " "(block count %llu, first data block %u, " "blocks per group %lu)", blocks_count, ext4_blocks_count(es), le32_to_cpu(es->s_first_data_block), EXT4_BLOCKS_PER_GROUP(sb)); return -EINVAL; } sbi->s_groups_count = blocks_count; sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != le32_to_cpu(es->s_inodes_count)) { ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", le32_to_cpu(es->s_inodes_count), ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); return -EINVAL; } return 0; } static int ext4_group_desc_init(struct super_block *sb, struct ext4_super_block *es, ext4_fsblk_t logical_sb_block, ext4_group_t *first_not_zeroed) { struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned int db_count; ext4_fsblk_t block; int i; db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / EXT4_DESC_PER_BLOCK(sb); if (ext4_has_feature_meta_bg(sb)) { if (le32_to_cpu(es->s_first_meta_bg) > db_count) { ext4_msg(sb, KERN_WARNING, "first meta block group too large: %u " "(group descriptor block count %u)", le32_to_cpu(es->s_first_meta_bg), db_count); return -EINVAL; } } rcu_assign_pointer(sbi->s_group_desc, kvmalloc_array(db_count, sizeof(struct buffer_head *), GFP_KERNEL)); if (sbi->s_group_desc == NULL) { ext4_msg(sb, KERN_ERR, "not enough memory"); return -ENOMEM; } bgl_lock_init(sbi->s_blockgroup_lock); /* Pre-read the descriptors into the buffer cache */ for (i = 0; i < db_count; i++) { block = descriptor_loc(sb, logical_sb_block, i); ext4_sb_breadahead_unmovable(sb, block); } for (i = 0; i < db_count; i++) { struct buffer_head *bh; block = descriptor_loc(sb, logical_sb_block, i); bh = ext4_sb_bread_unmovable(sb, block); if (IS_ERR(bh)) { ext4_msg(sb, KERN_ERR, "can't read group descriptor %d", i); sbi->s_gdb_count = i; return PTR_ERR(bh); } rcu_read_lock(); rcu_dereference(sbi->s_group_desc)[i] = bh; rcu_read_unlock(); } sbi->s_gdb_count = db_count; if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); return -EFSCORRUPTED; } return 0; } static int ext4_load_and_init_journal(struct super_block *sb, struct ext4_super_block *es, struct ext4_fs_context *ctx) { struct ext4_sb_info *sbi = EXT4_SB(sb); int err; err = ext4_load_journal(sb, es, ctx->journal_devnum); if (err) return err; if (ext4_has_feature_64bit(sb) && !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_64BIT)) { ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); goto out; } if (!set_journal_csum_feature_set(sb)) { ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " "feature set"); goto out; } if (test_opt2(sb, JOURNAL_FAST_COMMIT) && !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { ext4_msg(sb, KERN_ERR, "Failed to set fast commit journal feature"); goto out; } /* We have now updated the journal if required, so we can * validate the data journaling mode. */ switch (test_opt(sb, DATA_FLAGS)) { case 0: /* No mode set, assume a default based on the journal * capabilities: ORDERED_DATA if the journal can * cope, else JOURNAL_DATA */ if (jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { set_opt(sb, ORDERED_DATA); sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; } else { set_opt(sb, JOURNAL_DATA); sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; } break; case EXT4_MOUNT_ORDERED_DATA: case EXT4_MOUNT_WRITEBACK_DATA: if (!jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { ext4_msg(sb, KERN_ERR, "Journal does not support " "requested data journaling mode"); goto out; } break; default: break; } if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_async_commit in data=ordered mode"); goto out; } set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); sbi->s_journal->j_submit_inode_data_buffers = ext4_journal_submit_inode_data_buffers; sbi->s_journal->j_finish_inode_data_buffers = ext4_journal_finish_inode_data_buffers; return 0; out: /* flush s_error_work before journal destroy. */ flush_work(&sbi->s_error_work); jbd2_journal_destroy(sbi->s_journal); sbi->s_journal = NULL; return -EINVAL; } static int ext4_check_journal_data_mode(struct super_block *sb) { if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " "data=journal disables delayed allocation, " "dioread_nolock, O_DIRECT and fast_commit support!\n"); /* can't mount with both data=journal and dioread_nolock. */ clear_opt(sb, DIOREAD_NOLOCK); clear_opt2(sb, JOURNAL_FAST_COMMIT); if (test_opt2(sb, EXPLICIT_DELALLOC)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and delalloc"); return -EINVAL; } if (test_opt(sb, DAX_ALWAYS)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and dax"); return -EINVAL; } if (ext4_has_feature_encrypt(sb)) { ext4_msg(sb, KERN_WARNING, "encrypted files will use data=ordered " "instead of data journaling mode"); } if (test_opt(sb, DELALLOC)) clear_opt(sb, DELALLOC); } else { sb->s_iflags |= SB_I_CGROUPWB; } return 0; } static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, int silent) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es; ext4_fsblk_t logical_sb_block; unsigned long offset = 0; struct buffer_head *bh; int ret = -EINVAL; int blocksize; blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); if (!blocksize) { ext4_msg(sb, KERN_ERR, "unable to set blocksize"); return -EINVAL; } /* * The ext4 superblock will not be buffer aligned for other than 1kB * block sizes. We need to calculate the offset from buffer start. */ if (blocksize != EXT4_MIN_BLOCK_SIZE) { logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); } else { logical_sb_block = sbi->s_sb_block; } bh = ext4_sb_bread_unmovable(sb, logical_sb_block); if (IS_ERR(bh)) { ext4_msg(sb, KERN_ERR, "unable to read superblock"); return PTR_ERR(bh); } /* * Note: s_es must be initialized as soon as possible because * some ext4 macro-instructions depend on its value */ es = (struct ext4_super_block *) (bh->b_data + offset); sbi->s_es = es; sb->s_magic = le16_to_cpu(es->s_magic); if (sb->s_magic != EXT4_SUPER_MAGIC) { if (!silent) ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); goto out; } if (le32_to_cpu(es->s_log_block_size) > (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { ext4_msg(sb, KERN_ERR, "Invalid log block size: %u", le32_to_cpu(es->s_log_block_size)); goto out; } if (le32_to_cpu(es->s_log_cluster_size) > (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { ext4_msg(sb, KERN_ERR, "Invalid log cluster size: %u", le32_to_cpu(es->s_log_cluster_size)); goto out; } blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); /* * If the default block size is not the same as the real block size, * we need to reload it. */ if (sb->s_blocksize == blocksize) { *lsb = logical_sb_block; sbi->s_sbh = bh; return 0; } /* * bh must be released before kill_bdev(), otherwise * it won't be freed and its page also. kill_bdev() * is called by sb_set_blocksize(). */ brelse(bh); /* Validate the filesystem blocksize */ if (!sb_set_blocksize(sb, blocksize)) { ext4_msg(sb, KERN_ERR, "bad block size %d", blocksize); bh = NULL; goto out; } logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); bh = ext4_sb_bread_unmovable(sb, logical_sb_block); if (IS_ERR(bh)) { ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); ret = PTR_ERR(bh); bh = NULL; goto out; } es = (struct ext4_super_block *)(bh->b_data + offset); sbi->s_es = es; if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); goto out; } *lsb = logical_sb_block; sbi->s_sbh = bh; return 0; out: brelse(bh); return ret; } static void ext4_hash_info_init(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; unsigned int i; for (i = 0; i < 4; i++) sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); sbi->s_def_hash_version = es->s_def_hash_version; if (ext4_has_feature_dir_index(sb)) { i = le32_to_cpu(es->s_flags); if (i & EXT2_FLAGS_UNSIGNED_HASH) sbi->s_hash_unsigned = 3; else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { #ifdef __CHAR_UNSIGNED__ if (!sb_rdonly(sb)) es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); sbi->s_hash_unsigned = 3; #else if (!sb_rdonly(sb)) es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); #endif } } } static int ext4_block_group_meta_init(struct super_block *sb, int silent) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int has_huge_files; has_huge_files = ext4_has_feature_huge_file(sb); sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, has_huge_files); sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); sbi->s_desc_size = le16_to_cpu(es->s_desc_size); if (ext4_has_feature_64bit(sb)) { if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || sbi->s_desc_size > EXT4_MAX_DESC_SIZE || !is_power_of_2(sbi->s_desc_size)) { ext4_msg(sb, KERN_ERR, "unsupported descriptor size %lu", sbi->s_desc_size); return -EINVAL; } } else sbi->s_desc_size = EXT4_MIN_DESC_SIZE; sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { if (!silent) ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); return -EINVAL; } if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || sbi->s_inodes_per_group > sb->s_blocksize * 8) { ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", sbi->s_inodes_per_group); return -EINVAL; } sbi->s_itb_per_group = sbi->s_inodes_per_group / sbi->s_inodes_per_block; sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); return 0; } static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) { struct ext4_super_block *es = NULL; struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t logical_sb_block; struct inode *root; int needs_recovery; int err; ext4_group_t first_not_zeroed; struct ext4_fs_context *ctx = fc->fs_private; int silent = fc->sb_flags & SB_SILENT; /* Set defaults for the variables that will be set during parsing */ if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; sbi->s_sectors_written_start = part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); err = ext4_load_super(sb, &logical_sb_block, silent); if (err) goto out_fail; es = sbi->s_es; sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); err = ext4_init_metadata_csum(sb, es); if (err) goto failed_mount; ext4_set_def_opts(sb, es); sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; /* * set default s_li_wait_mult for lazyinit, for the case there is * no mount option specified. */ sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; err = ext4_inode_info_init(sb, es); if (err) goto failed_mount; err = parse_apply_sb_mount_options(sb, ctx); if (err < 0) goto failed_mount; sbi->s_def_mount_opt = sbi->s_mount_opt; sbi->s_def_mount_opt2 = sbi->s_mount_opt2; err = ext4_check_opt_consistency(fc, sb); if (err < 0) goto failed_mount; ext4_apply_options(fc, sb); err = ext4_encoding_init(sb, es); if (err) goto failed_mount; err = ext4_check_journal_data_mode(sb); if (err) goto failed_mount; sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); /* i_version is always enabled now */ sb->s_flags |= SB_I_VERSION; err = ext4_check_feature_compatibility(sb, es, silent); if (err) goto failed_mount; err = ext4_block_group_meta_init(sb, silent); if (err) goto failed_mount; ext4_hash_info_init(sb); err = ext4_handle_clustersize(sb); if (err) goto failed_mount; err = ext4_check_geometry(sb, es); if (err) goto failed_mount; timer_setup(&sbi->s_err_report, print_daily_error_info, 0); spin_lock_init(&sbi->s_error_lock); INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); if (err) goto failed_mount3; err = ext4_es_register_shrinker(sbi); if (err) goto failed_mount3; sbi->s_stripe = ext4_get_stripe_size(sbi); /* * It's hard to get stripe aligned blocks if stripe is not aligned with * cluster, just disable stripe and alert user to simpfy code and avoid * stripe aligned allocation which will rarely successes. */ if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 && sbi->s_stripe % sbi->s_cluster_ratio != 0) { ext4_msg(sb, KERN_WARNING, "stripe (%lu) is not aligned with cluster size (%u), " "stripe is disabled", sbi->s_stripe, sbi->s_cluster_ratio); sbi->s_stripe = 0; } sbi->s_extent_max_zeroout_kb = 32; /* * set up enough so that it can read an inode */ sb->s_op = &ext4_sops; sb->s_export_op = &ext4_export_ops; sb->s_xattr = ext4_xattr_handlers; #ifdef CONFIG_FS_ENCRYPTION sb->s_cop = &ext4_cryptops; #endif #ifdef CONFIG_FS_VERITY sb->s_vop = &ext4_verityops; #endif #ifdef CONFIG_QUOTA sb->dq_op = &ext4_quota_operations; if (ext4_has_feature_quota(sb)) sb->s_qcop = &dquot_quotactl_sysfile_ops; else sb->s_qcop = &ext4_qctl_operations; sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; #endif memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ mutex_init(&sbi->s_orphan_lock); ext4_fast_commit_init(sb); sb->s_root = NULL; needs_recovery = (es->s_last_orphan != 0 || ext4_has_feature_orphan_present(sb) || ext4_has_feature_journal_needs_recovery(sb)); if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); if (err) goto failed_mount3a; } err = -EINVAL; /* * The first inode we look at is the journal inode. Don't try * root first: it may be modified in the journal! */ if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { err = ext4_load_and_init_journal(sb, es, ctx); if (err) goto failed_mount3a; } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && ext4_has_feature_journal_needs_recovery(sb)) { ext4_msg(sb, KERN_ERR, "required journal recovery " "suppressed and not mounted read-only"); goto failed_mount3a; } else { /* Nojournal mode, all journal mount options are illegal */ if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_async_commit, fs mounted w/o journal"); goto failed_mount3a; } if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_checksum, fs mounted w/o journal"); goto failed_mount3a; } if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { ext4_msg(sb, KERN_ERR, "can't mount with " "commit=%lu, fs mounted w/o journal", sbi->s_commit_interval / HZ); goto failed_mount3a; } if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { ext4_msg(sb, KERN_ERR, "can't mount with " "data=, fs mounted w/o journal"); goto failed_mount3a; } sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; clear_opt(sb, JOURNAL_CHECKSUM); clear_opt(sb, DATA_FLAGS); clear_opt2(sb, JOURNAL_FAST_COMMIT); sbi->s_journal = NULL; needs_recovery = 0; } if (!test_opt(sb, NO_MBCACHE)) { sbi->s_ea_block_cache = ext4_xattr_create_cache(); if (!sbi->s_ea_block_cache) { ext4_msg(sb, KERN_ERR, "Failed to create ea_block_cache"); err = -EINVAL; goto failed_mount_wq; } if (ext4_has_feature_ea_inode(sb)) { sbi->s_ea_inode_cache = ext4_xattr_create_cache(); if (!sbi->s_ea_inode_cache) { ext4_msg(sb, KERN_ERR, "Failed to create ea_inode_cache"); err = -EINVAL; goto failed_mount_wq; } } } /* * Get the # of file system overhead blocks from the * superblock if present. */ sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); /* ignore the precalculated value if it is ridiculous */ if (sbi->s_overhead > ext4_blocks_count(es)) sbi->s_overhead = 0; /* * If the bigalloc feature is not enabled recalculating the * overhead doesn't take long, so we might as well just redo * it to make sure we are using the correct value. */ if (!ext4_has_feature_bigalloc(sb)) sbi->s_overhead = 0; if (sbi->s_overhead == 0) { err = ext4_calculate_overhead(sb); if (err) goto failed_mount_wq; } /* * The maximum number of concurrent works can be high