/* * Self tests for device tree subsystem */ #define pr_fmt(fmt) "### dt-test ### " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "of_private.h" static struct selftest_results { int passed; int failed; } selftest_results; #define selftest(result, fmt, ...) ({ \ bool failed = !(result); \ if (failed) { \ selftest_results.failed++; \ pr_err("FAIL %s():%i " fmt, __func__, __LINE__, ##__VA_ARGS__); \ } else { \ selftest_results.passed++; \ pr_debug("pass %s():%i\n", __func__, __LINE__); \ } \ failed; \ }) static void __init of_selftest_find_node_by_name(void) { struct device_node *np; const char *options; np = of_find_node_by_path("/testcase-data"); selftest(np && !strcmp("/testcase-data", np->full_name), "find /testcase-data failed\n"); of_node_put(np); /* Test if trailing '/' works */ np = of_find_node_by_path("/testcase-data/"); selftest(!np, "trailing '/' on /testcase-data/ should fail\n"); np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); selftest(np && !strcmp("/testcase-data/phandle-tests/consumer-a", np->full_name), "find /testcase-data/phandle-tests/consumer-a failed\n"); of_node_put(np); np = of_find_node_by_path("testcase-alias"); selftest(np && !strcmp("/testcase-data", np->full_name), "find testcase-alias failed\n"); of_node_put(np); /* Test if trailing '/' works on aliases */ np = of_find_node_by_path("testcase-alias/"); selftest(!np, "trailing '/' on testcase-alias/ should fail\n"); np = of_find_node_by_path("testcase-alias/phandle-tests/consumer-a"); selftest(np && !strcmp("/testcase-data/phandle-tests/consumer-a", np->full_name), "find testcase-alias/phandle-tests/consumer-a failed\n"); of_node_put(np); np = of_find_node_by_path("/testcase-data/missing-path"); selftest(!np, "non-existent path returned node %s\n", np->full_name); of_node_put(np); np = of_find_node_by_path("missing-alias"); selftest(!np, "non-existent alias returned node %s\n", np->full_name); of_node_put(np); np = of_find_node_by_path("testcase-alias/missing-path"); selftest(!np, "non-existent alias with relative path returned node %s\n", np->full_name); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data:testoption", &options); selftest(np && !strcmp("testoption", options), "option path test failed\n"); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data:test/option", &options); selftest(np && !strcmp("test/option", options), "option path test, subcase #1 failed\n"); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data/testcase-device1:test/option", &options); selftest(np && !strcmp("test/option", options), "option path test, subcase #2 failed\n"); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data:testoption", NULL); selftest(np, "NULL option path test failed\n"); of_node_put(np); np = of_find_node_opts_by_path("testcase-alias:testaliasoption", &options); selftest(np && !strcmp("testaliasoption", options), "option alias path test failed\n"); of_node_put(np); np = of_find_node_opts_by_path("testcase-alias:test/alias/option", &options); selftest(np && !strcmp("test/alias/option", options), "option alias path test, subcase #1 failed\n"); of_node_put(np); np = of_find_node_opts_by_path("testcase-alias:testaliasoption", NULL); selftest(np, "NULL option alias path test failed\n"); of_node_put(np); options = "testoption"; np = of_find_node_opts_by_path("testcase-alias", &options); selftest(np && !options, "option clearing test failed\n"); of_node_put(np); options = "testoption"; np = of_find_node_opts_by_path("/", &options); selftest(np && !options, "option clearing root node test failed\n"); of_node_put(np); } static void __init of_selftest_dynamic(void) { struct device_node *np; struct property *prop; np = of_find_node_by_path("/testcase-data"); if (!np) { pr_err("missing testcase data\n"); return; } /* Array of 4 properties for the purpose of testing */ prop = kzalloc(sizeof(*prop) * 4, GFP_KERNEL); if (!prop) { selftest(0, "kzalloc() failed\n"); return; } /* Add a new property - should pass*/ prop->name = "new-property"; prop->value = "new-property-data"; prop->length = strlen(prop->value); selftest(of_add_property(np, prop) == 0, "Adding a new property failed\n"); /* Try to add an existing property - should fail */ prop++; prop->name = "new-property"; prop->value = "new-property-data-should-fail"; prop->length = strlen(prop->value); selftest(of_add_property(np, prop) != 0, "Adding an existing property should have failed\n"); /* Try to modify an existing property - should pass */ prop->value = "modify-property-data-should-pass"; prop->length = strlen(prop->value); selftest(of_update_property(np, prop) == 0, "Updating an existing property should have passed\n"); /* Try to modify non-existent property - should pass*/ prop++; prop->name = "modify-property"; prop->value = "modify-missing-property-data-should-pass"; prop->length = strlen(prop->value); selftest(of_update_property(np, prop) == 0, "Updating a missing property should have passed\n"); /* Remove property - should pass */ selftest(of_remove_property(np, prop) == 0, "Removing a property should have passed\n"); /* Adding very large property - should pass */ prop++; prop->name = "large-property-PAGE_SIZEx8"; prop->length = PAGE_SIZE * 8; prop->value = kzalloc(prop->length, GFP_KERNEL); selftest(prop->value != NULL, "Unable to allocate large buffer\n"); if (prop->value) selftest(of_add_property(np, prop) == 0, "Adding a large property should have passed\n"); } static int __init of_selftest_check_node_linkage(struct device_node *np) { struct device_node *child; int count = 0, rc; for_each_child_of_node(np, child) { if (child->parent != np) { pr_err("Child node %s links to wrong parent %s\n", child->name, np->name); return -EINVAL; } rc = of_selftest_check_node_linkage(child); if (rc < 0) return rc; count += rc; } return count + 1; } static void __init of_selftest_check_tree_linkage(void) { struct