/* * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c * * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include /* Define max times to check status register before we give up. */ /* * For everything but full-chip erase; probably could be much smaller, but kept * around for safety for now */ #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) /* * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up * for larger flash */ #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) #define SPI_NOR_MAX_ID_LEN 6 struct flash_info { char *name; /* * This array stores the ID bytes. * The first three bytes are the JEDIC ID. * JEDEC ID zero means "no ID" (mostly older chips). */ u8 id[SPI_NOR_MAX_ID_LEN]; u8 id_len; /* The size listed here is what works with SPINOR_OP_SE, which isn't * necessarily called a "sector" by the vendor. */ unsigned sector_size; u16 n_sectors; u16 page_size; u16 addr_width; u16 flags; #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */ #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */ #define SST_WRITE 0x04 /* use SST byte programming */ #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */ #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */ #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */ #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */ #define USE_FSR 0x80 /* use flag status register */ }; #define JEDEC_MFR(info) ((info)->id[0]) static const struct flash_info *spi_nor_match_id(const char *name); /* * Read the status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_sr(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); if (ret < 0) { pr_err("error %d reading SR\n", (int) ret); return ret; } return val; } /* * Read the flag status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_fsr(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); if (ret < 0) { pr_err("error %d reading FSR\n", ret); return ret; } return val; } /* * Read configuration register, returning its value in the * location. Return the configuration register value. * Returns negative if error occured. */ static int read_cr(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); if (ret < 0) { dev_err(nor->dev, "error %d reading CR\n", ret); return ret; } return val; } /* * Dummy Cycle calculation for different type of read. * It can be used to support more commands with * different dummy cycle requirements. */ static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) { switch (nor->flash_read) { case SPI_NOR_FAST: case SPI_NOR_DUAL: case SPI_NOR_QUAD: return 8; case SPI_NOR_NORMAL: return 0; } return 0; } /* * Write status register 1 byte * Returns negative if error occurred. */ static inline int write_sr(struct spi_nor *nor, u8 val) { nor->cmd_buf[0] = val; return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); } /* * Set write enable latch with Write Enable command. * Returns negative if error occurred. */ static inline int write_enable(struct spi_nor *nor) { return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); } /* * Send write disble instruction to the chip. */ static inline int write_disable(struct spi_nor *nor) { return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); } static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) { return mtd->priv; } /* Enable/disable 4-byte addressing mode. */ static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info, int enable) { int status; bool need_wren = false; u8 cmd; switch (JEDEC_MFR(info)) { case SNOR_MFR_MICRON: /* Some Micron need WREN command; all will accept it */ need_wren = true; case SNOR_MFR_MACRONIX: case SNOR_MFR_WINBOND: if (need_wren) write_enable(nor); cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; status = nor->write_reg(nor, cmd, NULL, 0); if (need_wren) write_disable(nor); return status; default: /* Spansion style */ nor->cmd_buf[0] = enable << 7; return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); } } static inline int spi_nor_sr_ready(struct spi_nor *nor) { int sr = read_sr(nor); if (sr < 0) return sr; else return !