and * concurrency isn't really necessary. Limit it to 1. */ EXT4_SB(sb)->rsv_conversion_wq = alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); if (!EXT4_SB(sb)->rsv_conversion_wq) { printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); err = -ENOMEM; goto failed_mount4; } /* * The jbd2_journal_load will have done any necessary log recovery, * so we can safely mount the rest of the filesystem now. */ root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); if (IS_ERR(root)) { ext4_msg(sb, KERN_ERR, "get root inode failed"); err = PTR_ERR(root); root = NULL; goto failed_mount4; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); iput(root); err = -EFSCORRUPTED; goto failed_mount4; } sb->s_root = d_make_root(root); if (!sb->s_root) { ext4_msg(sb, KERN_ERR, "get root dentry failed"); err = -ENOMEM; goto failed_mount4; } err = ext4_setup_super(sb, es, sb_rdonly(sb)); if (err == -EROFS) { sb->s_flags |= SB_RDONLY; } else if (err) goto failed_mount4a; ext4_set_resv_clusters(sb); if (test_opt(sb, BLOCK_VALIDITY)) { err = ext4_setup_system_zone(sb); if (err) { ext4_msg(sb, KERN_ERR, "failed to initialize system " "zone (%d)", err); goto failed_mount4a; } } ext4_fc_replay_cleanup(sb); ext4_ext_init(sb); /* * Enable optimize_scan if number of groups is > threshold. This can be * turned off by passing "mb_optimize_scan=0". This can also be * turned on forcefully by passing "mb_optimize_scan=1". */ if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) set_opt2(sb, MB_OPTIMIZE_SCAN); else clear_opt2(sb, MB_OPTIMIZE_SCAN); } err = ext4_mb_init(sb); if (err) { ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", err); goto failed_mount5; } /* * We can only set up the journal commit callback once * mballoc is initialized */ if (sbi->s_journal) sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; err = ext4_percpu_param_init(sbi); if (err) goto failed_mount6; if (ext4_has_feature_flex_bg(sb)) if (!ext4_fill_flex_info(sb)) { ext4_msg(sb, KERN_ERR, "unable to initialize " "flex_bg meta info!"); err = -ENOMEM; goto failed_mount6; } err = ext4_register_li_request(sb, first_not_zeroed); if (err) goto failed_mount6; err = ext4_register_sysfs(sb); if (err) goto failed_mount7; err = ext4_init_orphan_info(sb); if (err) goto failed_mount8; #ifdef CONFIG_QUOTA /* Enable quota usage during mount. */ if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { err = ext4_enable_quotas(sb); if (err) goto failed_mount9; } #endif /* CONFIG_QUOTA */ /* * Save the original bdev mapping's wb_err value which could be * used to detect the metadata async write error. */ spin_lock_init(&sbi->s_bdev_wb_lock); errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, &sbi->s_bdev_wb_err); sb->s_bdev->bd_super = sb; EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; ext4_orphan_cleanup(sb, es); EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; /* * Update the checksum after updating free space/inode counters and * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect * checksum in the buffer cache until it is written out and * e2fsprogs programs trying to open a file system immediately * after it is mounted can fail. */ ext4_superblock_csum_set(sb); if (needs_recovery) { ext4_msg(sb, KERN_INFO, "recovery complete"); err = ext4_mark_recovery_complete(sb, es); if (err) goto failed_mount10; } if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) ext4_msg(sb, KERN_WARNING, "mounting with \"discard\" option, but the device does not support discard"); if (es->s_error_count) mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); atomic_set(&sbi->s_warning_count, 0); atomic_set(&sbi->s_msg_count, 0); return 0; failed_mount10: ext4_quota_off_umount(sb); failed_mount9: __maybe_unused ext4_release_orphan_info(sb); failed_mount8: ext4_unregister_sysfs(sb); kobject_put(&sbi->s_kobj); failed_mount7: ext4_unregister_li_request(sb); failed_mount6: ext4_mb_release(sb); ext4_flex_groups_free(sbi); ext4_percpu_param_destroy(sbi); failed_mount5: ext4_ext_release(sb); ext4_release_system_zone(sb); failed_mount4a: dput(sb->s_root); sb->s_root = NULL; failed_mount4: ext4_msg(sb, KERN_ERR, "mount failed"); if (EXT4_SB(sb)->rsv_conversion_wq) destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); failed_mount_wq: ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); sbi->s_ea_inode_cache = NULL; ext4_xattr_destroy_cache(sbi->s_ea_block_cache); sbi->s_ea_block_cache = NULL; if (sbi->s_journal) { /* flush s_error_work before journal destroy. */ flush_work(&sbi->s_error_work); jbd2_journal_destroy(sbi->s_journal); sbi->s_journal = NULL; } failed_mount3a: ext4_es_unregister_shrinker(sbi); failed_mount3: /* flush s_error_work before sbi destroy */ flush_work(&sbi->s_error_work); del_timer_sync(&sbi->s_err_report); ext4_stop_mmpd(sbi); ext4_group_desc_free(sbi); failed_mount: if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); #if IS_ENABLED(CONFIG_UNICODE) utf8_unload(sb->s_encoding); #endif #ifdef CONFIG_QUOTA for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) kfree(get_qf_name(sb, sbi, i)); #endif fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ brelse(sbi->s_sbh); ext4_blkdev_remove(sbi); out_fail: invalidate_bdev(sb->s_bdev); sb->s_fs_info = NULL; return err; } static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) { struct ext4_fs_context *ctx = fc->fs_private; struct ext4_sb_info *sbi; const char *descr; int ret; sbi = ext4_alloc_sbi(sb); if (!sbi) return -ENOMEM; fc->s_fs_info = sbi; /* Cleanup superblock name */ strreplace(sb->s_id, '/', '!'); sbi->s_sb_block = 1; /* Default super block location */ if (ctx->spec & EXT4_SPEC_s_sb_block) sbi->s_sb_block = ctx->s_sb_block; ret = __ext4_fill_super(fc, sb); if (ret < 0) goto free_sbi; if (sbi->s_journal) { if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) descr = " journalled data mode"; else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) descr = " ordered data mode"; else descr = " writeback data mode"; } else descr = "out journal"; if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " "Quota mode: %s.", &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", descr, ext4_quota_mode(sb)); /* Update the s_overhead_clusters if necessary */ ext4_update_overhead(sb, false); return 0; free_sbi: ext4_free_sbi(sbi); fc->s_fs_info = NULL; return ret; } static int ext4_get_tree(struct fs_context *fc) { return get_tree_bdev(fc, ext4_fill_super); } /* * Setup any per-fs journal parameters now. We'll do this both on * initial mount, once the journal has been initialised but before we've * done any recovery; and again on any subsequent remount. */ static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) { struct ext4_sb_info *sbi = EXT4_SB(sb); journal->j_commit_interval = sbi->s_commit_interval; journal->j_min_batch_time = sbi->s_min_batch_time; journal->j_max_batch_time = sbi->s_max_batch_time; ext4_fc_init(sb, journal); write_lock(&journal->j_state_lock); if (test_opt(sb, BARRIER)) journal->j_flags |= JBD2_BARRIER; else journal->j_flags &= ~JBD2_BARRIER; if (test_opt(sb, DATA_ERR_ABORT)) journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; else journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; /* * Always enable journal cycle record option, letting the journal * records log transactions continuously between each mount. */ journal->j_flags |= JBD2_CYCLE_RECORD; write_unlock(&journal->j_state_lock); } static struct inode *ext4_get_journal_inode(struct super_block *sb, unsigned int journal_inum) { struct inode *journal_inode; /* * Test for the existence of a valid