device_node *np; int allnode_count = 0, child_count; if (!of_root) return; for_each_of_allnodes(np) allnode_count++; child_count = of_selftest_check_node_linkage(of_root); selftest(child_count > 0, "Device node data structure is corrupted\n"); selftest(child_count == allnode_count, "allnodes list size (%i) doesn't match sibling lists size (%i)\n", allnode_count, child_count); pr_debug("allnodes list size (%i); sibling lists size (%i)\n", allnode_count, child_count); } struct node_hash { struct hlist_node node; struct device_node *np; }; static DEFINE_HASHTABLE(phandle_ht, 8); static void __init of_selftest_check_phandles(void) { struct device_node *np; struct node_hash *nh; struct hlist_node *tmp; int i, dup_count = 0, phandle_count = 0; for_each_of_allnodes(np) { if (!np->phandle) continue; hash_for_each_possible(phandle_ht, nh, node, np->phandle) { if (nh->np->phandle == np->phandle) { pr_info("Duplicate phandle! %i used by %s and %s\n", np->phandle, nh->np->full_name, np->full_name); dup_count++; break; } } nh = kzalloc(sizeof(*nh), GFP_KERNEL); if (WARN_ON(!nh)) return; nh->np = np; hash_add(phandle_ht, &nh->node, np->phandle); phandle_count++; } selftest(dup_count == 0, "Found %i duplicates in %i phandles\n", dup_count, phandle_count); /* Clean up */ hash_for_each_safe(phandle_ht, i, tmp, nh, node) { hash_del(&nh->node); kfree(nh); } } static void __init of_selftest_parse_phandle_with_args(void) { struct device_node *np; struct of_phandle_args args; int i, rc; np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); if (!np) { pr_err("missing testcase data\n"); return; } rc = of_count_phandle_with_args(np, "phandle-list", "#phandle-cells"); selftest(rc == 7, "of_count_phandle_with_args() returned %i, expected 7\n", rc); for (i = 0; i < 8; i++) { bool passed = true; rc = of_parse_phandle_with_args(np, "phandle-list", "#phandle-cells", i, &args); /* Test the values from tests-phandle.dtsi */ switch (i) { case 0: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == (i + 1)); break; case 1: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == (i + 1)); passed &= (args.args[1] == 0); break; case 2: passed &= (rc == -ENOENT); break; case 3: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == (i + 1)); passed &= (args.args[1] == 4); passed &= (args.args[2] == 3); break; case 4: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == (i + 1)); passed &= (args.args[1] == 100); break; case 5: passed &= !rc; passed &= (args.args_count == 0); break; case 6: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == (i + 1)); break; case 7: passed &= (rc == -ENOENT); break; default: passed = false; } selftest(passed, "index %i - data error on node %s rc=%i\n", i, args.np->full_name, rc); } /* Check for missing list property */ rc = of_parse_phandle_with_args(np, "phandle-list-missing", "#phandle-cells", 0, &args); selftest(rc == -ENOENT, "expected:%i got:%i\n", -ENOENT, rc); rc = of_count_phandle_with_args(np, "phandle-list-missing", "#phandle-cells"); selftest(rc == -ENOENT, "expected:%i got:%i\n", -ENOENT, rc); /* Check for missing cells property */ rc = of_parse_phandle_with_args(np, "phandle-list", "#phandle-cells-missing", 0, &args); selftest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); rc = of_count_phandle_with_args(np, "phandle-list", "#phandle-cells-missing"); selftest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); /* Check for bad phandle in list */ rc = of_parse_phandle_with_args(np, "phandle-list-bad-phandle", "#phandle-cells", 0, &args); selftest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); rc = of_count_phandle_with_args(np, "phandle-list-bad-phandle", "#phandle-cells"); selftest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); /* Check for incorrectly formed argument list */ rc = of_parse_phandle_with_args(np, "phandle-list-bad-args", "#phandle-cells", 1, &args); selftest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); rc = of_count_phandle_with_args(np, "phandle-list-bad-args", "#phandle-cells"); selftest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); } static void __init of_selftest_property_string(void) { const char *strings[4]; struct device_node *np; int rc; np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); if (!np) { pr_err("No testcase data in device tree\n"); return; } rc = of_property_match_string(np, "phandle-list-names", "first"); selftest(rc == 0, "first expected:0 got:%i\n", rc); rc = of_property_match_string(np, "phandle-list-names", "second"); selftest(rc == 1, "second expected:1 got:%i\n", rc); rc = of_property_match_string(np, "phandle-list-names", "third"); selftest(rc == 2, "third expected:2 got:%i\n", rc); rc = of_property_match_string(np, "phandle-list-names", "fourth"); selftest(rc == -ENODATA, "unmatched string; rc=%i\n", rc); rc = of_property_match_string(np, "missing-property", "blah"); selftest(rc == -EINVAL, "missing property; rc=%i\n", rc); rc = of_property_match_string(np, "empty-property", "blah"); selftest(rc == -ENODATA, "empty property; rc=%i\n", rc); rc = of_property_match_string(np, "unterminated-string", "blah"); selftest(rc == -EILSEQ, "unterminated string; rc=%i\n", rc); /* of_property_count_strings() tests */ rc = of_property_count_strings(np, "string-property"); selftest(rc == 1, "Incorrect string count; rc=%i\n", rc); rc = of_property_count_strings(np, "phandle-list-names"); selftest(rc == 3, "Incorrect string count; rc=%i\n", rc); rc = of_property_count_strings(np, "unterminated-string"); selftest(rc == -EILSEQ, "unterminated string; rc=%i\n", rc); rc = of_property_count_strings(np, "unterminated-string-list"); selftest(rc == -EILSEQ, "unterminated string array; rc=%i\n", rc); /* of_property_read_string_index() tests */ rc = of_property_read_string_index(np, "string-property", 0, strings); selftest(rc == 0 && !strcmp(strings[0], "foobar"), "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "string-property", 1, strings); selftest(rc == -ENODATA && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "phandle-list-names", 0, strings); selftest(rc == 0 && !strcmp(strings[0], "first"), "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "phandle-list-names", 1, strings); selftest(rc == 0 && !strcmp(strings[0], "second"), "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "phandle-list-names", 2, strings); selftest(rc == 0 && !strcmp(strings[0], "third"), "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "phandle-list-names", 3, strings); selftest(rc == -ENODATA && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "unterminated-string", 0, strings); selftest(rc == -EILSEQ && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "unterminated-string-list", 0, strings); selftest(rc == 0 && !strcmp(strings[0], "first"), "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "unterminated-string-list", 2, strings); /* should fail */ selftest(rc == -EILSEQ && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); strings[1] = NULL; /* of_property_read_string_array() tests */ rc = of_property_read_string_array(np, "string-property", strings, 4); selftest(rc == 1, "Incorrect string count; rc=%i\n", rc); rc = of_property_read_string_array(np, "phandle-list-names", strings, 4); selftest(rc == 3, "Incorrect string count; rc=%i\n", rc); rc = of_property_read_string_array(np, "unterminated-string", strings, 4); selftest(rc == -EILSEQ, "unterminated string; rc=%i\n", rc); /* -- An incorrectly formed string should cause a failure */ rc = of_property_read_string_array(np, "unterminated-string-list", strings, 4); selftest(rc == -EILSEQ, "unterminated string array; rc=%i\n", rc); /* -- parsing the correctly formed strings should still work: */ strings[2] = NULL; rc = of_property_read_string_array(np, "unterminated-string-list", strings, 2); selftest(rc == 2 && strings[2] == NULL, "of_property_read_string_array() failure; rc=%i\n", rc); strings[1] = NULL; rc = of_property_read_string_array(np, "phandle-list-names", strings, 1); selftest(rc == 1 && strings[1] == NULL, "Overwrote end of string array; rc=%i, str='%s'\n", rc, strings[1]); } #define propcmp(p1, p2) (((p1)->length == (p2)->length) && \ (p1)->value && (p2)->value && \ !memcmp((p1)->value, (p2)->value, (p1)->length) && \ !strcmp((p1)->name, (p2)->name)) static void __init of_selftest_property_copy(void) { #ifdef CONFIG_OF_DYNAMIC struct property p1 = { .name = "p1", .length = 0, .value = "" }; struct property p2 = { .name = "p2", .length = 5, .value = "abcd" }; struct property *new; new = __of_prop_dup(&p1, GFP_KERNEL); selftest(new && propcmp(&p1, new), "empty property didn't copy correctly\n"); kfree(new->value); kfree(new->name); kfree(new); new = __of_prop_dup(&p2, GFP_KERNEL); selftest(new && propcmp(&p2, new), "non-empty property didn't copy correctly\n"); kfree(new->value); kfree(new->name); kfree(new); #endif } static void __init of_selftest_changeset(void) { #ifdef CONFIG_OF_DYNAMIC struct property *ppadd, padd = { .name = "prop-add", .length = 0, .value = "" }; struct property *ppupdate, pupdate = { .name = "prop-update", .length = 5, .value = "abcd" }; struct property *ppremove; struct device_node *n1, *n2, *n21, *nremove, *parent, *np; struct of_changeset chgset; n1 = __of_node_dup(NULL, "/testcase-data/changeset/n1"); selftest(n1, "testcase setup failure\n"); n2 = __of_node_dup(NULL, "/testcase-data/changeset/n2"); selftest(n2, "testcase setup failure\n"); n21 = __of_node_dup(NULL, "%s/%s", "/testcase-data/changeset/n2", "n21"); selftest(n21, "testcase setup failure %p\n", n21); nremove = of_find_node_by_path("/testcase-data/changeset/node-remove"); selftest(nremove, "testcase setup failure\n"); ppadd = __of_prop_dup(&padd, GFP_KERNEL); selftest(ppadd, "testcase setup failure\n"); ppupdate = __of_prop_dup(&pupdate, GFP_KERNEL); selftest(ppupdate, "testcase setup failure\n"); parent = nremove->parent; n1->parent = parent; n2->parent = parent; n21->parent = n2; n2->child = n21; ppremove = of_find_property(parent, "prop-remove", NULL); selftest(ppremove, "failed to find removal prop"); of_changeset_init(&chgset); selftest(!of_changeset_attach_node(&chgset, n1), "fail attach n1\n"); selftest(!of_changeset_attach_node(&chgset, n2), "fail attach n2\n"); selftest(!of_changeset_detach_node(&chgset, nremove), "fail remove node\n"); selftest(!of_changeset_attach_node(&chgset, n21), "fail attach n21\n"); selftest(!of_changeset_add_property(&chgset, parent, ppadd), "fail add prop\n"); selftest(!of_changeset_update_property(&chgset, parent, ppupdate), "fail update prop\n"); selftest(!of_changeset_remove_property(&chgset, parent, ppremove), "fail remove prop\n"); mutex_lock(&of_mutex); selftest(!of_changeset_apply(&chgset), "apply failed\n"); mutex_unlock(&of_mutex); /* Make sure node names are constructed correctly */ selftest((np = of_find_node_by_path("/testcase-data/changeset/n2/n21")), "'%s' not added\n", n21->full_name); of_node_put(np); mutex_lock(&of_mutex); selftest(!of_changeset_revert(&chgset), "revert failed\n"); mutex_unlock(&of_mutex); of_changeset_destroy(&chgset); #endif } static void __init of_selftest_parse_interrupts(void) { struct device_node *np; struct of_phandle_args args; int i, rc; np = of_find_node_by_path("/testcase-data/interrupts/interrupts0"); if (!np) { pr_err("missing testcase data\n"); return; } for (i = 0; i < 4; i++) { bool passed = true; args.args_count = 0; rc = of_irq_parse_one(np, i, &args); passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == (i + 1)); selftest(passed, "index %i - data error on node %s rc=%i\n", i, args.np->full_name, rc); } of_node_put(np); np = of_find_node_by_path("/testcase-data/interrupts/interrupts1"); if (!np) { pr_err("missing testcase