/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * alloc.c * * Extent allocs and frees * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #define MLOG_MASK_PREFIX ML_DISK_ALLOC #include #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "blockcheck.h" #include "dlmglue.h" #include "extent_map.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "suballoc.h" #include "sysfile.h" #include "file.h" #include "super.h" #include "uptodate.h" #include "xattr.h" #include "buffer_head_io.h" /* * Operations for a specific extent tree type. * * To implement an on-disk btree (extent tree) type in ocfs2, add * an ocfs2_extent_tree_operations structure and the matching * ocfs2_init__extent_tree() function. That's pretty much it * for the allocation portion of the extent tree. */ struct ocfs2_extent_tree_operations { /* * last_eb_blk is the block number of the right most leaf extent * block. Most on-disk structures containing an extent tree store * this value for fast access. The ->eo_set_last_eb_blk() and * ->eo_get_last_eb_blk() operations access this value. They are * both required. */ void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, u64 blkno); u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); /* * The on-disk structure usually keeps track of how many total * clusters are stored in this extent tree. This function updates * that value. new_clusters is the delta, and must be * added to the total. Required. */ void (*eo_update_clusters)(struct ocfs2_extent_tree *et, u32 new_clusters); /* * If ->eo_insert_check() exists, it is called before rec is * inserted into the extent tree. It is optional. */ int (*eo_insert_check)(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec); int (*eo_sanity_check)(struct ocfs2_extent_tree *et); /* * -------------------------------------------------------------- * The remaining are internal to ocfs2_extent_tree and don't have * accessor functions */ /* * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. * It is required. */ void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); /* * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if * it exists. If it does not, et->et_max_leaf_clusters is set * to 0 (unlimited). Optional. */ void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); }; /* * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check * in the methods. */ static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno); static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, u32 clusters); static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec); static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, .eo_update_clusters = ocfs2_dinode_update_clusters, .eo_insert_check = ocfs2_dinode_insert_check, .eo_sanity_check = ocfs2_dinode_sanity_check, .eo_fill_root_el = ocfs2_dinode_fill_root_el, }; static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_dinode *di = et->et_object; BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); di->i_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_dinode *di = et->et_object; BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); return le64_to_cpu(di->i_last_eb_blk); } static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); struct ocfs2_dinode *di = et->et_object; le32_add_cpu(&di->i_clusters, clusters); spin_lock(&oi->ip_lock); oi->ip_clusters = le32_to_cpu(di->i_clusters); spin_unlock(&oi->ip_lock); } static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec) { struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), "Device %s, asking for sparse allocation: inode %llu, " "cpos %u, clusters %u\n", osb->dev_str, (unsigned long long)oi->ip_blkno, rec->e_cpos, oi->ip_clusters); return 0; } static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) { struct ocfs2_dinode *di = et->et_object; BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); BUG_ON(!OCFS2_IS_VALID_DINODE(di)); return 0; } static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_dinode *di = et->et_object; et->et_root_el = &di->id2.i_list; } static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_value_buf *vb = et->et_object; et->et_root_el = &vb->vb_xv->xr_list; } static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_xattr_value_buf *vb = et->et_object; vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_value_buf *vb = et->et_object; return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); } static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_xattr_value_buf *vb = et->et_object; le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); } static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, .eo_update_clusters = ocfs2_xattr_value_update_clusters, .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, }; static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_block *xb = et->et_object; et->et_root_el = &xb->xb_attrs.xb_root.xt_list; } static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) { struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); et->et_max_leaf_clusters = ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); } static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_xattr_block *xb = et->et_object; struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; xt->xt_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_xattr_block *xb = et->et_object; struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; return le64_to_cpu(xt->xt_last_eb_blk); } static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_xattr_block *xb = et->et_object; le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); } static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, .eo_update_clusters = ocfs2_xattr_tree_update_clusters, .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, }; static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 blkno) { struct ocfs2_dx_root_block *dx_root = et->et_object; dx_root->dr_last_eb_blk = cpu_to_le64(blkno); } static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) { struct ocfs2_dx_root_block *dx_root = et->et_object; return le64_to_cpu(dx_root->dr_last_eb_blk); } static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { struct ocfs2_dx_root_block *dx_root = et->et_object; le32_add_cpu(&dx_root->dr_clusters, clusters); } static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) { struct ocfs2_dx_root_block *dx_root = et->et_object; BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); return 0; } static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) { struct ocfs2_dx_root_block *dx_root = et->et_object; et->et_root_el = &dx_root->dr_list; } static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, .eo_update_clusters = ocfs2_dx_root_update_clusters, .eo_sanity_check = ocfs2_dx_root_sanity_check, .eo_fill_root_el = ocfs2_dx_root_fill_root_el, }; static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, struct inode *inode, struct buffer_head *bh, ocfs2_journal_access_func access, void *obj, struct ocfs2_extent_tree_operations *ops) { et->et_ops = ops; et->et_root_bh = bh; et->et_ci = INODE_CACHE(inode); et->et_root_journal_access = access; if (!obj) obj = (void *)bh->b_data; et->et_object = obj; et->et_ops->eo_fill_root_el(et); if (!et->et_ops->eo_fill_max_leaf_clusters) et->et_max_leaf_clusters = 0; else et->et_ops->eo_fill_max_leaf_clusters(et); } void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, struct inode *inode, struct buffer_head *bh) { __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di, NULL, &ocfs2_dinode_et_ops); } void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, struct inode *inode, struct buffer_head *bh) { __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb, NULL, &ocfs2_xattr_tree_et_ops); } void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, struct inode *inode, struct ocfs2_xattr_value_buf *vb) { __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb, &ocfs2_xattr_value_et_ops); } void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, struct inode *inode, struct buffer_head *bh) { __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr, NULL, &ocfs2_dx_root_et_ops); } static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, u64 new_last_eb_blk) { et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); } static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) { return et->et_ops->eo_get_last_eb_blk(et); } static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, u32 clusters) { et->et_ops->eo_update_clusters(et, clusters); } static inline int ocfs2_et_root_journal_access(handle_t *handle, struct ocfs2_extent_tree *et, int type) { return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, type); } static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *rec) { int ret = 0; if (et->et_ops->eo_insert_check) ret = et->et_ops->eo_insert_check(et, rec); return ret; } static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) { int ret = 0; if (et->et_ops->eo_sanity_check) ret = et->et_ops->eo_sanity_check(et); return ret; } static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, struct ocfs2_extent_block *eb); /* * Structures which describe a path through a btree, and functions to * manipulate them. * * The idea here is to be as generic as possible with the tree * manipulation code. */ struct ocfs2_path_item { struct buffer_head *bh; struct ocfs2_extent_list *el; }; #define OCFS2_MAX_PATH_DEPTH 5 struct ocfs2_path { int p_tree_depth; ocfs2_journal_access_func p_root_access; struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; }; #define path_root_bh(_path) ((_path)->p_node[0].bh) #define path_root_el(_path) ((_path)->p_node[0].el) #define path_root_access(_path)((_path)->p_root_access) #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) #define path_num_items(_path) ((_path)->p_tree_depth + 1) static int ocfs2_find_path(struct ocfs2_caching_info *ci, struct ocfs2_path *path, u32 cpos); static void ocfs2_adjust_rightmost_records(struct inode *inode, handle_t *handle, struct ocfs2_path *path, struct ocfs2_extent_rec *insert_rec); /* * Reset the actual path elements so that we can re-use the structure * to build another path. Generally, this involves