inode on disk. Bad things * happen if we iget() an unused inode, as the subsequent iput() * will try to delete it. */ journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); if (IS_ERR(journal_inode)) { ext4_msg(sb, KERN_ERR, "no journal found"); return NULL; } if (!journal_inode->i_nlink) { make_bad_inode(journal_inode); iput(journal_inode); ext4_msg(sb, KERN_ERR, "journal inode is deleted"); return NULL; } ext4_debug("Journal inode found at %p: %lld bytes\n", journal_inode, journal_inode->i_size); if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { ext4_msg(sb, KERN_ERR, "invalid journal inode"); iput(journal_inode); return NULL; } return journal_inode; } static int ext4_journal_bmap(journal_t *journal, sector_t *block) { struct ext4_map_blocks map; int ret; if (journal->j_inode == NULL) return 0; map.m_lblk = *block; map.m_len = 1; ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); if (ret <= 0) { ext4_msg(journal->j_inode->i_sb, KERN_CRIT, "journal bmap failed: block %llu ret %d\n", *block, ret); jbd2_journal_abort(journal, ret ? ret : -EIO); return ret; } *block = map.m_pblk; return 0; } static journal_t *ext4_get_journal(struct super_block *sb, unsigned int journal_inum) { struct inode *journal_inode; journal_t *journal; if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) return NULL; journal_inode = ext4_get_journal_inode(sb, journal_inum); if (!journal_inode) return NULL; journal = jbd2_journal_init_inode(journal_inode); if (!journal) { ext4_msg(sb, KERN_ERR, "Could not load journal inode"); iput(journal_inode); return NULL; } journal->j_private = sb; journal->j_bmap = ext4_journal_bmap; ext4_init_journal_params(sb, journal); return journal; } static journal_t *ext4_get_dev_journal(struct super_block *sb, dev_t j_dev) { struct buffer_head *bh; journal_t *journal; ext4_fsblk_t start; ext4_fsblk_t len; int hblock, blocksize; ext4_fsblk_t sb_block; unsigned long offset; struct ext4_super_block *es; struct block_device *bdev; if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) return NULL; bdev = ext4_blkdev_get(j_dev, sb); if (bdev == NULL) return NULL; blocksize = sb->s_blocksize; hblock = bdev_logical_block_size(bdev); if (blocksize < hblock) { ext4_msg(sb, KERN_ERR, "blocksize too small for journal device"); goto out_bdev; } sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; offset = EXT4_MIN_BLOCK_SIZE % blocksize; set_blocksize(bdev, blocksize); if (!(bh = __bread(bdev, sb_block, blocksize))) { ext4_msg(sb, KERN_ERR, "couldn't read superblock of " "external journal"); goto out_bdev; } es = (struct ext4_super_block *) (bh->b_data + offset); if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || !(le32_to_cpu(es->s_feature_incompat) & EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { ext4_msg(sb, KERN_ERR, "external journal has " "bad superblock"); brelse(bh); goto out_bdev; } if ((le32_to_cpu(es->s_feature_ro_compat) & EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && es->s_checksum != ext4_superblock_csum(sb, es)) { ext4_msg(sb, KERN_ERR, "external journal has " "corrupt superblock"); brelse(bh); goto out_bdev; } if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { ext4_msg(sb, KERN_ERR, "journal UUID does not match"); brelse(bh); goto out_bdev; } len = ext4_blocks_count(es); start = sb_block + 1; brelse(bh); /* we're done with the superblock */ journal = jbd2_journal_init_dev(bdev, sb->s_bdev, start, len, blocksize); if (!journal) { ext4_msg(sb, KERN_ERR, "failed to create device journal"); goto out_bdev; } journal->j_private = sb; if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { ext4_msg(sb, KERN_ERR, "I/O error on journal device"); goto out_journal; } if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { ext4_msg(sb, KERN_ERR, "External journal has more than one " "user (unsupported) - %d", be32_to_cpu(journal->j_superblock->s_nr_users)); goto out_journal; } EXT4_SB(sb)->s_journal_bdev = bdev; ext4_init_journal_params(sb, journal); return journal; out_journal: jbd2_journal_destroy(journal); out_bdev: ext4_blkdev_put(bdev); return NULL; } static int ext4_load_journal(struct super_block *sb, struct ext4_super_block *es, unsigned long journal_devnum) { journal_t *journal; unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); dev_t journal_dev; int err = 0; int really_read_only; int journal_dev_ro; if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) return -EFSCORRUPTED; if (journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { ext4_msg(sb, KERN_INFO, "external journal device major/minor " "numbers have changed"); journal_dev = new_decode_dev(journal_devnum); } else journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); if (journal_inum && journal_dev) { ext4_msg(sb, KERN_ERR, "filesystem has both journal inode and journal device!"); return -EINVAL; } if (journal_inum) { journal = ext4_get_journal(sb, journal_inum); if (!journal) return -EINVAL; } else { journal = ext4_get_dev_journal(sb, journal_dev); if (!journal) return -EINVAL; } journal_dev_ro = bdev_read_only(journal->j_dev); really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; if (journal_dev_ro && !sb_rdonly(sb)) { ext4_msg(sb, KERN_ERR, "journal device read-only, try mounting with '-o ro'"); err = -EROFS; goto err_out; } /* * Are we loading a blank journal or performing recovery after a * crash? For recovery, we need to check in advance whether we * can get read-write access to the device. */ if (ext4_has_feature_journal_needs_recovery(sb)) { if (sb_rdonly(sb)) { ext4_msg(sb, KERN_INFO, "INFO: recovery " "required on readonly filesystem"); if (really_read_only) { ext4_msg(sb, KERN_ERR, "write access " "unavailable, cannot proceed " "(try mounting with noload)"); err = -EROFS; goto err_out; } ext4_msg(sb, KERN_INFO, "write access will " "be enabled during recovery"); } } if (!(journal->j_flags & JBD2_BARRIER)) ext4_msg(sb, KERN_INFO, "barriers disabled"); if (!ext4_has_feature_journal_needs_recovery(sb)) err = jbd2_journal_wipe(journal, !really_read_only); if (!err) { char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); if (save) memcpy(save, ((char *) es) + EXT4_S_ERR_START, EXT4_S_ERR_LEN); err = jbd2_journal_load(journal); if (save) memcpy(((char *) es) + EXT4_S_ERR_START, save, EXT4_S_ERR_LEN); kfree(save); es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS); /* Write out restored error information to the superblock */ if (!bdev_read_only(sb->s_bdev)) { int err2; err2 = ext4_commit_super(sb); err = err ? : err2; } } if (err) { ext4_msg(sb, KERN_ERR, "error loading journal"); goto err_out; } EXT4_SB(sb)->s_journal = journal; err = ext4_clear_journal_err(sb, es); if (err) { EXT4_SB(sb)->s_journal = NULL; jbd2_journal_destroy(journal); return err; } if (!really_read_only && journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { es->s_journal_dev = cpu_to_le32(journal_devnum); ext4_commit_super(sb); } if (!really_read_only && journal_inum && journal_inum != le32_to_cpu(es->s_journal_inum)) { es->s_journal_inum = cpu_to_le32(journal_inum); ext4_commit_super(sb); } return 0; err_out: jbd2_journal_destroy(journal); return err; } /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ static void ext4_update_super(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; struct buffer_head *sbh = sbi->s_sbh; lock_buffer(sbh); /* * If the file system is mounted read-only, don't update the * superblock write time. This avoids updating the superblock * write time when we are mounting the root file system * read/only but we need to replay the journal; at that point, * for people who are east of GMT and who make their clock * tick in localtime for Windows bug-for-bug compatibility, * the clock is set in the future, and this will cause e2fsck * to complain and force a full file system check. */ if (!