data\n"); return; } for (i = 0; i < 4; i++) { bool passed = true; args.args_count = 0; rc = of_irq_parse_one(np, i, &args); /* Test the values from tests-phandle.dtsi */ switch (i) { case 0: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 9); break; case 1: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == 10); passed &= (args.args[1] == 11); passed &= (args.args[2] == 12); break; case 2: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 13); passed &= (args.args[1] == 14); break; case 3: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 15); passed &= (args.args[1] == 16); break; default: passed = false; } selftest(passed, "index %i - data error on node %s rc=%i\n", i, args.np->full_name, rc); } of_node_put(np); } static void __init of_selftest_parse_interrupts_extended(void) { struct device_node *np; struct of_phandle_args args; int i, rc; np = of_find_node_by_path("/testcase-data/interrupts/interrupts-extended0"); if (!np) { pr_err("missing testcase data\n"); return; } for (i = 0; i < 7; i++) { bool passed = true; rc = of_irq_parse_one(np, i, &args); /* Test the values from tests-phandle.dtsi */ switch (i) { case 0: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 1); break; case 1: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == 2); passed &= (args.args[1] == 3); passed &= (args.args[2] == 4); break; case 2: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 5); passed &= (args.args[1] == 6); break; case 3: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 9); break; case 4: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == 10); passed &= (args.args[1] == 11); passed &= (args.args[2] == 12); break; case 5: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 13); passed &= (args.args[1] == 14); break; case 6: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 15); break; default: passed = false; } selftest(passed, "index %i - data error on node %s rc=%i\n", i, args.np->full_name, rc); } of_node_put(np); } static const struct of_device_id match_node_table[] = { { .data = "A", .name = "name0", }, /* Name alone is lowest priority */ { .data = "B", .type = "type1", }, /* followed by type alone */ { .data = "Ca", .name = "name2", .type = "type1", }, /* followed by both together */ { .data = "Cb", .name = "name2", }, /* Only match when type doesn't match */ { .data = "Cc", .name = "name2", .type = "type2", }, { .data = "E", .compatible = "compat3" }, { .data = "G", .compatible = "compat2", }, { .data = "H", .compatible = "compat2", .name = "name5", }, { .data = "I", .compatible = "compat2", .type = "type1", }, { .data = "J", .compatible = "compat2", .type = "type1", .name = "name8", }, { .data = "K", .compatible = "compat2", .name = "name9", }, {} }; static struct { const char *path; const char *data; } match_node_tests[] = { { .path = "/testcase-data/match-node/name0", .data = "A", }, { .path = "/testcase-data/match-node/name1", .data = "B", }, { .path = "/testcase-data/match-node/a/name2", .data = "Ca", }, { .path = "/testcase-data/match-node/b/name2", .data = "Cb", }, { .path = "/testcase-data/match-node/c/name2", .data = "Cc", }, { .path = "/testcase-data/match-node/name3", .data = "E", }, { .path = "/testcase-data/match-node/name4", .data = "G", }, { .path = "/testcase-data/match-node/name5", .data = "H", }, { .path = "/testcase-data/match-node/name6", .data = "G", }, { .path = "/testcase-data/match-node/name7", .data = "I", }, { .path = "/testcase-data/match-node/name8", .data = "J", }, { .path = "/testcase-data/match-node/name9", .data = "K", }, }; static void __init of_selftest_match_node(void) { struct device_node *np; const struct of_device_id *match; int i; for (i = 0; i < ARRAY_SIZE(match_node_tests); i++) { np = of_find_node_by_path(match_node_tests[i].path); if (!np) { selftest(0, "missing testcase node %s\n", match_node_tests[i].path); continue; } match = of_match_node(match_node_table, np); if (!match) { selftest(0, "%s didn't match anything\n", match_node_tests[i].path); continue; } if (strcmp(match->data, match_node_tests[i].data) != 0) { selftest(0, "%s got wrong match. expected %s, got %s\n", match_node_tests[i].path, match_node_tests[i].data, (const char *)match->data); continue; } selftest(1, "passed"); } } struct device test_bus = { .init_name = "unittest-bus", }; static void __init of_selftest_platform_populate(void) { int irq, rc; struct device_node *np, *child, *grandchild; struct platform_device *pdev; const struct of_device_id match[] = { { .compatible = "test-device", }, {} }; np = of_find_node_by_path("/testcase-data"); of_platform_populate(np, of_default_bus_match_table, NULL, NULL); /* Test that a missing irq domain returns -EPROBE_DEFER */ np = of_find_node_by_path("/testcase-data/testcase-device1"); pdev = of_find_device_by_node(np); selftest(pdev, "device 1 creation failed\n"); irq = platform_get_irq(pdev, 0); selftest(irq == -EPROBE_DEFER, "device deferred probe failed - %d\n", irq); /* Test that a parsing failure does not return -EPROBE_DEFER */ np = of_find_node_by_path("/testcase-data/testcase-device2"); pdev = of_find_device_by_node(np); selftest(pdev, "device 2 creation failed\n"); irq = platform_get_irq(pdev, 0); selftest(irq < 0 && irq != -EPROBE_DEFER, "device parsing error failed - %d\n", irq); if (selftest(np = of_find_node_by_path("/testcase-data/platform-tests"), "No testcase data in device tree\n")); return; if (selftest(!