(sr & SR_WIP); } static inline int spi_nor_fsr_ready(struct spi_nor *nor) { int fsr = read_fsr(nor); if (fsr < 0) return fsr; else return fsr & FSR_READY; } static int spi_nor_ready(struct spi_nor *nor) { int sr, fsr; sr = spi_nor_sr_ready(nor); if (sr < 0) return sr; fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; if (fsr < 0) return fsr; return sr && fsr; } /* * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */ static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, unsigned long timeout_jiffies) { unsigned long deadline; int timeout = 0, ret; deadline = jiffies + timeout_jiffies; while (!timeout) { if (time_after_eq(jiffies, deadline)) timeout = 1; ret = spi_nor_ready(nor); if (ret < 0) return ret; if (ret) return 0; cond_resched(); } dev_err(nor->dev, "flash operation timed out\n"); return -ETIMEDOUT; } static int spi_nor_wait_till_ready(struct spi_nor *nor) { return spi_nor_wait_till_ready_with_timeout(nor, DEFAULT_READY_WAIT_JIFFIES); } /* * Erase the whole flash memory * * Returns 0 if successful, non-zero otherwise. */ static int erase_chip(struct spi_nor *nor) { dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0); } static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) { int ret = 0; mutex_lock(&nor->lock); if (nor->prepare) { ret = nor->prepare(nor, ops); if (ret) { dev_err(nor->dev, "failed in the preparation.\n"); mutex_unlock(&nor->lock); return ret; } } return ret; } static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) { if (nor->unprepare) nor->unprepare(nor, ops); mutex_unlock(&nor->lock); } /* * Erase an address range on the nor chip. The address range may extend * one or more erase sectors. Return an error is there is a problem erasing. */ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) { struct spi_nor *nor = mtd_to_spi_nor(mtd); u32 addr, len; uint32_t rem; int ret; dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, (long long)instr->len); div_u64_rem(instr->len, mtd->erasesize, &rem); if (rem) return -EINVAL; addr = instr->addr; len = instr->len; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); if (ret) return ret; /* whole-chip erase? */ if (len == mtd->size) { unsigned long timeout; write_enable(nor); if (erase_chip(nor)) { ret = -EIO; goto erase_err; } /* * Scale the timeout linearly with the size of the flash, with * a minimum calibrated to an old 2MB flash. We could try to * pull these from CFI/SFDP, but these values should be good * enough for now. */ timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, CHIP_ERASE_2MB_READY_WAIT_JIFFIES * (unsigned long)(mtd->size / SZ_2M)); ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); if (ret) goto erase_err; /* REVISIT in some cases we could speed up erasing large regions * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up * to use "small sector erase", but that's not always optimal. */ /* "sector"-at-a-time erase */ } else { while (len) { write_enable(nor); if (nor->erase(nor, addr)) { ret = -EIO; goto erase_err; } addr += mtd->erasesize; len -= mtd->erasesize; ret = spi_nor_wait_till_ready(nor); if (ret) goto erase_err; } } write_disable(nor); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return ret; erase_err: spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); instr->state = MTD_ERASE_FAILED; return ret; } static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, uint64_t *len) { struct mtd_info *mtd = &nor->mtd; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; int shift = ffs(mask) - 1; int pow; if (!(sr & mask)) { /* No protection */ *ofs = 0; *len = 0; } else { pow = ((sr & mask) ^ mask) >> shift; *len = mtd->size >> pow; *ofs = mtd->size - *len; } } /* * Return 1 if the entire region is locked, 0 otherwise */ static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, u8 sr) { loff_t lock_offs; uint64_t lock_len; stm_get_locked_range(nor, sr, &lock_offs, &lock_len); return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); } /* * Lock a region of the flash. Compatible with ST Micro and similar flash. * Supports only the block protection bits BP{0,1,2} in the status register * (SR). Does not support these features found in newer SR bitfields: * - TB: top/bottom protect - only handle TB=0 (top protect) * - SEC: sector/block protect - only handle SEC=0 (block protect) * - CMP: complement protect - only support CMP=0 (range is not complemented) * * Sample table portion for 8MB flash (Winbond w25q64fw): * * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion * -------------------------------------------------------------------------- * X | X | 0 | 0 | 0 | NONE | NONE * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 * X | X | 1 | 1 | 1 | 8 MB | ALL * * Returns negative on errors, 0 on success. */ static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) { struct