(sb->s_flags & SB_RDONLY)) ext4_update_tstamp(es, s_wtime); es->s_kbytes_written = cpu_to_le64(sbi->s_kbytes_written + ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - sbi->s_sectors_written_start) >> 1)); if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) ext4_free_blocks_count_set(es, EXT4_C2B(sbi, percpu_counter_sum_positive( &sbi->s_freeclusters_counter))); if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( &sbi->s_freeinodes_counter)); /* Copy error information to the on-disk superblock */ spin_lock(&sbi->s_error_lock); if (sbi->s_add_error_count > 0) { es->s_state |= cpu_to_le16(EXT4_ERROR_FS); if (!es->s_first_error_time && !es->s_first_error_time_hi) { __ext4_update_tstamp(&es->s_first_error_time, &es->s_first_error_time_hi, sbi->s_first_error_time); strncpy(es->s_first_error_func, sbi->s_first_error_func, sizeof(es->s_first_error_func)); es->s_first_error_line = cpu_to_le32(sbi->s_first_error_line); es->s_first_error_ino = cpu_to_le32(sbi->s_first_error_ino); es->s_first_error_block = cpu_to_le64(sbi->s_first_error_block); es->s_first_error_errcode = ext4_errno_to_code(sbi->s_first_error_code); } __ext4_update_tstamp(&es->s_last_error_time, &es->s_last_error_time_hi, sbi->s_last_error_time); strncpy(es->s_last_error_func, sbi->s_last_error_func, sizeof(es->s_last_error_func)); es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); es->s_last_error_errcode = ext4_errno_to_code(sbi->s_last_error_code); /* * Start the daily error reporting function if it hasn't been * started already */ if (!es->s_error_count) mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); sbi->s_add_error_count = 0; } spin_unlock(&sbi->s_error_lock); ext4_superblock_csum_set(sb); unlock_buffer(sbh); } static int ext4_commit_super(struct super_block *sb) { struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; if (!sbh) return -EINVAL; if (block_device_ejected(sb)) return -ENODEV; ext4_update_super(sb); lock_buffer(sbh); /* Buffer got discarded which means block device got invalidated */ if (!buffer_mapped(sbh)) { unlock_buffer(sbh); return -EIO; } if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { /* * Oh, dear. A previous attempt to write the * superblock failed. This could happen because the * USB device was yanked out. Or it could happen to * be a transient write error and maybe the block will * be remapped. Nothing we can do but to retry the * write and hope for the best. */ ext4_msg(sb, KERN_ERR, "previous I/O error to " "superblock detected"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } get_bh(sbh); /* Clear potential dirty bit if it was journalled update */ clear_buffer_dirty(sbh); sbh->b_end_io = end_buffer_write_sync; submit_bh(REQ_OP_WRITE | REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); wait_on_buffer(sbh); if (buffer_write_io_error(sbh)) { ext4_msg(sb, KERN_ERR, "I/O error while writing " "superblock"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); return -EIO; } return 0; } /* * Have we just finished recovery? If so, and if we are mounting (or * remounting) the filesystem readonly, then we will end up with a * consistent fs on disk. Record that fact. */ static int ext4_mark_recovery_complete(struct super_block *sb, struct ext4_super_block *es) { int err; journal_t *journal = EXT4_SB(sb)->s_journal; if (!ext4_has_feature_journal(sb)) { if (journal != NULL) { ext4_error(sb, "Journal got removed while the fs was " "mounted!"); return -EFSCORRUPTED; } return 0; } jbd2_journal_lock_updates(journal); err = jbd2_journal_flush(journal, 0); if (err < 0) goto out; if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || ext4_has_feature_orphan_present(sb))) { if (!ext4_orphan_file_empty(sb)) { ext4_error(sb, "Orphan file not empty on read-only fs."); err = -EFSCORRUPTED; goto out; } ext4_clear_feature_journal_needs_recovery(sb); ext4_clear_feature_orphan_present(sb); ext4_commit_super(sb); } out: jbd2_journal_unlock_updates(journal); return err; } /* * If we are mounting (or read-write remounting) a filesystem whose journal * has recorded an error from a previous lifetime, move that error to the * main filesystem now. */ static int ext4_clear_journal_err(struct super_block *sb, struct ext4_super_block *es) { journal_t *journal; int j_errno; const char *errstr; if (!ext4_has_feature_journal(sb)) { ext4_error(sb, "Journal got removed while the fs was mounted!"); return -EFSCORRUPTED; } journal = EXT4_SB(sb)->s_journal; /* * Now check for any error status which may have been recorded in the * journal by a prior ext4_error() or ext4_abort() */ j_errno = jbd2_journal_errno(journal); if (j_errno) { char nbuf[16]; errstr = ext4_decode_error(sb, j_errno, nbuf); ext4_warning(sb, "Filesystem error recorded " "from previous mount: %s", errstr); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); j_errno = ext4_commit_super(sb); if (j_errno) return j_errno; ext4_warning(sb, "Marked fs in need of filesystem check."); jbd2_journal_clear_err(journal); jbd2_journal_update_sb_errno(journal); } return 0; } /* * Force the running and committing transactions to commit, * and wait on the commit. */ int ext4_force_commit(struct super_block *sb) { journal_t *journal; if (sb_rdonly(sb)) return 0; journal = EXT4_SB(sb)->s_journal; return ext4_journal_force_commit(journal); } static int ext4_sync_fs(struct super_block *sb, int wait) { int ret = 0; tid_t target; bool needs_barrier = false; struct ext4_sb_info *sbi = EXT4_SB(sb); if (unlikely(ext4_forced_shutdown(sbi))) return 0; trace_ext4_sync_fs(sb, wait); flush_workqueue(sbi->rsv_conversion_wq); /* * Writeback quota in non-journalled quota case - journalled quota has * no dirty dquots */ dquot_writeback_dquots(sb, -1); /* * Data writeback is possible w/o journal transaction, so barrier must * being sent at the end of the function. But we can skip it if * transaction_commit will do it for us. */ if (sbi->s_journal) { target = jbd2_get_latest_transaction(sbi->s_journal); if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) needs_barrier = true; if (jbd2_journal_start_commit(sbi->s_journal, &target)) { if (wait) ret = jbd2_log_wait_commit(sbi->s_journal, target); } } else if (wait && test_opt(sb, BARRIER)) needs_barrier = true; if (needs_barrier) { int err; err = blkdev_issue_flush(sb->s_bdev); if (!ret) ret = err; } return ret; } /* * LVM calls this function before a (read-only) snapshot is created. This * gives us a chance to flush the journal completely and mark the fs clean. * * Note that only this function cannot bring a filesystem to be in a clean * state independently. It relies on upper layer to stop all data & metadata * modifications. */ static int ext4_freeze(struct super_block *sb) { int error = 0; journal_t *journal; if (sb_rdonly(sb)) return 0; journal = EXT4_SB(sb)->s_journal; if (journal) { /* Now we set up the journal barrier. */ jbd2_journal_lock_updates(journal); /* * Don't clear the needs_recovery flag if we failed to * flush the journal. */ error = jbd2_journal_flush(journal, 0); if (error < 0) goto out; /* Journal blocked and flushed, clear needs_recovery flag. */ ext4_clear_feature_journal_needs_recovery(sb); if (ext4_orphan_file_empty(sb)) ext4_clear_feature_orphan_present(sb); } error = ext4_commit_super(sb); out: if (journal) /* we rely on upper layer to stop further updates */ jbd2_journal_unlock_updates(journal); return error; } /* * Called