(rc = device_register(&test_bus)), "testbus registration failed; rc=%i\n", rc)); return; for_each_child_of_node(np, child) { of_platform_populate(child, match, NULL, &test_bus); for_each_child_of_node(child, grandchild) selftest(of_find_device_by_node(grandchild), "Could not create device for node '%s'\n", grandchild->name); } of_platform_depopulate(&test_bus); for_each_child_of_node(np, child) { for_each_child_of_node(child, grandchild) selftest(!of_find_device_by_node(grandchild), "device didn't get destroyed '%s'\n", grandchild->name); } device_unregister(&test_bus); of_node_put(np); } /** * update_node_properties - adds the properties * of np into dup node (present in live tree) and * updates parent of children of np to dup. * * @np: node already present in live tree * @dup: node present in live tree to be updated */ static void update_node_properties(struct device_node *np, struct device_node *dup) { struct property *prop; struct device_node *child; for_each_property_of_node(np, prop) of_add_property(dup, prop); for_each_child_of_node(np, child) child->parent = dup; } /** * attach_node_and_children - attaches nodes * and its children to live tree * * @np: Node to attach to live tree */ static int attach_node_and_children(struct device_node *np) { struct device_node *next, *dup, *child; unsigned long flags; dup = of_find_node_by_path(np->full_name); if (dup) { update_node_properties(np, dup); return 0; } child = np->child; np->child = NULL; mutex_lock(&of_mutex); raw_spin_lock_irqsave(&devtree_lock, flags); np->sibling = np->parent->child; np->parent->child = np; of_node_clear_flag(np, OF_DETACHED); raw_spin_unlock_irqrestore(&devtree_lock, flags); __of_attach_node_sysfs(np); mutex_unlock(&of_mutex); while (child) { next = child->sibling; attach_node_and_children(child); child = next; } return 0; } /** * selftest_data_add - Reads, copies data from * linked tree and attaches it to the live tree */ static int __init selftest_data_add(void) { void *selftest_data; struct device_node *selftest_data_node, *np; /* * __dtb_testcases_begin[] and __dtb_testcases_end[] are magically * created by cmd_dt_S_dtb in scripts/Makefile.lib */ extern uint8_t __dtb_testcases_begin[]; extern uint8_t __dtb_testcases_end[]; const int size = __dtb_testcases_end - __dtb_testcases_begin; int rc; if (!size) { pr_warn("%s: No testcase data to attach; not running tests\n", __func__); return -ENODATA; } /* creating copy */ selftest_data = kmemdup(__dtb_testcases_begin, size, GFP_KERNEL); if (!selftest_data) { pr_warn("%s: Failed to allocate memory for selftest_data; " "not running tests\n", __func__); return -ENOMEM; } of_fdt_unflatten_tree(selftest_data, &selftest_data_node); if (!selftest_data_node) { pr_warn("%s: No tree to attach; not running tests\n", __func__); return -ENODATA; } of_node_set_flag(selftest_data_node, OF_DETACHED); rc = of_resolve_phandles(selftest_data_node); if (rc) { pr_err("%s: Failed to resolve phandles (rc=%i)\n", __func__, rc); return -EINVAL; } if (!of_root) { of_root = selftest_data_node; for_each_of_allnodes(np) __of_attach_node_sysfs(np); of_aliases = of_find_node_by_path("/aliases"); of_chosen = of_find_node_by_path("/chosen"); return 0; } /* attach the sub-tree to live tree */ np = selftest_data_node->child; while (np) { struct device_node *next = np->sibling; np->parent = of_root; attach_node_and_children(np); np = next; } return 0; } #ifdef CONFIG_OF_OVERLAY static int selftest_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; if (np == NULL) { dev_err(dev, "No OF data for device\n"); return -EINVAL; } dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); of_platform_populate(np, NULL, NULL, &pdev->dev); return 0; } static int selftest_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); return 0; } static const struct of_device_id selftest_match[] = { { .compatible = "selftest", }, {}, }; static struct platform_driver selftest_driver = { .probe = selftest_probe, .remove = selftest_remove, .driver = { .name = "selftest", .owner = THIS_MODULE, .of_match_table = of_match_ptr(selftest_match), }, }; /* get the platform device instantiated at the path */ static struct platform_device *of_path_to_platform_device(const char *path) { struct device_node *np; struct platform_device *pdev; np = of_find_node_by_path(path); if (np == NULL) return NULL; pdev = of_find_device_by_node(np); of_node_put(np); return pdev; } /* find out if a platform device exists at that path */ static int of_path_platform_device_exists(const char *path) { struct platform_device *pdev; pdev = of_path_to_platform_device(path); platform_device_put(pdev); return pdev != NULL; } #if IS_BUILTIN(CONFIG_I2C) /* get the i2c client device instantiated at the path */ static struct i2c_client *of_path_to_i2c_client(const char *path) { struct device_node *np; struct i2c_client *client; np = of_find_node_by_path(path); if (np == NULL) return NULL; client = of_find_i2c_device_by_node(np); of_node_put(np); return client; } /* find out if a i2c client device exists at that path */ static int of_path_i2c_client_exists(const char *path) { struct i2c_client *client; client = of_path_to_i2c_client(path); if (client) put_device(&client->dev); return client != NULL; } #else static int of_path_i2c_client_exists(const char *path) { return 0; } #endif enum overlay_type { PDEV_OVERLAY, I2C_OVERLAY }; static int of_path_device_type_exists(const char *path, enum overlay_type ovtype) { switch (ovtype) { case PDEV_OVERLAY: return of_path_platform_device_exists(path); case I2C_OVERLAY: return of_path_i2c_client_exists(path); } return 0; } static const char *selftest_path(int nr, enum overlay_type ovtype) { const char *base; static char buf[256]; switch (ovtype) { case PDEV_OVERLAY: base = "/testcase-data/overlay-node/test-bus"; break; case I2C_OVERLAY: base = "/testcase-data/overlay-node/test-bus/i2c-test-bus"; break; default: buf[0] = '\0'; return buf; } snprintf(buf, sizeof(buf) - 1, "%s/test-selftest%d", base, nr); buf[sizeof(buf) - 1] = '\0'; return buf; } static int of_selftest_device_exists(int selftest_nr, enum overlay_type ovtype) { const char *path; path = selftest_path(selftest_nr, ovtype); switch (ovtype) { case PDEV_OVERLAY: return of_path_platform_device_exists(path); case I2C_OVERLAY: return of_path_i2c_client_exists(path); } return 