freeing the buffer * heads. */ static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) { int i, start = 0, depth = 0; struct ocfs2_path_item *node; if (keep_root) start = 1; for(i = start; i < path_num_items(path); i++) { node = &path->p_node[i]; brelse(node->bh); node->bh = NULL; node->el = NULL; } /* * Tree depth may change during truncate, or insert. If we're * keeping the root extent list, then make sure that our path * structure reflects the proper depth. */ if (keep_root) depth = le16_to_cpu(path_root_el(path)->l_tree_depth); else path_root_access(path) = NULL; path->p_tree_depth = depth; } static void ocfs2_free_path(struct ocfs2_path *path) { if (path) { ocfs2_reinit_path(path, 0); kfree(path); } } /* * All the elements of src into dest. After this call, src could be freed * without affecting dest. * * Both paths should have the same root. Any non-root elements of dest * will be freed. */ static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) { int i; BUG_ON(path_root_bh(dest) != path_root_bh(src)); BUG_ON(path_root_el(dest) != path_root_el(src)); BUG_ON(path_root_access(dest) != path_root_access(src)); ocfs2_reinit_path(dest, 1); for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { dest->p_node[i].bh = src->p_node[i].bh; dest->p_node[i].el = src->p_node[i].el; if (dest->p_node[i].bh) get_bh(dest->p_node[i].bh); } } /* * Make the *dest path the same as src and re-initialize src path to * have a root only. */ static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) { int i; BUG_ON(path_root_bh(dest) != path_root_bh(src)); BUG_ON(path_root_access(dest) != path_root_access(src)); for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { brelse(dest->p_node[i].bh); dest->p_node[i].bh = src->p_node[i].bh; dest->p_node[i].el = src->p_node[i].el; src->p_node[i].bh = NULL; src->p_node[i].el = NULL; } } /* * Insert an extent block at given index. * * This will not take an additional reference on eb_bh. */ static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, struct buffer_head *eb_bh) { struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; /* * Right now, no root bh is an extent block, so this helps * catch code errors with dinode trees. The assertion can be * safely removed if we ever need to insert extent block * structures at the root. */ BUG_ON(index == 0); path->p_node[index].bh = eb_bh; path->p_node[index].el = &eb->h_list; } static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, struct ocfs2_extent_list *root_el, ocfs2_journal_access_func access) { struct ocfs2_path *path; BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); path = kzalloc(sizeof(*path), GFP_NOFS); if (path) { path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); get_bh(root_bh); path_root_bh(path) = root_bh; path_root_el(path) = root_el; path_root_access(path) = access; } return path; } static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) { return ocfs2_new_path(path_root_bh(path), path_root_el(path), path_root_access(path)); } static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) { return ocfs2_new_path(et->et_root_bh, et->et_root_el, et->et_root_journal_access); } /* * Journal the buffer at depth idx. All idx>0 are extent_blocks, * otherwise it's the root_access function. * * I don't like the way this function's name looks next to * ocfs2_journal_access_path(), but I don't have a better one. */ static int ocfs2_path_bh_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, struct ocfs2_path *path, int idx) { ocfs2_journal_access_func access = path_root_access(path); if (!access) access = ocfs2_journal_access; if (idx) access = ocfs2_journal_access_eb; return access(handle, ci, path->p_node[idx].bh, OCFS2_JOURNAL_ACCESS_WRITE); } /* * Convenience function to journal all components in a path. */ static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, handle_t *handle, struct ocfs2_path *path) { int i, ret = 0; if (!path) goto out; for(i = 0; i < path_num_items(path); i++) { ret = ocfs2_path_bh_journal_access(handle, ci, path, i); if (ret < 0) { mlog_errno(ret); goto out; } } out: return ret; } /* * Return the index of the extent record which contains cluster #v_cluster. * -1 is returned if it was not found. * * Should work fine on interior and exterior nodes. */ int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) { int ret = -1; int i; struct ocfs2_extent_rec *rec; u32 rec_end, rec_start, clusters; for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { rec = &el->l_recs[i]; rec_start = le32_to_cpu(rec->e_cpos); clusters = ocfs2_rec_clusters(el, rec); rec_end = rec_start + clusters; if (v_cluster >= rec_start && v_cluster < rec_end) { ret = i; break; } } return ret; } enum ocfs2_contig_type { CONTIG_NONE = 0, CONTIG_LEFT, CONTIG_RIGHT, CONTIG_LEFTRIGHT, }; /* * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and * ocfs2_extent_contig only work properly against leaf nodes! */ static int ocfs2_block_extent_contig(struct super_block *sb, struct ocfs2_extent_rec *ext, u64 blkno) { u64 blk_end = le64_to_cpu(ext->e_blkno); blk_end += ocfs2_clusters_to_blocks(sb, le16_to_cpu(ext->e_leaf_clusters)); return blkno == blk_end; } static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, struct ocfs2_extent_rec *right) { u32 left_range; left_range = le32_to_cpu(left->e_cpos) + le16_to_cpu(left->e_leaf_clusters); return (left_range == le32_to_cpu(right->e_cpos)); } static enum ocfs2_contig_type ocfs2_extent_contig(struct inode *inode, struct ocfs2_extent_rec *ext, struct ocfs2_extent_rec *insert_rec) { u64 blkno = le64_to_cpu(insert_rec->e_blkno); /* * Refuse to coalesce extent records with different flag * fields - we don't want to mix unwritten extents with user * data. */ if (ext->e_flags != insert_rec->e_flags) return CONTIG_NONE; if (ocfs2_extents_adjacent(ext, insert_rec) && ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) return CONTIG_RIGHT; blkno = le64_to_cpu(ext->e_blkno); if (ocfs2_extents_adjacent(insert_rec, ext) && ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) return CONTIG_LEFT; return CONTIG_NONE; } /* * NOTE: We can have pretty much any combination of contiguousness and * appending. * * The usefulness of APPEND_TAIL is more in that it lets us know that * we'll have to update the path to that leaf. */ enum ocfs2_append_type { APPEND_NONE = 0, APPEND_TAIL, }; enum ocfs2_split_type { SPLIT_NONE = 0, SPLIT_LEFT, SPLIT_RIGHT, }; struct ocfs2_insert_type { enum ocfs2_split_type ins_split; enum ocfs2_append_type ins_appending; enum ocfs2_contig_type ins_contig; int ins_contig_index; int ins_tree_depth; }; struct ocfs2_merge_ctxt { enum ocfs2_contig_type c_contig_type; int c_has_empty_extent; int c_split_covers_rec; }; static int ocfs2_validate_extent_block(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)bh->b_data; mlog(0, "Validating extent block %llu\n", (unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); if (rc) { mlog(ML_ERROR, "Checksum failed for extent block %llu\n", (unsigned long long)bh->b_blocknr); return rc; } /* * Errors after here are fatal. */ if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { ocfs2_error(sb, "Extent block #%llu has bad signature %.*s", (unsigned long long)bh->b_blocknr, 7, eb->h_signature); return -EINVAL; } if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { ocfs2_error(sb, "Extent block #%llu has an invalid h_blkno " "of %llu", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(eb->h_blkno)); return -EINVAL; } if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { ocfs2_error(sb, "Extent block #%llu has an invalid " "h_fs_generation of #%u", (unsigned long long)bh->b_blocknr, le32_to_cpu(eb->h_fs_generation)); return -EINVAL; } return 0; } int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, struct buffer_head **bh) { int rc; struct buffer_head *tmp = *bh; rc = ocfs2_read_block(ci, eb_blkno, &tmp, ocfs2_validate_extent_block); /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } /* * How many free extents have we got before we need more meta data? */ int ocfs2_num_free_extents(struct ocfs2_super *osb, struct ocfs2_extent_tree *et) { int retval; struct ocfs2_extent_list *el = NULL; struct ocfs2_extent_block *eb; struct buffer_head *eb_bh = NULL; u64 last_eb_blk = 0; mlog_entry_void(); el = et->et_root_el; last_eb_blk = ocfs2_et_get_last_eb_blk(et); if (last_eb_blk) { retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, &eb_bh); if (retval < 0) { mlog_errno(retval); goto bail; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; } BUG_ON(el->l_tree_depth != 0); retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); bail: brelse(eb_bh); mlog_exit(retval); return retval; } /* expects array to already be allocated * * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and * l_count for you */ static int ocfs2_create_new_meta_bhs(handle_t *handle, struct ocfs2_extent_tree *et, int wanted, struct ocfs2_alloc_context *meta_ac, struct buffer_head *bhs[]) { int count, status, i; u16 suballoc_bit_start; u32 num_got; u64 first_blkno; struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); struct ocfs2_extent_block *eb; mlog_entry_void(); count = 0; while (count < wanted) { status = ocfs2_claim_metadata(osb, handle, meta_ac, wanted - count, &suballoc_bit_start, &num_got, &first_blkno); if (status < 0) { mlog_errno(status); goto bail; } for(i = count; i < (num_got + count); i++) { bhs[i] = sb_getblk(osb->sb, first_blkno); if (bhs[i] == NULL) { status = -EIO; mlog_errno(status); goto bail; } ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); status = ocfs2_journal_access_eb(handle, et->et_ci, bhs[i], OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); eb = (struct ocfs2_extent_block *) bhs[i]->b_data; /* Ok, setup the minimal stuff here. */ strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); eb->h_blkno = cpu_to_le64(first_blkno); eb->h_fs_generation = cpu_to_le32(osb->fs_generation); eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); eb->h_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); suballoc_bit_start++; first_blkno++; /* We'll also be dirtied by the caller, so * this isn't absolutely necessary. */ status = ocfs2_journal_dirty(handle, bhs[i]); if (status < 0) { mlog_errno(status); goto bail; } } count += num_got; } status = 0; bail: if (status < 0) { for(i = 0; i < wanted; i++) { brelse(bhs[i]); bhs[i] = NULL; } } mlog_exit(status); return status; } /* * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). * * Returns the sum of the rightmost extent rec logical offset and * cluster count. * * ocfs2_add_branch() uses this to determine what logical cluster * value should be populated into the leftmost new branch records. * * ocfs2_shift_tree_depth() uses this to determine the # clusters * value for the new topmost tree record. */ static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) { int i; i = le16_to_cpu(el->l_next_free_rec) - 1; return le32_to_cpu(el->l_recs[i].e_cpos) + ocfs2_rec_clusters(el, &el->l_recs[i]); } /* * Change range of the branches in the right most path according to the leaf * extent block's rightmost record. */ static int ocfs2_adjust_rightmost_branch(handle_t *handle, struct inode *inode, struct ocfs2_extent_tree *et) { int status; struct ocfs2_path *path = NULL; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; path = ocfs2_new_path_from_et(et); if (!path) { status = -ENOMEM; return status; } status = ocfs2_find_path(et->et_ci, path, UINT_MAX); if (status < 0) { mlog_errno(status); goto out; } status = ocfs2_extend_trans(handle, path_num_items(path) + handle->h_buffer_credits); if (status < 0) { mlog_errno(status); goto out; } status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path); if (status < 0) { mlog_errno(status); goto out; } el = path_leaf_el(path); rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1]; ocfs2_adjust_rightmost_records(inode, handle, path, rec); out: ocfs2_free_path(path); return status; } /* * Add an entire tree branch to our inode. eb_bh is the extent block * to start at, if we don't want to start the branch at the dinode * structure. * * last_eb_bh is required as we have to update it's next_leaf pointer * for the new last extent block. * * the new branch will be 'empty' in the sense that every block will * contain a single record with cluster count == 0. */ static int ocfs2_add_branch(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct ocfs2_extent_tree *et, struct buffer_head *eb_bh, struct buffer_head **last_eb_bh, struct ocfs2_alloc_context *meta_ac) { int status, new_blocks, i; u64 next_blkno, new_last_eb_blk; struct buffer_head *bh; struct buffer_head **new_eb_bhs = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *eb_el; struct ocfs2_extent_list *el; u32 new_cpos, root_end; mlog_entry_void(); BUG_ON(!last_eb_bh || !*last_eb_bh); if (eb_bh) { eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; } else el = et->et_root_el; /* we never add a branch to a leaf. */ BUG_ON(!el->l_tree_depth); new_blocks = le16_to_cpu(el->l_tree_depth); eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); root_end = ocfs2_sum_rightmost_rec(et->et_root_el); /* * If there is a gap before the root end and the real end * of the righmost leaf block, we need to remove the gap * between new_cpos and root_end first so that the tree * is consistent after we add a new branch(it will start * from new_cpos). */ if (root_end > new_cpos) { mlog(0, "adjust the cluster end from %u to %u\n", root_end, new_cpos); status = ocfs2_adjust_rightmost_branch(handle, inode, et); if (status) { mlog_errno(status); goto bail; } } /* allocate the number of new eb blocks we need */ new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), GFP_KERNEL); if (!new_eb_bhs) { status = -ENOMEM; mlog_errno(status); goto bail; } status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, meta_ac, new_eb_bhs); if (status < 0) { mlog_errno(status); goto bail; } /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be * linked with the rest of the tree. * conversly, new_eb_bhs[0] is the new bottommost leaf. * * when we leave the loop, new_last_eb_blk will point to the * newest leaf, and next_blkno will point to the topmost extent * block. */ next_blkno = new_last_eb_blk = 0; for(i = 0; i < new_blocks; i++) { bh = new_eb_bhs[i]; eb = (struct ocfs2_extent_block *) bh->b_data; /* ocfs2_create_new_meta_bhs() should create it right! */ BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); eb_el = &eb->h_list; status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } eb->h_next_leaf_blk = 0; eb_el->l_tree_depth = cpu_to_le16(i); eb_el->l_next_free_rec = cpu_to_le16(1); /* * This actually counts as an empty extent as * c_clusters == 0 */ eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); /* * eb_el isn't always an interior node, but even leaf * nodes want a zero'd flags and reserved field so * this gets the whole 32 bits regardless of use. */ eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); if (!eb_el->l_tree_depth) new_last_eb_blk = le64_to_cpu(eb->h_blkno); status = ocfs2_journal_dirty(handle, bh); if (status < 0) { mlog_errno(status); goto bail; } next_blkno = le64_to_cpu(eb->h_blkno); } /* This is a bit hairy. We want to update up to three blocks * here without leaving any of them in an inconsistent state * in case of error. We don't have to worry about * journal_dirty erroring as it won't unless we've aborted the * handle (in which case we would never be here) so reserving * the write with journal_access is all we need to do. */ status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } if (eb_bh) { status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } } /* Link the new branch into the rest of the tree (el will * either be on the root_bh, or the extent block passed in. */ i = le16_to_cpu(el->l_next_free_rec); el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); el->l_recs[i].e_int_clusters = 0; le16_add_cpu(&el->l_next_free_rec, 1); /* fe needs a new last extent block pointer, as does the * next_leaf on the previously last-extent-block. */ ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); status = ocfs2_journal_dirty(handle, *last_eb_bh); if (status < 0) mlog_errno(status); status = ocfs2_journal_dirty(handle, et->et_root_bh); if (status < 0) mlog_errno(status); if (eb_bh) { status = ocfs2_journal_dirty(handle, eb_bh); if (status < 0) mlog_errno(status); } /* * Some callers want to track the rightmost leaf so pass it * back here. */ brelse(*last_eb_bh); get_bh(new_eb_bhs[0]); *last_eb_bh = new_eb_bhs[0]; status = 0; bail: if (new_eb_bhs) { for (i = 0; i < new_blocks; i++) brelse(new_eb_bhs[i]); kfree(new_eb_bhs); } mlog_exit(status); return status; } /* * adds another level to the allocation tree. * returns back the new extent block so you can add a branch to it * after this call. */ static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct ocfs2_extent_tree *et, struct ocfs2_alloc_context *meta_ac, struct buffer_head **ret_new_eb_bh) { int status, i; u32 new_clusters; struct buffer_head *new_eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *root_el; struct ocfs2_extent_list *eb_el; mlog_entry_void(); status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, &new_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; /* ocfs2_create_new_meta_bhs() should create it right! */ BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); eb_el = &eb->h_list; root_el = et->et_root_el; status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (status < 0) { mlog_errno(status); goto bail; } /* copy the root extent list data into the new extent block */ eb_el->l_tree_depth = root_el->l_tree_depth; eb_el->l_next_free_rec = root_el->l_next_free_rec; for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) eb_el->l_recs[i] = root_el->l_recs[i]; status = ocfs2_journal_dirty(handle, new_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } new_clusters = ocfs2_sum_rightmost_rec(eb_el); /* update root_bh now */ le16_add_cpu(&root_el->l_tree_depth, 1); root_el->l_recs[0].e_cpos = 0; root_el->l_recs[0].e_blkno = eb->h_blkno; root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); root_el->l_next_free_rec = cpu_to_le16(1); /* If this is our 1st tree depth shift, then last_eb_blk * becomes the allocated extent block */ if (root_el->l_tree_depth == cpu_to_le16(1)) ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); status = ocfs2_journal_dirty(handle, et->et_root_bh); if (status < 0) { mlog_errno(status); goto bail; } *ret_new_eb_bh = new_eb_bh; new_eb_bh = NULL; status = 0; bail: brelse(new_eb_bh); mlog_exit(status); return status; } /* * Should only be called when there is no space left in any of the * leaf nodes. What we want to do is find the lowest tree depth * non-leaf extent block with room for new records. There are three * valid results of this search: * * 1) a lowest extent block is found, then we pass it back in * *lowest_eb_bh and return '0' * * 2) the search fails to find anything, but the root_el has room. We * pass NULL back in *lowest_eb_bh, but still return '0' * * 3) the search fails to find anything AND the root_el is full, in * which case we return > 0 * * return status < 0 indicates an error. */ static int ocfs2_find_branch_target(struct ocfs2_super *osb, struct ocfs2_extent_tree *et, struct buffer_head **target_bh) { int status = 0, i; u64 blkno; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *bh = NULL; struct buffer_head *lowest_bh = NULL; mlog_entry_void(); *target_bh = NULL; el = et->et_root_el; while(le16_to_cpu(el->l_tree_depth) > 1) { if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has empty " "extent list (next_free_rec == 0)", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); status = -EIO; goto bail; } i = le16_to_cpu(el->l_next_free_rec) - 1; blkno = le64_to_cpu(el->l_recs[i].e_blkno); if (!blkno) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has extent " "list where extent # %d has no physical " "block start", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); status = -EIO; goto bail; } brelse(bh); bh = NULL; status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; if (le16_to_cpu(el->l_next_free_rec) < le16_to_cpu(el->l_count)) { brelse(lowest_bh); lowest_bh = bh; get_bh(lowest_bh); } } /* If we didn't find one and the fe doesn't have any room, * then return '1' */ el = et->et_root_el; if (!lowest_bh && (el->l_next_free_rec == el->l_count)) status = 1; *target_bh = lowest_bh; bail: brelse(bh); mlog_exit(status); return status; } /* * Grow a b-tree so that it has more records. * * We might shift the tree depth in which case existing paths should * be considered invalid. * * Tree depth after the grow is returned via *final_depth. * * *last_eb_bh will be updated by ocfs2_add_branch(). */ static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, struct ocfs2_extent_tree *et, int *final_depth, struct buffer_head **last_eb_bh, struct ocfs2_alloc_context *meta_ac) { int ret, shift; struct ocfs2_extent_list *el = et->et_root_el; int depth = le16_to_cpu(el->l_tree_depth); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *bh = NULL; BUG_ON(meta_ac == NULL); shift = ocfs2_find_branch_target(osb, et, &bh); if (shift < 0) { ret = shift; mlog_errno(ret); goto out; } /* We traveled all the way to the bottom of the allocation tree * and didn't find room for any more extents - we need to add * another tree level */ if (shift) { BUG_ON(bh); mlog(0, "need to shift tree depth (current = %d)\n", depth); /* ocfs2_shift_tree_depth will return us a buffer with * the new extent block (so we can pass that to * ocfs2_add_branch). */ ret = ocfs2_shift_tree_depth(osb, handle, inode, et, meta_ac, &bh); if (ret < 0) { mlog_errno(ret); goto out; } depth++; if (depth == 1) { /* * Special case: we have room now if we shifted from * tree_depth 0, so no more work needs to be done. * * We won't be calling add_branch, so pass * back *last_eb_bh as the new leaf. At depth * zero, it should always be null so there's * no reason to brelse. */ BUG_ON(*last_eb_bh); get_bh(bh); *last_eb_bh = bh; goto out; } } /* call ocfs2_add_branch to add the final part of the tree with * the new data. */ mlog(0, "add branch. bh = %p\n", bh); ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh, meta_ac); if (ret < 0) { mlog_errno(ret); goto out; } out: if (final_depth) *final_depth = depth; brelse(bh); return ret; } /* * This function will discard the rightmost extent record. */ static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) { int next_free = le16_to_cpu(el->l_next_free_rec); int count = le16_to_cpu(el->l_count); unsigned int num_bytes; BUG_ON(!next_free); /* This will cause us to go off the end of our extent list. */ BUG_ON(next_free >= count); num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); } static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i, insert_index, next_free, has_empty, num_bytes; u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); struct ocfs2_extent_rec *rec; next_free = le16_to_cpu(el->l_next_free_rec); has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); BUG_ON(!next_free); /* The tree code before us didn't allow enough room in the leaf. */ BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); /* * The easiest way to approach this is to just remove the * empty extent and temporarily decrement next_free. */ if (has_empty) { /* * If next_free was 1 (only an empty extent), this * loop won't execute, which is fine. We still want * the decrement above to happen. */ for(i = 0; i < (next_free - 1); i++) el->l_recs[i] = el->l_recs[i+1]; next_free--; } /* * Figure out what the new record index should be. */ for(i = 0; i < next_free; i++) { rec = &el->l_recs[i]; if (insert_cpos < le32_to_cpu(rec->e_cpos)) break; } insert_index = i; mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); BUG_ON(insert_index < 0); BUG_ON(insert_index >= le16_to_cpu(el->l_count)); BUG_ON(insert_index > next_free); /* * No need to memmove if we're just adding to the tail. */ if (insert_index != next_free) { BUG_ON(next_free >= le16_to_cpu(el->l_count)); num_bytes = next_free - insert_index; num_bytes *= sizeof(struct ocfs2_extent_rec); memmove(&el->l_recs[insert_index + 1], &el->l_recs[insert_index], num_bytes); } /* * Either we had an empty extent, and need to re-increment or * there was no empty extent on a non full rightmost leaf node, * in which case we still need to increment. */ next_free++; el->l_next_free_rec = cpu_to_le16(next_free); /* * Make sure none of the math above just messed up our tree. */ BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); el->l_recs[insert_index] = *insert_rec; } static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) { int size, num_recs = le16_to_cpu(el->l_next_free_rec); BUG_ON(num_recs == 0); if (ocfs2_is_empty_extent(&el->l_recs[0])) { num_recs--; size = num_recs * sizeof(struct ocfs2_extent_rec); memmove(&el->l_recs[0], &el->l_recs[1], size); memset(&el->l_recs[num_recs], 0, sizeof(struct ocfs2_extent_rec)); el->l_next_free_rec = cpu_to_le16(num_recs); } } /* * Create an empty extent record . * * l_next_free_rec may be updated. * * If an empty extent already exists do nothing. */ static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) { int next_free = le16_to_cpu(el->l_next_free_rec); BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); if (next_free == 0) goto set_and_inc; if (ocfs2_is_empty_extent(&el->l_recs[0])) return; mlog_bug_on_msg(el->l_count == el->l_next_free_rec, "Asked to create an empty extent in a full list:\n" "count = %u, tree depth = %u", le16_to_cpu(el->l_count), le16_to_cpu(el->l_tree_depth)); ocfs2_shift_records_right(el); set_and_inc: le16_add_cpu(&el->l_next_free_rec, 1); memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); } /* * For a rotation which involves two leaf nodes, the "root node" is * the lowest level tree node which contains a path to both leafs. This * resulting set of information can be used to form a complete "subtree" * * This function is passed two full paths from the dinode down to a * pair of adjacent leaves. It's task is to figure out which path * index contains the subtree root - this can be the root index itself * in a worst-case rotation. * * The array index of the subtree root is passed back. */ static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, struct ocfs2_path *left, struct ocfs2_path *right) { int i = 0; /* * Check that the caller passed in two paths from the same tree. */ BUG_ON(path_root_bh(left) != path_root_bh(right)); do { i++; /* * The caller didn't pass two adjacent paths. */ mlog_bug_on_msg(i > left->p_tree_depth, "Owner %llu, left depth %u, right depth %u\n" "left leaf blk %llu, right leaf blk %llu\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), left->p_tree_depth, right->p_tree_depth, (unsigned long long)path_leaf_bh(left)->b_blocknr, (unsigned long long)path_leaf_bh(right)->b_blocknr); } while (left->p_node[i].bh->b_blocknr == right->p_node[i].bh->b_blocknr); return i - 1; } typedef void (path_insert_t)(void *, struct buffer_head *); /* * Traverse a btree path in search of cpos, starting at root_el. * * This code can be called with a cpos larger than the tree, in which * case it will return the rightmost path. */ static int __ocfs2_find_path(struct ocfs2_caching_info *ci, struct ocfs2_extent_list *root_el, u32 cpos, path_insert_t *func, void *data) { int i, ret = 0; u32 range; u64 blkno; struct buffer_head *bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; el = root_el; while (el->l_tree_depth) { if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(ocfs2_metadata_cache_get_super(ci), "Owner %llu has empty extent list at " "depth %u\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), le16_to_cpu(el->l_tree_depth)); ret = -EROFS; goto out; } for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { rec = &el->l_recs[i]; /* * In the case that cpos is off the allocation * tree, this should just wind up returning the * rightmost record. */ range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) break; } blkno = le64_to_cpu(el->l_recs[i].e_blkno); if (blkno == 0) { ocfs2_error(ocfs2_metadata_cache_get_super(ci), "Owner %llu has bad blkno in extent list " "at depth %u (index %d)\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), le16_to_cpu(el->l_tree_depth), i); ret = -EROFS; goto out; } brelse(bh); bh = NULL; ret = ocfs2_read_extent_block(ci, blkno, &bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; if (le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)) { ocfs2_error(ocfs2_metadata_cache_get_super(ci), "Owner %llu has bad count in extent list " "at block %llu (next free=%u, count=%u)\n", (unsigned long long)ocfs2_metadata_cache_owner(ci), (unsigned long long)bh->b_blocknr, le16_to_cpu(el->l_next_free_rec), le16_to_cpu(el->l_count)); ret = -EROFS; goto out; } if (func) func(data, bh); } out: /* * Catch any trailing bh that the loop didn't handle. */ brelse(bh); return ret; } /* * Given an initialized path (that is, it has a valid root extent * list), this function will traverse the btree in search of the path * which would contain cpos. * * The path traveled is recorded in the path structure. * * Note that this will not do any comparisons on leaf node extent * records, so it will work fine in the case that we just added a tree * branch. */ struct find_path_data { int index; struct ocfs2_path *path; }; static void find_path_ins(void *data, struct buffer_head *bh) { struct find_path_data *fp = data; get_bh(bh); ocfs2_path_insert_eb(fp->path, fp->index, bh); fp->index++; } static int ocfs2_find_path(struct ocfs2_caching_info *ci, struct ocfs2_path *path, u32 cpos) { struct find_path_data data; data.index = 1; data.path = path; return __ocfs2_find_path(ci, path_root_el(path), cpos, find_path_ins, &data); } static void find_leaf_ins(void *data, struct buffer_head *bh) { struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; struct ocfs2_extent_list *el = &eb->h_list; struct buffer_head **ret = data; /* We want to retain only the leaf block. */ if (le16_to_cpu(el->l_tree_depth) == 0) { get_bh(bh); *ret = bh; } } /* * Find the leaf block in the tree which would contain cpos. No * checking of the actual leaf is done. * * Some paths want to call this instead of allocating a path structure * and calling ocfs2_find_path(). * * This function doesn't handle non btree extent lists. */ int ocfs2_find_leaf(struct ocfs2_caching_info *ci, struct ocfs2_extent_list *root_el, u32 cpos, struct