by LVM after the snapshot is done. We need to reset the RECOVER * flag here, even though the filesystem is not technically dirty yet. */ static int ext4_unfreeze(struct super_block *sb) { if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) return 0; if (EXT4_SB(sb)->s_journal) { /* Reset the needs_recovery flag before the fs is unlocked. */ ext4_set_feature_journal_needs_recovery(sb); if (ext4_has_feature_orphan_file(sb)) ext4_set_feature_orphan_present(sb); } ext4_commit_super(sb); return 0; } /* * Structure to save mount options for ext4_remount's benefit */ struct ext4_mount_options { unsigned long s_mount_opt; unsigned long s_mount_opt2; kuid_t s_resuid; kgid_t s_resgid; unsigned long s_commit_interval; u32 s_min_batch_time, s_max_batch_time; #ifdef CONFIG_QUOTA int s_jquota_fmt; char *s_qf_names[EXT4_MAXQUOTAS]; #endif }; static int __ext4_remount(struct fs_context *fc, struct super_block *sb) { struct ext4_fs_context *ctx = fc->fs_private; struct ext4_super_block *es; struct ext4_sb_info *sbi = EXT4_SB(sb); unsigned long old_sb_flags; struct ext4_mount_options old_opts; ext4_group_t g; int err = 0; #ifdef CONFIG_QUOTA int enable_quota = 0; int i, j; char *to_free[EXT4_MAXQUOTAS]; #endif /* Store the original options */ old_sb_flags = sb->s_flags; old_opts.s_mount_opt = sbi->s_mount_opt; old_opts.s_mount_opt2 = sbi->s_mount_opt2; old_opts.s_resuid = sbi->s_resuid; old_opts.s_resgid = sbi->s_resgid; old_opts.s_commit_interval = sbi->s_commit_interval; old_opts.s_min_batch_time = sbi->s_min_batch_time; old_opts.s_max_batch_time = sbi->s_max_batch_time; #ifdef CONFIG_QUOTA old_opts.s_jquota_fmt = sbi->s_jquota_fmt; for (i = 0; i < EXT4_MAXQUOTAS; i++) if (sbi->s_qf_names[i]) { char *qf_name = get_qf_name(sb, sbi, i); old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); if (!old_opts.s_qf_names[i]) { for (j = 0; j < i; j++) kfree(old_opts.s_qf_names[j]); return -ENOMEM; } } else old_opts.s_qf_names[i] = NULL; #endif if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { if (sbi->s_journal && sbi->s_journal->j_task->io_context) ctx->journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; else ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; } ext4_apply_options(fc, sb); if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ test_opt(sb, JOURNAL_CHECKSUM)) { ext4_msg(sb, KERN_ERR, "changing journal_checksum " "during remount not supported; ignoring"); sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; } if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { if (test_opt2(sb, EXPLICIT_DELALLOC)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and delalloc"); err = -EINVAL; goto restore_opts; } if (test_opt(sb, DIOREAD_NOLOCK)) { ext4_msg(sb, KERN_ERR, "can't mount with " "both data=journal and dioread_nolock"); err = -EINVAL; goto restore_opts; } } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { ext4_msg(sb, KERN_ERR, "can't mount with " "journal_async_commit in data=ordered mode"); err = -EINVAL; goto restore_opts; } } if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); err = -EINVAL; goto restore_opts; } if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); es = sbi->s_es; if (sbi->s_journal) { ext4_init_journal_params(sb, sbi->s_journal); set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); } /* Flush outstanding errors before changing fs state */ flush_work(&sbi->s_error_work); if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { err = -EROFS; goto restore_opts; } if (fc->sb_flags & SB_RDONLY) { err = sync_filesystem(sb); if (err < 0) goto restore_opts; err = dquot_suspend(sb, -1); if (err < 0) goto restore_opts; /* * First of all, the unconditional stuff we have to do * to disable replay of the journal when we next remount */ sb->s_flags |= SB_RDONLY; /* * OK, test if we are remounting a valid rw partition * readonly, and if so set the rdonly flag and then * mark the partition as valid again. */ if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && (sbi->s_mount_state & EXT4_VALID_FS)) es->s_state = cpu_to_le16(sbi->s_mount_state); if (sbi->s_journal) { /* * We let remount-ro finish even if marking fs * as clean failed... */ ext4_mark_recovery_complete(sb, es); } } else { /* Make sure we can mount this feature set readwrite */ if (ext4_has_feature_readonly(sb) || !ext4_feature_set_ok(sb, 0)) { err = -EROFS; goto restore_opts; } /* * Make sure the group descriptor checksums * are sane. If they aren't, refuse to remount r/w. */ for (g = 0; g < sbi->s_groups_count; g++) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, g, NULL); if (!ext4_group_desc_csum_verify(sb, g, gdp)) { ext4_msg(sb, KERN_ERR, "ext4_remount: Checksum for group %u failed (%u!=%u)", g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), le16_to_cpu(gdp->bg_checksum)); err = -EFSBADCRC; goto restore_opts; } } /* * If we have an unprocessed orphan list hanging * around from a previously readonly bdev mount, * require a full umount/remount for now. */ if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { ext4_msg(sb, KERN_WARNING, "Couldn't " "remount RDWR because of unprocessed " "orphan inode list. Please " "umount/remount instead"); err = -EINVAL; goto restore_opts; } /* * Mounting a RDONLY partition read-write, so reread * and store the current valid flag. (It may have * been changed by e2fsck since we originally mounted * the partition.) */ if (sbi->s_journal) { err = ext4_clear_journal_err(sb, es); if (err) goto restore_opts; } sbi->s_mount_state = (le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY); err = ext4_setup_super(sb, es, 0); if (err) goto restore_opts; sb->s_flags &= ~SB_RDONLY; if (ext4_has_feature_mmp(sb)) { err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); if (err) goto restore_opts; } #ifdef CONFIG_QUOTA enable_quota = 1; #endif } } /* * Handle creation of system zone data early because it can fail. * Releasing of existing data is done when we are sure remount will * succeed. */ if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { err = ext4_setup_system_zone(sb); if (err) goto restore_opts; } if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { err = ext4_commit_super(sb); if (err) goto restore_opts; } #ifdef CONFIG_QUOTA if (enable_quota) { if (sb_any_quota_suspended(sb)) dquot_resume(sb, -1); else if (ext4_has_feature_quota(sb)) { err = ext4_enable_quotas(sb); if (err) goto restore_opts; } } /* Release old quota file names */ for (i = 0; i < EXT4_MAXQUOTAS; i++) kfree(old_opts.s_qf_names[i]); #endif if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) ext4_release_system_zone(sb); /* * Reinitialize lazy itable initialization thread based on * current settings */ if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) ext4_unregister_li_request(sb); else { ext4_group_t first_not_zeroed; first_not_zeroed = ext4_has_uninit_itable(sb); ext4_register_li_request(sb, first_not_zeroed); } if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) ext4_stop_mmpd(sbi); return 0; restore_opts: /* * If there was a failing r/w to ro transition, we may need to * re-enable quota */ if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) && sb_any_quota_suspended(sb)) dquot_resume(sb, -1); sb->s_flags = old_sb_flags; sbi->s_mount_opt = old_opts.s_mount_opt; sbi->s_mount_opt2 = old_opts.s_mount_opt2; sbi->s_resuid = old_opts.s_resuid; sbi->s_resgid = old_opts.s_resgid; sbi->s_commit_interval = old_opts.s_commit_interval; sbi->s_min_batch_time = old_opts.s_min_batch_time; sbi->s_max_batch_time = old_opts.s_max_batch_time; if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) ext4_release_system_zone(sb); #ifdef