0; } static const char *overlay_path(int nr) { static char buf[256]; snprintf(buf, sizeof(buf) - 1, "/testcase-data/overlay%d", nr); buf[sizeof(buf) - 1] = '\0'; return buf; } static const char *bus_path = "/testcase-data/overlay-node/test-bus"; static int of_selftest_apply_overlay(int selftest_nr, int overlay_nr, int *overlay_id) { struct device_node *np = NULL; int ret, id = -1; np = of_find_node_by_path(overlay_path(overlay_nr)); if (np == NULL) { selftest(0, "could not find overlay node @\"%s\"\n", overlay_path(overlay_nr)); ret = -EINVAL; goto out; } ret = of_overlay_create(np); if (ret < 0) { selftest(0, "could not create overlay from \"%s\"\n", overlay_path(overlay_nr)); goto out; } id = ret; ret = 0; out: of_node_put(np); if (overlay_id) *overlay_id = id; return ret; } /* apply an overlay while checking before and after states */ static int of_selftest_apply_overlay_check(int overlay_nr, int selftest_nr, int before, int after, enum overlay_type ovtype) { int ret; /* selftest device must not be in before state */ if (of_selftest_device_exists(selftest_nr, ovtype) != before) { selftest(0, "overlay @\"%s\" with device @\"%s\" %s\n", overlay_path(overlay_nr), selftest_path(selftest_nr, ovtype), !before ? "enabled" : "disabled"); return -EINVAL; } ret = of_selftest_apply_overlay(overlay_nr, selftest_nr, NULL); if (ret != 0) { /* of_selftest_apply_overlay already called selftest() */ return ret; } /* selftest device must be to set to after state */ if (of_selftest_device_exists(selftest_nr, ovtype) != after) { selftest(0, "overlay @\"%s\" failed to create @\"%s\" %s\n", overlay_path(overlay_nr), selftest_path(selftest_nr, ovtype), !after ? "enabled" : "disabled"); return -EINVAL; } return 0; } /* apply an overlay and then revert it while checking before, after states */ static int of_selftest_apply_revert_overlay_check(int overlay_nr, int selftest_nr, int before, int after, enum overlay_type ovtype) { int ret, ov_id; /* selftest device must be in before state */ if (of_selftest_device_exists(selftest_nr, ovtype) != before) { selftest(0, "overlay @\"%s\" with device @\"%s\" %s\n", overlay_path(overlay_nr), selftest_path(selftest_nr, ovtype), !before ? "enabled" : "disabled"); return -EINVAL; } /* apply the overlay */ ret = of_selftest_apply_overlay(overlay_nr, selftest_nr, &ov_id); if (ret != 0) { /* of_selftest_apply_overlay already called selftest() */ return ret; } /* selftest device must be in after state */ if (of_selftest_device_exists(selftest_nr, ovtype) != after) { selftest(0, "overlay @\"%s\" failed to create @\"%s\" %s\n", overlay_path(overlay_nr), selftest_path(selftest_nr, ovtype), !after ? "enabled" : "disabled"); return -EINVAL; } ret = of_overlay_destroy(ov_id); if (ret != 0) { selftest(0, "overlay @\"%s\" failed to be destroyed @\"%s\"\n", overlay_path(overlay_nr), selftest_path(selftest_nr, ovtype)); return ret; } /* selftest device must be again in before state */ if (of_selftest_device_exists(selftest_nr, PDEV_OVERLAY) != before) { selftest(0, "overlay @\"%s\" with device @\"%s\" %s\n", overlay_path(overlay_nr), selftest_path(selftest_nr, ovtype), !before ? "enabled" : "disabled"); return -EINVAL; } return 0; } /* test activation of device */ static void of_selftest_overlay_0(void) { int ret; /* device should enable */ ret = of_selftest_apply_overlay_check(0, 0, 0, 1, PDEV_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 0); } /* test deactivation of device */ static void of_selftest_overlay_1(void) { int ret; /* device should disable */ ret = of_selftest_apply_overlay_check(1, 1, 1, 0, PDEV_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 1); } /* test activation of device */ static void of_selftest_overlay_2(void) { int ret; /* device should enable */ ret = of_selftest_apply_overlay_check(2, 2, 0, 1, PDEV_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 2); } /* test deactivation of device */ static void of_selftest_overlay_3(void) { int ret; /* device should disable */ ret = of_selftest_apply_overlay_check(3, 3, 1, 0, PDEV_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 3); } /* test activation of a full device node */ static void of_selftest_overlay_4(void) { int ret; /* device should disable */ ret = of_selftest_apply_overlay_check(4, 4, 0, 1, PDEV_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 4); } /* test overlay apply/revert sequence */ static void of_selftest_overlay_5(void) { int ret; /* device should disable */ ret = of_selftest_apply_revert_overlay_check(5, 5, 0, 1, PDEV_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 5); } /* test overlay application in sequence */ static void of_selftest_overlay_6(void) { struct device_node *np; int ret, i, ov_id[2]; int overlay_nr = 6, selftest_nr = 6; int before = 0, after = 1; /* selftest device must be in before state */ for (i = 0; i < 2; i++) { if (of_selftest_device_exists(selftest_nr + i, PDEV_OVERLAY) != before) { selftest(0, "overlay @\"%s\" with device @\"%s\" %s\n", overlay_path(overlay_nr + i), selftest_path(selftest_nr + i, PDEV_OVERLAY), !before ? "enabled" : "disabled"); return; } } /* apply the overlays */ for (i = 0; i < 2; i++) { np = of_find_node_by_path(overlay_path(overlay_nr + i)); if (np == NULL) { selftest(0, "could not find overlay node @\"%s\"\n", overlay_path(overlay_nr + i)); return; } ret = of_overlay_create(np); if (ret < 0) { selftest(0, "could not create overlay from \"%s\"\n", overlay_path(overlay_nr + i)); return; } ov_id[i] = ret; } for (i = 0; i < 2; i++) { /* selftest device must be in after state */ if (of_selftest_device_exists(selftest_nr + i, PDEV_OVERLAY) != after) { selftest(0, "overlay @\"%s\" failed @\"%s\" %s\n", overlay_path(overlay_nr + i), selftest_path(selftest_nr + i, PDEV_OVERLAY), !after ? "enabled" : "disabled"); return; } } for (i = 1; i >= 0; i--) { ret = of_overlay_destroy(ov_id[i]); if (ret != 0) { selftest(0, "overlay @\"%s\" failed destroy @\"%s\"\n", overlay_path(overlay_nr + i), selftest_path(selftest_nr + i, PDEV_OVERLAY)); return; } } for (i = 0; i < 2; i++) { /* selftest device must be again in before state */ if (of_selftest_device_exists(selftest_nr + i, PDEV_OVERLAY) != before) { selftest(0, "overlay @\"%s\" with device @\"%s\" %s\n", overlay_path(overlay_nr + i), selftest_path(selftest_nr + i, PDEV_OVERLAY), !before ? "enabled" : "disabled"); return; } } selftest(1, "overlay test %d passed\n", 6); } /* test overlay application in sequence */ static void of_selftest_overlay_8(void) { struct device_node *np; int ret, i, ov_id[2]; int overlay_nr = 8, selftest_nr = 8; /* we don't care about device state in this test */ /* apply the overlays */ for (i = 0; i < 2; i++) { np = of_find_node_by_path(overlay_path(overlay_nr + i)); if (np == NULL) { selftest(0, "could not find overlay node @\"%s\"\n", overlay_path(overlay_nr + i)); return; } ret = of_overlay_create(np); if (ret < 0) { selftest(0, "could not create overlay from \"%s\"\n", overlay_path(overlay_nr + i)); return; } ov_id[i] = ret; } /* now try to remove first overlay (it should fail) */ ret = of_overlay_destroy(ov_id[0]); if (ret == 0) { selftest(0, "overlay @\"%s\" was destroyed @\"%s\"\n", overlay_path(overlay_nr + 0), selftest_path(selftest_nr, PDEV_OVERLAY)); return; } /* removing them in order should work */ for (i = 1; i >= 0; i--) { ret = of_overlay_destroy(ov_id[i]); if (ret != 0) { selftest(0, "overlay @\"%s\" not destroyed @\"%s\"\n", overlay_path(overlay_nr + i), selftest_path(selftest_nr, PDEV_OVERLAY)); return; } } selftest(1, "overlay test %d passed\n", 8); } /* test insertion of a bus with parent devices */ static void of_selftest_overlay_10(void) { int ret; char *child_path; /* device should disable */ ret = of_selftest_apply_overlay_check(10, 10, 0, 1, PDEV_OVERLAY); if (selftest(ret == 0, "overlay test %d failed; overlay application\n", 10)) return; child_path = kasprintf(GFP_KERNEL, "%s/test-selftest101", selftest_path(10, PDEV_OVERLAY)); if (selftest(child_path, "overlay test %d failed; kasprintf\n", 10)) return; ret = of_path_device_type_exists(child_path, PDEV_OVERLAY); kfree(child_path); if (selftest(ret, "overlay test %d failed; no child device\n", 10)) return; } /* test insertion of a bus with parent devices (and revert) */ static void of_selftest_overlay_11(void) { int ret; /* device should disable */ ret = of_selftest_apply_revert_overlay_check(11, 11, 0, 1, PDEV_OVERLAY); if (selftest(ret == 0, "overlay test %d failed; overlay application\n", 11)) return; } #if IS_BUILTIN(CONFIG_I2C) && IS_ENABLED(CONFIG_OF_OVERLAY) struct selftest_i2c_bus_data { struct platform_device *pdev; struct i2c_adapter adap; }; static int selftest_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct selftest_i2c_bus_data *std = i2c_get_adapdata(adap); (void)std; return num; } static u32 selftest_i2c_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm selftest_i2c_algo = { .master_xfer = selftest_i2c_master_xfer, .functionality = selftest_i2c_functionality, }; static int selftest_i2c_bus_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct selftest_i2c_bus_data *std; struct i2c_adapter *adap; int ret; if (np == NULL) { dev_err(dev, "No OF data for device\n"); return -EINVAL; } dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); std = devm_kzalloc(dev, sizeof(*std), GFP_KERNEL); if (!std) { dev_err(dev, "Failed to allocate selftest i2c data\n"); return -ENOMEM; } /* link them together */ std->pdev = pdev; platform_set_drvdata(pdev, std); adap = &std->adap; i2c_set_adapdata(adap, std); adap->nr = -1; strlcpy(adap->name, pdev->name, sizeof(adap->name)); adap->class = I2C_CLASS_DEPRECATED; adap->algo = &selftest_i2c_algo; adap->dev.parent = dev; adap->dev.of_node = dev->of_node; adap->timeout = 5 * HZ; adap->retries = 3; ret = i2c_add_numbered_adapter(adap); if (ret != 0) { dev_err(dev, "Failed to add I2C adapter\n"); return ret; } return 0; } static int selftest_i2c_bus_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct selftest_i2c_bus_data *std = platform_get_drvdata(pdev); dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); i2c_del_adapter(&std->adap); return 0; } static const struct of_device_id selftest_i2c_bus_match[] = { { .compatible = "selftest-i2c-bus", }, {}, }; static struct platform_driver selftest_i2c_bus_driver = { .probe = selftest_i2c_bus_probe, .remove = selftest_i2c_bus_remove, .driver = { .name = "selftest-i2c-bus", .of_match_table = of_match_ptr(selftest_i2c_bus_match), }, }; static int selftest_i2c_dev_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device_node *np = client->dev.of_node; if (!np) { dev_err(dev, "No OF node\n"); return -EINVAL; } dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); return 0; }; static int selftest_i2c_dev_remove(struct i2c_client *client) { struct device *dev = &client->dev; struct device_node *np = client->dev.of_node; dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); return 0; } static const struct i2c_device_id selftest_i2c_dev_id[] = { { .name = "selftest-i2c-dev" }, { } }; static struct i2c_driver selftest_i2c_dev_driver = { .driver = { .name = "selftest-i2c-dev", .owner = THIS_MODULE, }, .probe = selftest_i2c_dev_probe, .remove = selftest_i2c_dev_remove, .id_table = selftest_i2c_dev_id, }; #if IS_BUILTIN(CONFIG_I2C_MUX) struct selftest_i2c_mux_data { int nchans; struct i2c_adapter *adap[]; }; static int selftest_i2c_mux_select_chan(struct i2c_adapter *adap, void *client, u32 chan) { return 0; } static int selftest_i2c_mux_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret, i, nchans, size; struct device *dev = &client->dev; struct i2c_adapter *adap = to_i2c_adapter(dev->parent); struct device_node *np = client->dev.of_node, *child; struct selftest_i2c_mux_data *stm; u32 reg, max_reg; dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); if (!np) { dev_err(dev, "No OF node\n"); return -EINVAL; } max_reg = (u32)-1; for_each_child_of_node(np, child) { ret = of_property_read_u32(child, "reg", ®); if (ret) continue; if (max_reg == (u32)-1 || reg > max_reg) max_reg = reg; } nchans = max_reg == (u32)-1 ? 