mtd_info *mtd = &nor->mtd; u8 status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; status_old = read_sr(nor); /* SPI NOR always locks to the end */ if (ofs + len != mtd->size) { /* Does combined region extend to end? */ if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len, status_old)) return -EINVAL; len = mtd->size - ofs; } /* * Need smallest pow such that: * * 1 / (2^pow) <= (len / size) * * so (assuming power-of-2 size) we do: * * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) */ pow = ilog2(mtd->size) - ilog2(len); val = mask - (pow << shift); if (val & ~mask) return -EINVAL; /* Don't "lock" with no region! */ if (!(val & mask)) return -EINVAL; status_new = (status_old & ~mask) | val; /* Only modify protection if it will not unlock other areas */ if ((status_new & mask) <= (status_old & mask)) return -EINVAL; write_enable(nor); return write_sr(nor, status_new); } /* * Unlock a region of the flash. See stm_lock() for more info * * Returns negative on errors, 0 on success. */ static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) { struct mtd_info *mtd = &nor->mtd; uint8_t status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; status_old = read_sr(nor); /* Cannot unlock; would unlock larger region than requested */ if (stm_is_locked_sr(nor, status_old, ofs - mtd->erasesize, mtd->erasesize)) return -EINVAL; /* * Need largest pow such that: * * 1 / (2^pow) >= (len / size) * * so (assuming power-of-2 size) we do: * * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) */ pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len)); if (ofs + len == mtd->size) { val = 0; /* fully unlocked */ } else { val = mask - (pow << shift); /* Some power-of-two sizes are not supported */ if (val & ~mask) return -EINVAL; } status_new = (status_old & ~mask) | val; /* Only modify protection if it will not lock other areas */ if ((status_new & mask) >= (status_old & mask)) return -EINVAL; write_enable(nor); return write_sr(nor, status_new); } /* * Check if a region of the flash is (completely) locked. See stm_lock() for * more info. * * Returns 1 if entire region is locked, 0 if any portion is unlocked, and * negative on errors. */ static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) { int status; status = read_sr(nor); if (status < 0) return status; return stm_is_locked_sr(nor, ofs, len, status); } static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); if (ret) return ret; ret = nor->flash_lock(nor, ofs, len); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); return ret; } static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); if (ret) return ret; ret = nor->flash_unlock(nor, ofs, len); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); return ret; } static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); if (ret) return ret; ret = nor->flash_is_locked(nor, ofs, len); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); return ret; } /* Used when the "_ext_id" is two bytes at most */ #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ .id = { \ ((_jedec_id) >> 16) & 0xff, \ ((_jedec_id) >> 8) & 0xff, \ (_jedec_id) & 0xff, \ ((_ext_id) >> 8) & 0xff, \ (_ext_id) & 0xff, \ }, \ .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ .flags = (_flags), #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ .id = { \ ((_jedec_id) >> 16) & 0xff, \ ((_jedec_id) >> 8) & 0xff, \ (_jedec_id) & 0xff, \ ((_ext_id) >> 16) & 0xff, \ ((_ext_id) >> 8) & 0xff, \ (_ext_id) & 0xff, \ }, \ .id_len = 6, \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ .flags = (_flags), #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = (_page_size), \ .addr_width = (_addr_width), \ .flags = (_flags), /* NOTE: double check command sets and memory organization when you add * more nor chips. This current list focusses on newer chips, which * have been converging on command sets which including JEDEC ID. * * All newly added entries should describe *hardware* and should use SECT_4K * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage * scenarios excluding small sectors there is config option that can be * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS. * For historical (and compatibility) reasons (before we got above config) some * old entries may be missing 4K flag. */ static const struct flash_info spi_nor_ids[] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, /* EON -- en25xxx */ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) }, /* ESMT */ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, /* Everspin */ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, /* Fujitsu */ { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) }, /* GigaDevice */ { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) }, { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) }, { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) }, /* Intel/Numonyx -- xxxs33b */ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, /* ISSI */ { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) }, /* Macronix */ { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) }, { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) }, { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, /* Micron */ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) }, { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, /* PMC */ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, /* Spansion -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) }, { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) }, { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) }, /* SST -- large erase sizes are "overlays", "sectors" are 4K */ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) }, { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) }, { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, /* ST Microelectronics -- newer production may have feature updates */ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) }, /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) }, { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, /* Catalyst / On Semiconductor -- non-JEDEC */ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, { }, }; static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) { int tmp; u8 id[SPI_NOR_MAX_ID_LEN]; const struct flash_info *info; tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); if (tmp < 0) { dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp); return ERR_PTR(tmp); } for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { info = &spi_nor_ids[tmp]; if (info->id_len) { if (!memcmp(info->id, id, info->id_len)) return &spi_nor_ids[tmp]; } } dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n", id[0], id[1], id[2]); return ERR_PTR(-ENODEV); } static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); if (ret) return ret; ret = nor->read(nor, from, len, retlen, buf); spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); return ret; } static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); size_t actual; int ret; dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); if (ret) return ret; write_enable(nor); nor->sst_write_second = false; actual = to % 2; /* Start write from odd address. */ if (actual) { nor->program_opcode = SPINOR_OP_BP; /* write one byte. */ nor->write(nor, to, 1, retlen, buf); ret = spi_nor_wait_till_ready(nor); if (ret) goto time_out; } to += actual; /* Write out most of the data here. */ for (; actual < len - 1; actual += 2) { nor->program_opcode = SPINOR_OP_AAI_WP; /* write two bytes. */ nor->write(nor, to, 2, retlen, buf + actual); ret = spi_nor_wait_till_ready(nor); if (ret) goto time_out; to += 2; nor->sst_write_second = true; } nor->sst_write_second = false; write_disable(nor); ret = spi_nor_wait_till_ready(nor); if (ret) goto time_out; /* Write out trailing byte if it exists. */ if (actual != len) { write_enable(nor); nor->program_opcode = SPINOR_OP_BP; nor->write(nor, to, 1, retlen, buf + actual); ret = spi_nor_wait_till_ready(nor); if (ret) goto time_out; write_disable(nor); } time_out: spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); return ret; } /* * Write an address range to the nor chip. Data must be written in * FLASH_PAGESIZE chunks. The address range may be any size provided * it is within the physical boundaries. */ static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); u32 page_offset, page_size, i; int ret; dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); if (ret) return ret; write_enable(nor); page_offset = to & (nor->page_size - 1); /* do all the bytes fit onto one page? */ if (page_offset + len <= nor->page_size) { nor->write(nor, to, len, retlen, buf); } else { /* the size of data remaining on the first page */ page_size = nor->page_size - page_offset; nor->write(nor, to, page_size, retlen, buf); /* write everything in