CONFIG_QUOTA sbi->s_jquota_fmt = old_opts.s_jquota_fmt; for (i = 0; i < EXT4_MAXQUOTAS; i++) { to_free[i] = get_qf_name(sb, sbi, i); rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); } synchronize_rcu(); for (i = 0; i < EXT4_MAXQUOTAS; i++) kfree(to_free[i]); #endif if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) ext4_stop_mmpd(sbi); return err; } static int ext4_reconfigure(struct fs_context *fc) { struct super_block *sb = fc->root->d_sb; int ret; fc->s_fs_info = EXT4_SB(sb); ret = ext4_check_opt_consistency(fc, sb); if (ret < 0) return ret; ret = __ext4_remount(fc, sb); if (ret < 0) return ret; ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", ext4_quota_mode(sb)); return 0; } #ifdef CONFIG_QUOTA static int ext4_statfs_project(struct super_block *sb, kprojid_t projid, struct kstatfs *buf) { struct kqid qid; struct dquot *dquot; u64 limit; u64 curblock; qid = make_kqid_projid(projid); dquot = dqget(sb, qid); if (IS_ERR(dquot)) return PTR_ERR(dquot); spin_lock(&dquot->dq_dqb_lock); limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, dquot->dq_dqb.dqb_bhardlimit); limit >>= sb->s_blocksize_bits; if (limit && buf->f_blocks > limit) { curblock = (dquot->dq_dqb.dqb_curspace + dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; buf->f_blocks = limit; buf->f_bfree = buf->f_bavail = (buf->f_blocks > curblock) ? (buf->f_blocks - curblock) : 0; } limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, dquot->dq_dqb.dqb_ihardlimit); if (limit && buf->f_files > limit) { buf->f_files = limit; buf->f_ffree = (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; } spin_unlock(&dquot->dq_dqb_lock); dqput(dquot); return 0; } #endif static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; ext4_fsblk_t overhead = 0, resv_blocks; s64 bfree; resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); if (!test_opt(sb, MINIX_DF)) overhead = sbi->s_overhead; buf->f_type = EXT4_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); /* prevent underflow in case that few free space is available */ buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); buf->f_bavail = buf->f_bfree - (ext4_r_blocks_count(es) + resv_blocks); if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) buf->f_bavail = 0; buf->f_files = le32_to_cpu(es->s_inodes_count); buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); buf->f_namelen = EXT4_NAME_LEN; buf->f_fsid = uuid_to_fsid(es->s_uuid); #ifdef CONFIG_QUOTA if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && sb_has_quota_limits_enabled(sb, PRJQUOTA)) ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); #endif return 0; } #ifdef CONFIG_QUOTA /* * Helper functions so that transaction is started before we acquire dqio_sem * to keep correct lock ordering of transaction > dqio_sem */ static inline struct inode *dquot_to_inode(struct dquot *dquot) { return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; } static int ext4_write_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; struct inode *inode; inode = dquot_to_inode(dquot); handle = ext4_journal_start(inode, EXT4_HT_QUOTA, EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_acquire_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_acquire(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_release_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) { /* Release dquot anyway to avoid endless cycle in dqput() */ dquot_release(dquot); return PTR_ERR(handle); } ret = dquot_release(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_mark_dquot_dirty(struct dquot *dquot) { struct super_block *sb = dquot->dq_sb; if (ext4_is_quota_journalled(sb)) { dquot_mark_dquot_dirty(dquot); return ext4_write_dquot(dquot); } else { return dquot_mark_dquot_dirty(dquot); } } static int ext4_write_info(struct super_block *sb, int type) { int ret, err; handle_t *handle; /* Data block + inode block */ handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit_info(sb, type); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static void lockdep_set_quota_inode(struct inode *inode, int subclass) { struct ext4_inode_info *ei = EXT4_I(inode); /* The first argument of lockdep_set_subclass has to be * *exactly* the same as the argument to init_rwsem() --- in * this case, in init_once() --- or lockdep gets unhappy * because the name of the lock is set using the * stringification of the argument to init_rwsem(). */ (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ lockdep_set_subclass(&ei->i_data_sem, subclass); } /* * Standard function to be called on quota_on */ static int ext4_quota_on(struct super_block *sb, int type, int format_id, const struct path *path) { int err; if (!test_opt(sb, QUOTA)) return -EINVAL; /* Quotafile not on the same filesystem? */ if (path->dentry->d_sb != sb) return -EXDEV; /* Quota already enabled for this file? */ if (IS_NOQUOTA(d_inode(path->dentry))) return -EBUSY; /* Journaling quota? */ if (EXT4_SB(sb)->s_qf_names[type]) { /* Quotafile not in fs root? */ if (path->dentry->d_parent != sb->s_root) ext4_msg(sb, KERN_WARNING, "Quota file not on filesystem root. " "Journaled quota will not work"); sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; } else { /* * Clear the flag just in case mount options changed since * last time. */ sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; } lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); err = dquot_quota_on(sb, type, format_id, path); if (!err) { struct inode *inode = d_inode(path->dentry); handle_t *handle; /* * Set inode flags to prevent userspace from messing with quota * files. If this fails, we return success anyway since quotas * are already enabled and this is not a hard failure. */ inode_lock(inode); handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); if (IS_ERR(handle)) goto unlock_inode; EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, S_NOATIME | S_IMMUTABLE); err = ext4_mark_inode_dirty(handle, inode); ext4_journal_stop(handle); unlock_inode: inode_unlock(inode); if (err) dquot_quota_off(sb, type); } if (err) lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_NORMAL); return err; } static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) { switch (type) { case USRQUOTA: return qf_inum == EXT4_USR_QUOTA_INO; case GRPQUOTA: return qf_inum == EXT4_GRP_QUOTA_INO; case PRJQUOTA: return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; default: BUG(); } } static int ext4_quota_enable(struct super_block *sb, int type, int format_id, unsigned int flags) { int err; struct inode *qf_inode; unsigned long qf_inums[EXT4_MAXQUOTAS] = { le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) }; BUG_ON(!ext4_has_feature_quota(sb)); if (!qf_inums[type]) return -EPERM; if (!ext4_check_quota_inum(type, qf_inums[type])) { ext4_error(sb, "Bad quota inum: %lu, type: %d", qf_inums[type], type); return -EUCLEAN; } qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); if (IS_ERR(qf_inode)) { ext4_error(sb, "Bad quota inode: %lu, type: %d", qf_inums[type], type); return PTR_ERR(qf_inode); } /* Don't account quota for quota files to avoid recursion */ qf_inode->i_flags |= S_NOQUOTA; lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); err = dquot_load_quota_inode(qf_inode, type, format_id, flags); if (err) lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); iput(qf_inode); return err; } /* Enable usage tracking for all quota types. */ int ext4_enable_quotas(struct super_block *sb) { int type, err = 0; unsigned long qf_inums[EXT4_MAXQUOTAS] = { le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) }; bool