0 : max_reg + 1; if (nchans == 0) { dev_err(dev, "No channels\n"); return -EINVAL; } size = offsetof(struct selftest_i2c_mux_data, adap[nchans]); stm = devm_kzalloc(dev, size, GFP_KERNEL); if (!stm) { dev_err(dev, "Out of memory\n"); return -ENOMEM; } stm->nchans = nchans; for (i = 0; i < nchans; i++) { stm->adap[i] = i2c_add_mux_adapter(adap, dev, client, 0, i, 0, selftest_i2c_mux_select_chan, NULL); if (!stm->adap[i]) { dev_err(dev, "Failed to register mux #%d\n", i); for (i--; i >= 0; i--) i2c_del_mux_adapter(stm->adap[i]); return -ENODEV; } } i2c_set_clientdata(client, stm); return 0; }; static int selftest_i2c_mux_remove(struct i2c_client *client) { struct device *dev = &client->dev; struct device_node *np = client->dev.of_node; struct selftest_i2c_mux_data *stm = i2c_get_clientdata(client); int i; dev_dbg(dev, "%s for node @%s\n", __func__, np->full_name); for (i = stm->nchans - 1; i >= 0; i--) i2c_del_mux_adapter(stm->adap[i]); return 0; } static const struct i2c_device_id selftest_i2c_mux_id[] = { { .name = "selftest-i2c-mux" }, { } }; static struct i2c_driver selftest_i2c_mux_driver = { .driver = { .name = "selftest-i2c-mux", .owner = THIS_MODULE, }, .probe = selftest_i2c_mux_probe, .remove = selftest_i2c_mux_remove, .id_table = selftest_i2c_mux_id, }; #endif static int of_selftest_overlay_i2c_init(void) { int ret; ret = i2c_add_driver(&selftest_i2c_dev_driver); if (selftest(ret == 0, "could not register selftest i2c device driver\n")) return ret; ret = platform_driver_register(&selftest_i2c_bus_driver); if (selftest(ret == 0, "could not register selftest i2c bus driver\n")) return ret; #if IS_BUILTIN(CONFIG_I2C_MUX) ret = i2c_add_driver(&selftest_i2c_mux_driver); if (selftest(ret == 0, "could not register selftest i2c mux driver\n")) return ret; #endif return 0; } static void of_selftest_overlay_i2c_cleanup(void) { #if IS_BUILTIN(CONFIG_I2C_MUX) i2c_del_driver(&selftest_i2c_mux_driver); #endif platform_driver_unregister(&selftest_i2c_bus_driver); i2c_del_driver(&selftest_i2c_dev_driver); } static void of_selftest_overlay_i2c_12(void) { int ret; /* device should enable */ ret = of_selftest_apply_overlay_check(12, 12, 0, 1, I2C_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 12); } /* test deactivation of device */ static void of_selftest_overlay_i2c_13(void) { int ret; /* device should disable */ ret = of_selftest_apply_overlay_check(13, 13, 1, 0, I2C_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 13); } /* just check for i2c mux existence */ static void of_selftest_overlay_i2c_14(void) { } static void of_selftest_overlay_i2c_15(void) { int ret; /* device should enable */ ret = of_selftest_apply_overlay_check(16, 15, 0, 1, I2C_OVERLAY); if (ret != 0) return; selftest(1, "overlay test %d passed\n", 15); } #else static inline void of_selftest_overlay_i2c_14(void) { } static inline void of_selftest_overlay_i2c_15(void) { } #endif static void __init of_selftest_overlay(void) { struct device_node *bus_np = NULL; int ret; ret = platform_driver_register(&selftest_driver); if (ret != 0) { selftest(0, "could not register selftest driver\n"); goto out; } bus_np = of_find_node_by_path(bus_path); if (bus_np == NULL) { selftest(0, "could not find bus_path \"%s\"\n", bus_path); goto out; } ret = of_platform_populate(bus_np, of_default_bus_match_table, NULL, NULL); if (ret != 0) { selftest(0, "could not populate bus @ \"%s\"\n", bus_path); goto out; } if (!of_selftest_device_exists(100, PDEV_OVERLAY)) { selftest(0, "could not find selftest0 @ \"%s\"\n", selftest_path(100, PDEV_OVERLAY)); goto out; } if (of_selftest_device_exists(101, PDEV_OVERLAY)) { selftest(0, "selftest1 @ \"%s\" should not exist\n", selftest_path(101, PDEV_OVERLAY)); goto out; } selftest(1, "basic infrastructure of overlays passed"); /* tests in sequence */ of_selftest_overlay_0(); of_selftest_overlay_1(); of_selftest_overlay_2(); of_selftest_overlay_3(); of_selftest_overlay_4(); of_selftest_overlay_5(); of_selftest_overlay_6(); of_selftest_overlay_8(); of_selftest_overlay_10(); of_selftest_overlay_11(); #if IS_BUILTIN(CONFIG_I2C) if (selftest(of_selftest_overlay_i2c_init() == 0, "i2c init failed\n")) goto out; of_selftest_overlay_i2c_12(); of_selftest_overlay_i2c_13(); of_selftest_overlay_i2c_14(); of_selftest_overlay_i2c_15(); of_selftest_overlay_i2c_cleanup(); #endif out: of_node_put(bus_np); } #else static inline void __init of_selftest_overlay(void) { } #endif static int __init of_selftest(void) { struct device_node *np; int res; /* adding data for selftest */ res = selftest_data_add(); if (res) return res; if (!of_aliases) of_aliases = of_find_node_by_path("/aliases"); np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); if (!np) { pr_info("No testcase data in device tree; not running tests\n"); return 0; } of_node_put(np); pr_info("start of selftest - you will see error messages\n"); of_selftest_check_tree_linkage(); of_selftest_check_phandles(); of_selftest_find_node_by_name(); of_selftest_dynamic(); of_selftest_parse_phandle_with_args(); of_selftest_property_string(); of_selftest_property_copy(); of_selftest_changeset(); of_selftest_parse_interrupts(); of_selftest_parse_interrupts_extended(); of_selftest_match_node(); of_selftest_platform_populate(); of_selftest_overlay(); /* Double check linkage after removing testcase data */ of_selftest_check_tree_linkage(); pr_info("end of selftest - %i passed, %i failed\n", selftest_results.passed, selftest_results.failed); return 0; } late_initcall(of_selftest);