nor->page_size chunks */ for (i = page_size; i < len; i += page_size) { page_size = len - i; if (page_size > nor->page_size) page_size = nor->page_size; ret = spi_nor_wait_till_ready(nor); if (ret) goto write_err; write_enable(nor); nor->write(nor, to + i, page_size, retlen, buf + i); } } ret = spi_nor_wait_till_ready(nor); write_err: spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); return ret; } static int macronix_quad_enable(struct spi_nor *nor) { int ret, val; val = read_sr(nor); write_enable(nor); write_sr(nor, val | SR_QUAD_EN_MX); if (spi_nor_wait_till_ready(nor)) return 1; ret = read_sr(nor); if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { dev_err(nor->dev, "Macronix Quad bit not set\n"); return -EINVAL; } return 0; } /* * Write status Register and configuration register with 2 bytes * The first byte will be written to the status register, while the * second byte will be written to the configuration register. * Return negative if error occured. */ static int write_sr_cr(struct spi_nor *nor, u16 val) { nor->cmd_buf[0] = val & 0xff; nor->cmd_buf[1] = (val >> 8); return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2); } static int spansion_quad_enable(struct spi_nor *nor) { int ret; int quad_en = CR_QUAD_EN_SPAN << 8; write_enable(nor); ret = write_sr_cr(nor, quad_en); if (ret < 0) { dev_err(nor->dev, "error while writing configuration register\n"); return -EINVAL; } /* read back and check it */ ret = read_cr(nor); if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { dev_err(nor->dev, "Spansion Quad bit not set\n"); return -EINVAL; } return 0; } static int micron_quad_enable(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1); if (ret < 0) { dev_err(nor->dev, "error %d reading EVCR\n", ret); return ret; } write_enable(nor); /* set EVCR, enable quad I/O */ nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON; ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1); if (ret < 0) { dev_err(nor->dev, "error while writing EVCR register\n"); return ret; } ret = spi_nor_wait_till_ready(nor); if (ret) return ret; /* read EVCR and check it */ ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1); if (ret < 0) { dev_err(nor->dev, "error %d reading EVCR\n", ret); return ret; } if (val & EVCR_QUAD_EN_MICRON) { dev_err(nor->dev, "Micron EVCR Quad bit not clear\n"); return -EINVAL; } return 0; } static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info) { int status; switch (JEDEC_MFR(info)) { case SNOR_MFR_MACRONIX: status = macronix_quad_enable(nor); if (status) { dev_err(nor->dev, "Macronix quad-read not enabled\n"); return -EINVAL; } return status; case SNOR_MFR_MICRON: status = micron_quad_enable(nor); if (status) { dev_err(nor->dev, "Micron quad-read not enabled\n"); return -EINVAL; } return status; default: status = spansion_quad_enable(nor); if (status) { dev_err(nor->dev, "Spansion quad-read not enabled\n"); return -EINVAL; } return status; } } static int spi_nor_check(struct spi_nor *nor) { if (!nor->dev || !nor->read || !nor->write || !nor->read_reg || !nor->write_reg || !nor->erase) { pr_err("spi-nor: please fill all the necessary fields!\n"); return -EINVAL; } return 0; } int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) { const struct flash_info *info = NULL; struct device *dev = nor->dev; struct mtd_info *mtd = &nor->mtd; struct device_node *np = nor->flash_node; int ret; int i; ret = spi_nor_check(nor); if (ret) return ret; if (name) info = spi_nor_match_id(name); /* Try to auto-detect if chip name wasn't specified or not found */ if (!info) info = spi_nor_read_id(nor); if (IS_ERR_OR_NULL(info)) return -ENOENT; /* * If caller has specified name of flash model that can normally be * detected using JEDEC, let's verify it. */ if (name && info->id_len) { const struct flash_info *jinfo; jinfo = spi_nor_read_id(nor); if (IS_ERR(jinfo)) { return PTR_ERR(jinfo); } else if (jinfo != info) { /* * JEDEC knows better, so overwrite platform ID. We * can't trust partitions any longer, but we'll let * mtd apply them anyway, since some partitions may be * marked read-only, and we don't want to lose that * information, even if it's not 100% accurate. */ dev_warn(dev, "found %s, expected %s\n", jinfo->name, info->name); info = jinfo; } } mutex_init(&nor->lock); /* * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up * with the software protection bits set */ if (JEDEC_MFR(info) == SNOR_MFR_ATMEL || JEDEC_MFR(info) == SNOR_MFR_INTEL || JEDEC_MFR(info) == SNOR_MFR_SST || JEDEC_MFR(info) == SNOR_MFR_WINBOND) { write_enable(nor); write_sr(nor, 0); } if (!mtd->name) mtd->name = dev_name(dev); mtd->priv = nor; mtd->type = MTD_NORFLASH; mtd->writesize = 1; mtd->flags = MTD_CAP_NORFLASH; mtd->size = info->sector_size * info->n_sectors; mtd->_erase = spi_nor_erase; mtd->_read = spi_nor_read; /* NOR protection support for STmicro/Micron chips and similar */ if (JEDEC_MFR(info) == SNOR_MFR_MICRON || JEDEC_MFR(info) == SNOR_MFR_WINBOND) { nor->flash_lock = stm_lock; nor->flash_unlock = stm_unlock; nor->flash_is_locked = stm_is_locked; } if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) { mtd->_lock = spi_nor_lock; mtd->_unlock = spi_nor_unlock; mtd->_is_locked = spi_nor_is_locked; } /* sst nor chips use AAI word program */ if (info->flags & SST_WRITE) mtd->_write = sst_write; else mtd->_write = spi_nor_write; if (info->flags & USE_FSR) nor->flags |= SNOR_F_USE_FSR; #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS /* prefer "small sector" erase if possible */ if (info->flags & SECT_4K) { nor->erase_opcode = SPINOR_OP_BE_4K; mtd->erasesize = 4096; } else if (info->flags & SECT_4K_PMC) { nor->erase_opcode = SPINOR_OP_BE_4K_PMC; mtd->erasesize = 4096; } else #endif { nor->erase_opcode = SPINOR_OP_SE; mtd->erasesize = info->sector_size; } if (info->flags & SPI_NOR_NO_ERASE) mtd->flags |= MTD_NO_ERASE; mtd->dev.parent = dev; nor->page_size = info->page_size; mtd->writebufsize = nor->page_size; if (np) { /* If we were instantiated by DT, use it */ if (of_property_read_bool(np, "m25p,fast-read")) nor->flash_read = SPI_NOR_FAST; else nor->flash_read = SPI_NOR_NORMAL; } else { /* If we weren't instantiated by DT, default to fast-read */ nor->flash_read = SPI_NOR_FAST; } /* Some devices cannot do fast-read, no matter what DT tells us */ if (info->flags & SPI_NOR_NO_FR) nor->flash_read = SPI_NOR_NORMAL; /* Quad/Dual-read mode takes precedence over fast/normal */ if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) { ret = set_quad_mode(nor, info); if (ret) { dev_err(dev, "quad mode not supported\n"); return ret; } nor->flash_read = SPI_NOR_QUAD; } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) { nor->flash_read = SPI_NOR_DUAL; } /* Default commands */ switch (nor->flash_read) { case SPI_NOR_QUAD: nor->read_opcode = SPINOR_OP_READ_1_1_4; break; case SPI_NOR_DUAL: nor->read_opcode = SPINOR_OP_READ_1_1_2; break; case SPI_NOR_FAST: nor->read_opcode = SPINOR_OP_READ_FAST; break; case SPI_NOR_NORMAL: nor->read_opcode = SPINOR_OP_READ; break; default: dev_err(dev, "No Read opcode defined\n"); return -EINVAL; } nor->program_opcode = SPINOR_OP_PP; if (info->addr_width) nor->addr_width = info->addr_width; else if (mtd->size > 0x1000000) { /* enable 4-byte addressing if the device exceeds 16MiB */ nor->addr_width = 4; if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) { /* Dedicated 4-byte command set */ switch (nor->flash_read) { case SPI_NOR_QUAD: nor->read_opcode = SPINOR_OP_READ4_1_1_4; break; case SPI_NOR_DUAL: nor->read_opcode = SPINOR_OP_READ4_1_1_2; break; case SPI_NOR_FAST: nor->read_opcode = SPINOR_OP_READ4_FAST; break; case SPI_NOR_NORMAL: nor->read_opcode = SPINOR_OP_READ4; break; } nor->program_opcode = SPINOR_OP_PP_4B; /* No small sector erase for 4-byte command set */ nor->erase_opcode = SPINOR_OP_SE_4B; mtd->erasesize = info->sector_size; } else set_4byte(nor, info, 1); } else { nor->addr_width = 3; } nor->read_dummy = spi_nor_read_dummy_cycles(nor); dev_info(dev, "%s (%lld Kbytes)\n", info->name, (long long)mtd->size >> 10); dev_dbg(dev, "mtd .name = %s, .size = 0x%llx (%lldMiB), " ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); if (mtd->numeraseregions) for (i = 0; i < mtd->numeraseregions; i++) dev_dbg(dev, "mtd.eraseregions[%d] = { .offset = 0x%llx, " ".erasesize = 0x%.8x (%uKiB), " ".numblocks = %d }\n", i, (long long)mtd->eraseregions[i].offset, mtd->eraseregions[i].erasesize, mtd->eraseregions[i].erasesize / 1024, mtd->eraseregions[i].numblocks); return 0; } EXPORT_SYMBOL_GPL(spi_nor_scan); static const struct flash_info *spi_nor_match_id(const char *name) { const struct flash_info *id = spi_nor_ids; while (id->name) { if (!strcmp(name, id->name)) return id; id++; } return NULL; } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Huang Shijie "); MODULE_AUTHOR("Mike Lavender"); MODULE_DESCRIPTION("framework for SPI NOR");