quota_mopt[EXT4_MAXQUOTAS] = { test_opt(sb, USRQUOTA), test_opt(sb, GRPQUOTA), test_opt(sb, PRJQUOTA), }; sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; for (type = 0; type < EXT4_MAXQUOTAS; type++) { if (qf_inums[type]) { err = ext4_quota_enable(sb, type, QFMT_VFS_V1, DQUOT_USAGE_ENABLED | (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); if (err) { ext4_warning(sb, "Failed to enable quota tracking " "(type=%d, err=%d, ino=%lu). " "Please run e2fsck to fix.", type, err, qf_inums[type]); for (type--; type >= 0; type--) { struct inode *inode; inode = sb_dqopt(sb)->files[type]; if (inode) inode = igrab(inode); dquot_quota_off(sb, type); if (inode) { lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); iput(inode); } } return err; } } } return 0; } static int ext4_quota_off(struct super_block *sb, int type) { struct inode *inode = sb_dqopt(sb)->files[type]; handle_t *handle; int err; /* Force all delayed allocation blocks to be allocated. * Caller already holds s_umount sem */ if (test_opt(sb, DELALLOC)) sync_filesystem(sb); if (!inode || !igrab(inode)) goto out; err = dquot_quota_off(sb, type); if (err || ext4_has_feature_quota(sb)) goto out_put; inode_lock(inode); /* * Update modification times of quota files when userspace can * start looking at them. If we fail, we return success anyway since * this is not a hard failure and quotas are already disabled. */ handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); if (IS_ERR(handle)) { err = PTR_ERR(handle); goto out_unlock; } EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); inode->i_mtime = inode->i_ctime = current_time(inode); err = ext4_mark_inode_dirty(handle, inode); ext4_journal_stop(handle); out_unlock: inode_unlock(inode); out_put: lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); iput(inode); return err; out: return dquot_quota_off(sb, type); } /* Read data from quotafile - avoid pagecache and such because we cannot afford * acquiring the locks... As quota files are never truncated and quota code * itself serializes the operations (and no one else should touch the files) * we don't have to be afraid of races */ static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int offset = off & (sb->s_blocksize - 1); int tocopy; size_t toread; struct buffer_head *bh; loff_t i_size = i_size_read(inode); if (off > i_size) return 0; if (off+len > i_size) len = i_size-off; toread = len; while (toread > 0) { tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); bh = ext4_bread(NULL, inode, blk, 0); if (IS_ERR(bh)) return PTR_ERR(bh); if (!bh) /* A hole? */ memset(data, 0, tocopy); else memcpy(data, bh->b_data+offset, tocopy); brelse(bh); offset = 0; toread -= tocopy; data += tocopy; blk++; } return len; } /* Write to quotafile (we know the transaction is already started and has * enough credits) */ static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); int retries = 0; struct buffer_head *bh; handle_t *handle = journal_current_handle(); if (!handle) { ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" " cancelled because transaction is not started", (unsigned long long)off, (unsigned long long)len); return -EIO; } /* * Since we account only one data block in transaction credits, * then it is impossible to cross a block boundary. */ if (sb->s_blocksize - offset < len) { ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" " cancelled because not block aligned", (unsigned long long)off, (unsigned long long)len); return -EIO; } do { bh = ext4_bread(handle, inode, blk, EXT4_GET_BLOCKS_CREATE | EXT4_GET_BLOCKS_METADATA_NOFAIL); } while (PTR_ERR(bh) == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)); if (IS_ERR(bh)) return PTR_ERR(bh); if (!bh) goto out; BUFFER_TRACE(bh, "get write access"); err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); if (err) { brelse(bh); return err; } lock_buffer(bh); memcpy(bh->b_data+offset, data, len); flush_dcache_page(bh->b_page); unlock_buffer(bh); err = ext4_handle_dirty_metadata(handle, NULL, bh); brelse(bh); out: if (inode->i_size < off + len) { i_size_write(inode, off + len); EXT4_I(inode)->i_disksize = inode->i_size; err2 = ext4_mark_inode_dirty(handle, inode); if (unlikely(err2 && !err)) err = err2; } return err ? err : len; } #endif #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) static inline void register_as_ext2(void) { int err = register_filesystem(&ext2_fs_type); if (err) printk(KERN_WARNING "EXT4-fs: Unable to register as ext2 (%d)\n", err); } static inline void unregister_as_ext2(void) { unregister_filesystem(&ext2_fs_type); } static inline int ext2_feature_set_ok(struct super_block *sb) { if (ext4_has_unknown_ext2_incompat_features(sb)) return 0; if (sb_rdonly(sb)) return 1; if (ext4_has_unknown_ext2_ro_compat_features(sb)) return 0; return 1; } #else static inline void register_as_ext2(void) { } static inline void unregister_as_ext2(void) { } static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } #endif static inline void register_as_ext3(void) { int err = register_filesystem(&ext3_fs_type); if (err) printk(KERN_WARNING "EXT4-fs: Unable to register as ext3 (%d)\n", err); } static inline void unregister_as_ext3(void) { unregister_filesystem(&ext3_fs_type); } static inline int ext3_feature_set_ok(struct super_block *sb) { if (ext4_has_unknown_ext3_incompat_features(sb)) return 0; if (!ext4_has_feature_journal(sb)) return 0; if (sb_rdonly(sb)) return 1; if (ext4_has_unknown_ext3_ro_compat_features(sb)) return 0; return 1; } static struct file_system_type ext4_fs_type = { .owner = THIS_MODULE, .name = "ext4", .init_fs_context = ext4_init_fs_context, .parameters = ext4_param_specs, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, }; MODULE_ALIAS_FS("ext4"); /* Shared across all ext4 file systems */ wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; static int __init ext4_init_fs(void) { int i, err; ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); ext4_li_info = NULL; /* Build-time check for flags consistency */ ext4_check_flag_values(); for (i = 0; i < EXT4_WQ_HASH_SZ; i++) init_waitqueue_head(&ext4__ioend_wq[i]); err = ext4_init_es(); if (err) return err; err = ext4_init_pending(); if (err) goto out7; err = ext4_init_post_read_processing(); if (err) goto out6; err = ext4_init_pageio(); if (err) goto out5; err = ext4_init_system_zone(); if (err) goto out4; err = ext4_init_sysfs(); if (err) goto out3; err = ext4_init_mballoc(); if (err) goto out2; err = init_inodecache(); if (err) goto out1; err = ext4_fc_init_dentry_cache(); if (err) goto out05; register_as_ext3(); register_as_ext2(); err = register_filesystem(&ext4_fs_type); if (err) goto out; return 0; out: unregister_as_ext2(); unregister_as_ext3(); ext4_fc_destroy_dentry_cache(); out05: destroy_inodecache(); out1: ext4_exit_mballoc(); out2: ext4_exit_sysfs(); out3: ext4_exit_system_zone(); out4: ext4_exit_pageio(); out5: ext4_exit_post_read_processing(); out6: ext4_exit_pending(); out7: ext4_exit_es(); return err; } static void __exit ext4_exit_fs(void) { ext4_destroy_lazyinit_thread(); unregister_as_ext2(); unregister_as_ext3(); unregister_filesystem(&ext4_fs_type); ext4_fc_destroy_dentry_cache(); destroy_inodecache(); ext4_exit_mballoc(); ext4_exit_sysfs(); ext4_exit_system_zone(); ext4_exit_pageio(); ext4_exit_post_read_processing(); ext4_exit_es(); ext4_exit_pending(); } MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); MODULE_DESCRIPTION("Fourth Extended Filesystem"); MODULE_LICENSE("GPL"); MODULE_SOFTDEP("pre: crc32c"); module_init(ext4_init_fs) module_exit(ext4_exit_fs)