buffer_head **leaf_bh) { int ret; struct buffer_head *bh = NULL; ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); if (ret) { mlog_errno(ret); goto out; } *leaf_bh = bh; out: return ret; } /* * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. * * Basically, we've moved stuff around at the bottom of the tree and * we need to fix up the extent records above the changes to reflect * the new changes. * * left_rec: the record on the left. * left_child_el: is the child list pointed to by left_rec * right_rec: the record to the right of left_rec * right_child_el: is the child list pointed to by right_rec * * By definition, this only works on interior nodes. */ static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, struct ocfs2_extent_list *left_child_el, struct ocfs2_extent_rec *right_rec, struct ocfs2_extent_list *right_child_el) { u32 left_clusters, right_end; /* * Interior nodes never have holes. Their cpos is the cpos of * the leftmost record in their child list. Their cluster * count covers the full theoretical range of their child list * - the range between their cpos and the cpos of the record * immediately to their right. */ left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { BUG_ON(right_child_el->l_tree_depth); BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); } left_clusters -= le32_to_cpu(left_rec->e_cpos); left_rec->e_int_clusters = cpu_to_le32(left_clusters); /* * Calculate the rightmost cluster count boundary before * moving cpos - we will need to adjust clusters after * updating e_cpos to keep the same highest cluster count. */ right_end = le32_to_cpu(right_rec->e_cpos); right_end += le32_to_cpu(right_rec->e_int_clusters); right_rec->e_cpos = left_rec->e_cpos; le32_add_cpu(&right_rec->e_cpos, left_clusters); right_end -= le32_to_cpu(right_rec->e_cpos); right_rec->e_int_clusters = cpu_to_le32(right_end); } /* * Adjust the adjacent root node records involved in a * rotation. left_el_blkno is passed in as a key so that we can easily * find it's index in the root list. */ static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, struct ocfs2_extent_list *left_el, struct ocfs2_extent_list *right_el, u64 left_el_blkno) { int i; BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= le16_to_cpu(left_el->l_tree_depth)); for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) break; } /* * The path walking code should have never returned a root and * two paths which are not adjacent. */ BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, &root_el->l_recs[i + 1], right_el); } /* * We've changed a leaf block (in right_path) and need to reflect that * change back up the subtree. * * This happens in multiple places: * - When we've moved an extent record from the left path leaf to the right * path leaf to make room for an empty extent in the left path leaf. * - When our insert into the right path leaf is at the leftmost edge * and requires an update of the path immediately to it's left. This * can occur at the end of some types of rotation and appending inserts. * - When we've adjusted the last extent record in the left path leaf and the * 1st extent record in the right path leaf during cross extent block merge. */ static void ocfs2_complete_edge_insert(handle_t *handle, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index) { int ret, i, idx; struct ocfs2_extent_list *el, *left_el, *right_el; struct ocfs2_extent_rec *left_rec, *right_rec; struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; /* * Update the counts and position values within all the * interior nodes to reflect the leaf rotation we just did. * * The root node is handled below the loop. * * We begin the loop with right_el and left_el pointing to the * leaf lists and work our way up. * * NOTE: within this loop, left_el and right_el always refer * to the *child* lists. */ left_el = path_leaf_el(left_path); right_el = path_leaf_el(right_path); for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { mlog(0, "Adjust records at index %u\n", i); /* * One nice property of knowing that all of these * nodes are below the root is that we only deal with * the leftmost right node record and the rightmost * left node record. */ el = left_path->p_node[i].el; idx = le16_to_cpu(left_el->l_next_free_rec) - 1; left_rec = &el->l_recs[idx]; el = right_path->p_node[i].el; right_rec = &el->l_recs[0]; ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, right_el); ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); if (ret) mlog_errno(ret); ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); if (ret) mlog_errno(ret); /* * Setup our list pointers now so that the current * parents become children in the next iteration. */ left_el = left_path->p_node[i].el; right_el = right_path->p_node[i].el; } /* * At the root node, adjust the two adjacent records which * begin our path to the leaves. */ el = left_path->p_node[subtree_index].el; left_el = left_path->p_node[subtree_index + 1].el; right_el = right_path->p_node[subtree_index + 1].el; ocfs2_adjust_root_records(el, left_el, right_el, left_path->p_node[subtree_index + 1].bh->b_blocknr); root_bh = left_path->p_node[subtree_index].bh; ret = ocfs2_journal_dirty(handle, root_bh); if (ret) mlog_errno(ret); } static int ocfs2_rotate_subtree_right(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index) { int ret, i; struct buffer_head *right_leaf_bh; struct buffer_head *left_leaf_bh = NULL; struct buffer_head *root_bh; struct ocfs2_extent_list *right_el, *left_el; struct ocfs2_extent_rec move_rec; left_leaf_bh = path_leaf_bh(left_path); left_el = path_leaf_el(left_path); if (left_el->l_next_free_rec != left_el->l_count) { ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Inode %llu has non-full interior leaf node %llu" "(next free = %u)", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)left_leaf_bh->b_blocknr, le16_to_cpu(left_el->l_next_free_rec)); return -EROFS; } /* * This extent block may already have an empty record, so we * return early if so. */ if (ocfs2_is_empty_extent(&left_el->l_recs[0])) return 0; root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for(i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } right_leaf_bh = path_leaf_bh(right_path); right_el = path_leaf_el(right_path); /* This is a code error, not a disk corruption. */ mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " "because rightmost leaf block %llu is empty\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)right_leaf_bh->b_blocknr); ocfs2_create_empty_extent(right_el); ret = ocfs2_journal_dirty(handle, right_leaf_bh); if (ret) { mlog_errno(ret); goto out; } /* Do the copy now. */ i = le16_to_cpu(left_el->l_next_free_rec) - 1; move_rec = left_el->l_recs[i]; right_el->l_recs[0] = move_rec; /* * Clear out the record we just copied and shift everything * over, leaving an empty extent in the left leaf. * * We temporarily subtract from next_free_rec so that the * shift will lose the tail record (which is now defunct). */ le16_add_cpu(&left_el->l_next_free_rec, -1); ocfs2_shift_records_right(left_el); memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&left_el->l_next_free_rec, 1); ret = ocfs2_journal_dirty(handle, left_leaf_bh); if (ret) { mlog_errno(ret); goto out; } ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); out: return ret; } /* * Given a full path, determine what cpos value would return us a path * containing the leaf immediately to the left of the current one. * * Will return zero if the path passed in is already the leftmost path. */ static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, struct ocfs2_path *path, u32 *cpos) { int i, j, ret = 0; u64 blkno; struct ocfs2_extent_list *el; BUG_ON(path->p_tree_depth == 0); *cpos = 0; blkno = path_leaf_bh(path)->b_blocknr; /* Start at the tree node just above the leaf and work our way up. */ i = path->p_tree_depth - 1; while (i >= 0) { el = path->p_node[i].el; /* * Find the extent record just before the one in our * path. */ for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { if (j == 0) { if (i == 0) { /* * We've determined that the * path specified is already * the leftmost one - return a * cpos of zero. */ goto out; } /* * The leftmost record points to our * leaf - we need to travel up the * tree one level. */ goto next_node; } *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); *cpos = *cpos + ocfs2_rec_clusters(el, &el->l_recs[j - 1]); *cpos = *cpos - 1; goto out; } } /* * If we got here, we never found a valid node where * the tree indicated one should be. */ ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", (unsigned long long)blkno); ret = -EROFS; goto out; next_node: blkno = path->p_node[i].bh->b_blocknr; i--; } out: return ret; } /* * Extend the transaction by enough credits to complete the rotation, * and still leave at least the original number of credits allocated * to this transaction. */ static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, int op_credits, struct ocfs2_path *path) { int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; if (handle->h_buffer_credits < credits) return ocfs2_extend_trans(handle, credits); return 0; } /* * Trap the case where we're inserting into the theoretical range past * the _actual_ left leaf range. Otherwise, we'll rotate a record * whose cpos is less than ours into the right leaf. * * It's only necessary to look at the rightmost record of the left * leaf because the logic that calls us should ensure that the * theoretical ranges in the path components above the leaves are * correct. */ static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, u32 insert_cpos) { struct ocfs2_extent_list *left_el; struct ocfs2_extent_rec *rec; int next_free; left_el = path_leaf_el(left_path); next_free = le16_to_cpu(left_el->l_next_free_rec); rec = &left_el->l_recs[next_free - 1]; if (insert_cpos > le32_to_cpu(rec->e_cpos)) return 1; return 0; } static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) { int next_free = le16_to_cpu(el->l_next_free_rec); unsigned int range; struct ocfs2_extent_rec *rec; if (next_free == 0) return 0; rec = &el->l_recs[0]; if (ocfs2_is_empty_extent(rec)) { /* Empty list. */ if (next_free == 1) return 0; rec = &el->l_recs[1]; } range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) return 1; return 0; } /* * Rotate all the records in a btree right one record, starting at insert_cpos. * * The path to the rightmost leaf should be passed in. * * The array is assumed to be large enough to hold an entire path (tree depth). * * Upon succesful return from this function: * * - The 'right_path' array will contain a path to the leaf block * whose range contains e_cpos. * - That leaf block will have a single empty extent in list index 0. * - In the case that the rotation requires a post-insert update, * *ret_left_path will contain a valid path which can be passed to * ocfs2_insert_path(). */ static int ocfs2_rotate_tree_right(handle_t *handle, struct ocfs2_extent_tree *et, enum ocfs2_split_type split, u32 insert_cpos, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret, start, orig_credits = handle->h_buffer_credits; u32 cpos; struct ocfs2_path *left_path = NULL; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); *ret_left_path = NULL; left_path = ocfs2_new_path_from_path(right_path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); if (ret) { mlog_errno(ret); goto out; } mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); /* * What we want to do here is: * * 1) Start with the rightmost path. * * 2) Determine a path to the leaf block directly to the left * of that leaf. * * 3) Determine the 'subtree root' - the lowest level tree node * which contains a path to both leaves. * * 4) Rotate the subtree. * * 5) Find the next subtree by considering the left path to be * the new right path. * * The check at the top of this while loop also accepts * insert_cpos == cpos because cpos is only a _theoretical_ * value to get us the left path - insert_cpos might very well * be filling that hole. * * Stop at a cpos of '0' because we either started at the * leftmost branch (i.e., a tree with one branch and a * rotation inside of it), or we've gone as far as we can in * rotating subtrees. */ while (cpos && insert_cpos <= cpos) { mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", insert_cpos, cpos); ret = ocfs2_find_path(et->et_ci, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } mlog_bug_on_msg(path_leaf_bh(left_path) == path_leaf_bh(right_path), "Owner %llu: error during insert of %u " "(left path cpos %u) results in two identical " "paths ending at %llu\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), insert_cpos, cpos, (unsigned long long) path_leaf_bh(left_path)->b_blocknr); if (split == SPLIT_NONE && ocfs2_rotate_requires_path_adjustment(left_path, insert_cpos)) { /* * We've rotated the tree as much as we * should. The rest is up to * ocfs2_insert_path() to complete, after the * record insertion. We indicate this * situation by returning the left path. * * The reason we don't adjust the records here * before the record insert is that an error * later might break the rule where a parent * record e_cpos will reflect the actual * e_cpos of the 1st nonempty record of the * child list. */ *ret_left_path = left_path; goto out_ret_path; } start = ocfs2_find_subtree_root(et, left_path, right_path); mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", start, (unsigned long long) right_path->p_node[start].bh->b_blocknr, right_path->p_tree_depth); ret = ocfs2_extend_rotate_transaction(handle, start, orig_credits, right_path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_subtree_right(handle, et, left_path, right_path, start); if (ret) { mlog_errno(ret); goto out; } if (split != SPLIT_NONE && ocfs2_leftmost_rec_contains(path_leaf_el(right_path), insert_cpos)) { /* * A rotate moves the rightmost left leaf * record over to the leftmost right leaf * slot. If we're doing an extent split * instead of a real insert, then we have to * check that the extent to be split wasn't * just moved over. If it was, then we can * exit here, passing left_path back - * ocfs2_split_extent() is smart enough to * search both leaves. */ *ret_left_path = left_path; goto out_ret_path; } /* * There is no need to re-read the next right path * as we know that it'll be our current left * path. Optimize by copying values instead. */ ocfs2_mv_path(right_path, left_path); ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); if (ret) { mlog_errno(ret); goto out; } } out: ocfs2_free_path(left_path); out_ret_path: return ret; } static int ocfs2_update_edge_lengths(handle_t *handle, struct ocfs2_extent_tree *et, int subtree_index, struct ocfs2_path *path) { int i, idx, ret; struct ocfs2_extent_rec *rec; struct ocfs2_extent_list *el; struct ocfs2_extent_block *eb; u32 range; /* * In normal tree rotation process, we will never touch the * tree branch above subtree_index and ocfs2_extend_rotate_transaction * doesn't reserve the credits for them either. * * But we do have a special case here which will update the rightmost * records for all the bh in the path. * So we have to allocate extra credits and access them. */ ret = ocfs2_extend_trans(handle, handle->h_buffer_credits + subtree_index); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, path); if (ret) { mlog_errno(ret); goto out; } /* Path should always be rightmost. */ eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; BUG_ON(eb->h_next_leaf_blk != 0ULL); el = &eb->h_list; BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); idx = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[idx]; range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); for (i = 0; i < path->p_tree_depth; i++) { el = path->p_node[i].el; idx = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[idx]; rec->e_int_clusters = cpu_to_le32(range); le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); ocfs2_journal_dirty(handle, path->p_node[i].bh); } out: return ret; } static void ocfs2_unlink_path(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_path *path, int unlink_start) { int ret, i; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *bh; for(i = unlink_start; i < path_num_items(path); i++) { bh = path->p_node[i].bh; eb = (struct ocfs2_extent_block *)bh->b_data; /* * Not all nodes might have had their final count * decremented by the caller - handle this here. */ el = &eb->h_list; if (le16_to_cpu(el->l_next_free_rec) > 1) { mlog(ML_ERROR, "Inode %llu, attempted to remove extent block " "%llu with %u records\n", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)le64_to_cpu(eb->h_blkno), le16_to_cpu(el->l_next_free_rec)); ocfs2_journal_dirty(handle, bh); ocfs2_remove_from_cache(et->et_ci, bh); continue; } el->l_next_free_rec = 0; memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); ocfs2_journal_dirty(handle, bh); ret = ocfs2_cache_extent_block_free(dealloc, eb); if (ret) mlog_errno(ret); ocfs2_remove_from_cache(et->et_ci, bh); } } static void ocfs2_unlink_subtree(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index, struct ocfs2_cached_dealloc_ctxt *dealloc) { int i; struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; struct ocfs2_extent_list *el; struct ocfs2_extent_block *eb; el = path_leaf_el(left_path); eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) if (root_el->l_recs[i].e_blkno == eb->h_blkno) break; BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&root_el->l_next_free_rec, -1); eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; eb->h_next_leaf_blk = 0; ocfs2_journal_dirty(handle, root_bh); ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); ocfs2_unlink_path(handle, et, dealloc, right_path, subtree_index + 1); } static int ocfs2_rotate_subtree_left(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, int subtree_index, struct ocfs2_cached_dealloc_ctxt *dealloc, int *deleted) { int ret, i, del_right_subtree = 0, right_has_empty = 0; struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; struct ocfs2_extent_block *eb; *deleted = 0; right_leaf_el = path_leaf_el(right_path); left_leaf_el = path_leaf_el(left_path); root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) return 0; eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { /* * It's legal for us to proceed if the right leaf is * the rightmost one and it has an empty extent. There * are two cases to handle - whether the leaf will be * empty after removal or not. If the leaf isn't empty * then just remove the empty extent up front. The * next block will handle empty leaves by flagging * them for unlink. * * Non rightmost leaves will throw -EAGAIN and the * caller can manually move the subtree and retry. */ if (eb->h_next_leaf_blk != 0ULL) return -EAGAIN; if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { ret = ocfs2_journal_access_eb(handle, et->et_ci, path_leaf_bh(right_path), OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ocfs2_remove_empty_extent(right_leaf_el); } else right_has_empty = 1; } if (eb->h_next_leaf_blk == 0ULL && le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { /* * We have to update i_last_eb_blk during the meta * data delete. */ ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } del_right_subtree = 1; } /* * Getting here with an empty extent in the right path implies * that it's the rightmost path and will be deleted. */ BUG_ON(right_has_empty && !del_right_subtree); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for(i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } if (!right_has_empty) { /* * Only do this if we're moving a real * record. Otherwise, the action is delayed until * after removal of the right path in which case we * can do a simple shift to remove the empty extent. */ ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); memset(&right_leaf_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); } if (eb->h_next_leaf_blk == 0ULL) { /* * Move recs over to get rid of empty extent, decrease * next_free. This is allowed to remove the last * extent in our leaf (setting l_next_free_rec to * zero) - the delete code below won't care. */ ocfs2_remove_empty_extent(right_leaf_el); } ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); if (ret) mlog_errno(ret); ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); if (ret) mlog_errno(ret); if (del_right_subtree) { ocfs2_unlink_subtree(handle, et, left_path, right_path, subtree_index, dealloc); ret = ocfs2_update_edge_lengths(handle, et, subtree_index, left_path); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); /* * Removal of the extent in the left leaf was skipped * above so we could delete the right path * 1st. */ if (right_has_empty) ocfs2_remove_empty_extent(left_leaf_el); ret = ocfs2_journal_dirty(handle, et_root_bh); if (ret) mlog_errno(ret); *deleted = 1; } else ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); out: return ret; } /* * Given a full path, determine what cpos value would return us a path * containing the leaf immediately to the right of the current one. * * Will return zero if the path passed in is already the rightmost path. * * This looks similar, but is subtly different to * ocfs2_find_cpos_for_left_leaf(). */ static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, struct ocfs2_path *path, u32 *cpos) { int i, j, ret = 0; u64 blkno; struct ocfs2_extent_list *el; *cpos = 0; if (path->p_tree_depth == 0) return 0; blkno = path_leaf_bh(path)->b_blocknr; /* Start at the tree node just above the leaf and work our way up. */ i = path->p_tree_depth - 1; while (i >= 0) { int next_free; el = path->p_node[i].el; /* * Find the extent record just after the one in our * path. */ next_free = le16_to_cpu(el->l_next_free_rec); for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { if (j == (next_free - 1)) { if (i == 0) { /* * We've determined that the * path specified is already * the rightmost one - return a * cpos of zero. */ goto out; } /* * The rightmost record points to our * leaf - we need to travel up the * tree one level. */ goto next_node; } *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); goto out; } } /* * If we got here, we never found a valid node where * the tree indicated one should be. */ ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", (unsigned long long)blkno); ret = -EROFS; goto out; next_node: blkno = path->p_node[i].bh->b_blocknr; i--; } out: return ret; } static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path) { int ret; struct buffer_head *bh = path_leaf_bh(path); struct ocfs2_extent_list *el = path_leaf_el(path); if (!ocfs2_is_empty_extent(&el->l_recs[0])) return 0; ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, path_num_items(path) - 1); if (ret) { mlog_errno(ret); goto out; } ocfs2_remove_empty_extent(el); ret = ocfs2_journal_dirty(handle, bh); if (ret) mlog_errno(ret); out: return ret; } static int __ocfs2_rotate_tree_left(handle_t *handle, struct ocfs2_extent_tree *et, int orig_credits, struct ocfs2_path *path, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_path **empty_extent_path) { int ret, subtree_root, deleted; u32 right_cpos; struct ocfs2_path *left_path = NULL; struct ocfs2_path *right_path = NULL; struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); *empty_extent_path = NULL; ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); if (ret) { mlog_errno(ret); goto out; } left_path = ocfs2_new_path_from_path(path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ocfs2_cp_path(left_path, path); right_path = ocfs2_new_path_from_path(path); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } while (right_cpos) { ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); if (ret) { mlog_errno(ret); goto out; } subtree_root = ocfs2_find_subtree_root(et, left_path, right_path); mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", subtree_root, (unsigned long long) right_path->p_node[subtree_root].bh->b_blocknr, right_path->p_tree_depth); ret = ocfs2_extend_rotate_transaction(handle, subtree_root, orig_credits, left_path); if (ret) { mlog_errno(ret); goto out; } /* * Caller might still want to make changes to the * tree root, so re-add it to the journal here. */ ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 0); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_subtree_left(handle, et, left_path, right_path, subtree_root, dealloc, &deleted); if (ret == -EAGAIN) { /* * The rotation has to temporarily stop due to * the right subtree having an empty * extent. Pass it back to the caller for a * fixup. */ *empty_extent_path = right_path; right_path = NULL; goto out; } if (ret) { mlog_errno(ret); goto out; } /* * The subtree rotate might have removed records on * the rightmost edge. If so, then rotation is * complete. */ if (deleted) break; ocfs2_mv_path(left_path, right_path); ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, &right_cpos); if (ret) { mlog_errno(ret); goto out; } } out: ocfs2_free_path(right_path); ocfs2_free_path(left_path); return ret; } static int ocfs2_remove_rightmost_path(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, subtree_index; u32 cpos; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; ret = ocfs2_et_sanity_check(et); if (ret) goto out; /* * There's two ways we handle this depending on * whether path is the only existing one. */ ret = ocfs2_extend_rotate_transaction(handle, 0, handle->h_buffer_credits, path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), path, &cpos); if (ret) { mlog_errno(ret); goto out; } if (cpos) { /* * We have a path to the left of this one - it needs * an update too. */ left_path = ocfs2_new_path_from_path(path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); if (ret) { mlog_errno(ret); goto out; } subtree_index = ocfs2_find_subtree_root(et, left_path, path); ocfs2_unlink_subtree(handle, et, left_path, path, subtree_index, dealloc); ret = ocfs2_update_edge_lengths(handle, et, subtree_index, left_path); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); } else { /* * 'path' is also the leftmost path which * means it must be the only one. This gets * handled differently because we want to * revert the root back to having extents * in-line. */ ocfs2_unlink_path(handle, et, dealloc, path, 1); el = et->et_root_el; el->l_tree_depth = 0; el->l_next_free_rec = 0; memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); ocfs2_et_set_last_eb_blk(et, 0); } ocfs2_journal_dirty(handle, path_root_bh(path)); out: ocfs2_free_path(left_path); return ret; } /* * Left rotation of btree records. * * In many ways, this is (unsurprisingly) the opposite of right * rotation. We start at some non-rightmost path containing an empty * extent in the leaf block. The code works its way to the rightmost * path by rotating records to the left in every subtree. * * This is used by any code which reduces the number of extent records * in a leaf. After removal, an empty record should be placed in the * leftmost list position. * * This won't handle a length update of the rightmost path records if * the rightmost tree leaf record is removed so the caller is * responsible for detecting and correcting that. */ static int ocfs2_rotate_tree_left(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, orig_credits = handle->h_buffer_credits; struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; el = path_leaf_el(path); if (!ocfs2_is_empty_extent(&el->l_recs[0])) return 0; if (path->p_tree_depth == 0) { rightmost_no_delete: /* * Inline extents. This is trivially handled, so do * it up front. */ ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); if (ret) mlog_errno(ret); goto out; } /* * Handle rightmost branch now. There's several cases: * 1) simple rotation leaving records in there. That's trivial. * 2) rotation requiring a branch delete - there's no more * records left. Two cases of this: * a) There are branches to the left. * b) This is also the leftmost (the only) branch. * * 1) is handled via ocfs2_rotate_rightmost_leaf_left() * 2a) we need the left branch so that we can update it with the unlink * 2b) we need to bring the root back to inline extents. */ eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; el = &eb->h_list; if (eb->h_next_leaf_blk == 0) { /* * This gets a bit tricky if we're going to delete the * rightmost path. Get the other cases out of the way * 1st. */ if (le16_to_cpu(el->l_next_free_rec) > 1) goto rightmost_no_delete; if (le16_to_cpu(el->l_next_free_rec) == 0) { ret = -EIO; ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), "Owner %llu has empty extent block at %llu", (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), (unsigned long long)le64_to_cpu(eb->h_blkno)); goto out; } /* * XXX: The caller can not trust "path" any more after * this as it will have been deleted. What do we do? * * In theory the rotate-for-merge code will never get * here because it'll always ask for a rotate in a * nonempty list. */ ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); if (ret) mlog_errno(ret); goto out; } /* * Now we can loop, remembering the path we get from -EAGAIN * and restarting from there. */ try_rotate: ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, dealloc, &restart_path); if (ret && ret != -EAGAIN) { mlog_errno(ret); goto out; } while (ret == -EAGAIN) { tmp_path = restart_path; restart_path = NULL; ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, tmp_path, dealloc, &restart_path); if (ret && ret != -EAGAIN) { mlog_errno(ret); goto out; } ocfs2_free_path(tmp_path); tmp_path = NULL; if (ret == 0) goto try_rotate; } out: ocfs2_free_path(tmp_path); ocfs2_free_path(restart_path); return ret; } static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, int index) { struct ocfs2_extent_rec *rec = &el->l_recs[index]; unsigned int size; if (rec->e_leaf_clusters == 0) { /* * We consumed all of the merged-from record. An empty * extent cannot exist anywhere but the 1st array * position, so move things over if the merged-from * record doesn't occupy that position. * * This creates a new empty extent so the caller * should be smart enough to have removed any existing * ones. */ if (index > 0) { BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); size = index * sizeof(struct ocfs2_extent_rec); memmove(&el->l_recs[1], &el->l_recs[0], size); } /* * Always memset - the caller doesn't check whether it * created an empty extent, so there could be junk in * the other fields. */ memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); } } static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path **ret_right_path) { int ret; u32 right_cpos; struct ocfs2_path *right_path = NULL; struct ocfs2_extent_list *left_el; *ret_right_path = NULL; /* This function shouldn't be called for non-trees. */ BUG_ON(left_path->p_tree_depth == 0); left_el = path_leaf_el(left_path); BUG_ON(left_el->l_next_free_rec != left_el->l_count); ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), left_path, &right_cpos); if (ret) { mlog_errno(ret); goto out; } /* This function shouldn't be called for the rightmost leaf. */ BUG_ON(right_cpos == 0); right_path = ocfs2_new_path_from_path(left_path); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); if (ret) { mlog_errno(ret); goto out; } *ret_right_path = right_path; out: if (ret) ocfs2_free_path(right_path); return ret; } /* * Remove split_rec clusters from the record at index and merge them * onto the beginning of the record "next" to it. * For index < l_count - 1, the next means the extent rec at index + 1. * For index == l_count - 1, the "next" means the 1st extent rec of the * next extent block. */ static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *split_rec, int index) { int ret, next_free, i; unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); struct ocfs2_extent_rec *left_rec; struct ocfs2_extent_rec *right_rec; struct ocfs2_extent_list *right_el; struct ocfs2_path *right_path = NULL; int subtree_index = 0; struct ocfs2_extent_list *el = path_leaf_el(left_path); struct buffer_head *bh = path_leaf_bh(left_path); struct buffer_head *root_bh = NULL; BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); left_rec = &el->l_recs[index]; if (index == le16_to_cpu(el->l_next_free_rec) - 1 && le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { /* we meet with a cross extent block merge. */ ret = ocfs2_get_right_path(et, left_path, &right_path); if (ret) { mlog_errno(ret); goto out; } right_el = path_leaf_el(right_path); next_free = le16_to_cpu(right_el->l_next_free_rec); BUG_ON(next_free <= 0); right_rec = &right_el->l_recs[0]; if (ocfs2_is_empty_extent(right_rec)) { BUG_ON(next_free <= 1); right_rec = &right_el->l_recs[1]; } BUG_ON(le32_to_cpu(left_rec->e_cpos) + le16_to_cpu(left_rec->e_leaf_clusters) != le32_to_cpu(right_rec->e_cpos)); subtree_index = ocfs2_find_subtree_root(et, left_path, right_path); ret = ocfs2_extend_rotate_transaction(handle, subtree_index, handle->h_buffer_credits, right_path); if (ret) { mlog_errno(ret); goto out; } root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for (i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } } else { BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); right_rec = &el->l_recs[index + 1]; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, path_num_items(left_path) - 1); if (ret) { mlog_errno(ret); goto out; } le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); le32_add_cpu(&right_rec->e_cpos, -split_clusters); le64_add_cpu(&right_rec->e_blkno, -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), split_clusters)); le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); ocfs2_cleanup_merge(el, index); ret = ocfs2_journal_dirty(handle, bh); if (ret) mlog_errno(ret); if (right_path) { ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); if (ret) mlog_errno(ret); ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); } out: if (right_path) ocfs2_free_path(right_path); return ret; } static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret; u32 left_cpos; struct ocfs2_path *left_path = NULL; *ret_left_path = NULL; /* This function shouldn't be called for non-trees. */ BUG_ON(right_path->p_tree_depth == 0); ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), right_path, &left_cpos); if (ret) { mlog_errno(ret); goto out; } /* This function shouldn't be called for the leftmost leaf. */ BUG_ON(left_cpos == 0); left_path = ocfs2_new_path_from_path(right_path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); if (ret) { mlog_errno(ret); goto out; } *ret_left_path = left_path; out: if (ret) ocfs2_free_path(left_path); return ret; } /* * Remove split_rec clusters from the record at index and merge them * onto the tail of the record "before" it. * For index > 0, the "before" means the extent rec at index - 1. * * For index == 0, the "before" means the last record of the previous * extent block. And there is also a situation that we may need to * remove the rightmost leaf extent block in the right_path and change * the right path to indicate the new rightmost path. */ static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *split_rec, struct ocfs2_cached_dealloc_ctxt *dealloc, int index) { int ret, i, subtree_index = 0, has_empty_extent = 0; unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); struct ocfs2_extent_rec *left_rec; struct ocfs2_extent_rec *right_rec; struct ocfs2_extent_list *el = path_leaf_el(right_path); struct buffer_head *bh = path_leaf_bh(right_path); struct buffer_head *root_bh = NULL; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *left_el; BUG_ON(index < 0); right_rec = &el->l_recs[index]; if (index == 0) { /* we meet with a cross extent block merge. */ ret = ocfs2_get_left_path(et, right_path, &left_path); if (ret) { mlog_errno(ret); goto out; } left_el = path_leaf_el(left_path); BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != le16_to_cpu(left_el->l_count)); left_rec = &left_el->l_recs[ le16_to_cpu(left_el->l_next_free_rec) - 1]; BUG_ON(le32_to_cpu(left_rec->e_cpos) + le16_to_cpu(left_rec->e_leaf_clusters) != le32_to_cpu(split_rec->e_cpos)); subtree_index = ocfs2_find_subtree_root(et, left_path, right_path); ret = ocfs2_extend_rotate_transaction(handle, subtree_index, handle->h_buffer_credits, left_path); if (ret) { mlog_errno(ret); goto out; } root_bh = left_path->p_node[subtree_index].bh; BUG_ON(root_bh != right_path->p_node[subtree_index].bh); ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, subtree_index); if (ret) { mlog_errno(ret); goto out; } for (i = subtree_index + 1; i < path_num_items(right_path); i++) { ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, i); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, i); if (ret) { mlog_errno(ret); goto out; } } } else { left_rec = &el->l_recs[index - 1]; if (ocfs2_is_empty_extent(&el->l_recs[0])) has_empty_extent = 1; } ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, path_num_items(right_path) - 1); if (ret) { mlog_errno(ret); goto out; } if (has_empty_extent && index == 1) { /* * The easy case - we can just plop the record right in. */ *left_rec = *split_rec; has_empty_extent = 0; } else le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); le32_add_cpu(&right_rec->e_cpos, split_clusters); le64_add_cpu(&right_rec->e_blkno, ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), split_clusters)); le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); ocfs2_cleanup_merge(el, index); ret = ocfs2_journal_dirty(handle, bh); if (ret) mlog_errno(ret); if (left_path) { ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); if (ret) mlog_errno(ret); /* * In the situation that the right_rec is empty and the extent * block is empty also, ocfs2_complete_edge_insert can't handle * it and we need to delete the right extent block. */ if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && le16_to_cpu(el->l_next_free_rec) == 1) { ret = ocfs2_remove_rightmost_path(handle, et, right_path, dealloc); if (ret) { mlog_errno(ret); goto out; } /* Now the rightmost extent block has been deleted. * So we use the new rightmost path. */ ocfs2_mv_path(right_path, left_path); left_path = NULL; } else ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); } out: if (left_path) ocfs2_free_path(left_path); return ret; } static int ocfs2_try_to_merge_extent(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, int split_index, struct ocfs2_extent_rec *split_rec, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_merge_ctxt *ctxt) { int ret = 0; struct ocfs2_extent_list *el = path_leaf_el(path); struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; BUG_ON(ctxt->c_contig_type == CONTIG_NONE); if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { /* * The merge code will need to create an empty * extent to take the place of the newly * emptied slot. Remove any pre-existing empty * extents - having more than one in a leaf is * illegal. */ ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) { mlog_errno(ret); goto out; } split_index--; rec = &el->l_recs[split_index]; } if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { /* * Left-right contig implies this. */ BUG_ON(!ctxt->c_split_covers_rec); /* * Since the leftright insert always covers the entire * extent, this call will delete the insert record * entirely, resulting in an empty extent record added to * the extent block. * * Since the adding of an empty extent shifts * everything back to the right, there's no need to * update split_index here. * * When the split_index is zero, we need to merge it to the * prevoius extent block. It is more efficient and easier * if we do merge_right first and merge_left later. */ ret = ocfs2_merge_rec_right(path, handle, et, split_rec, split_index); if (ret) { mlog_errno(ret); goto out; } /* * We can only get this from logic error above. */ BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); /* The merge left us with an empty extent, remove it. */ ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) { mlog_errno(ret); goto out; } rec = &el->l_recs[split_index]; /* * Note that we don't pass split_rec here on purpose - * we've merged it into the rec already. */ ret = ocfs2_merge_rec_left(path, handle, et, rec, dealloc, split_index); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); /* * Error from this last rotate is not critical, so * print but don't bubble it up. */ if (ret) mlog_errno(ret); ret = 0; } else { /* * Merge a record to the left or right. * * 'contig_type' is relative to the existing record, * so for example, if we're "right contig", it's to * the record on the left (hence the left merge). */ if (ctxt->c_contig_type == CONTIG_RIGHT) { ret = ocfs2_merge_rec_left(path, handle, et, split_rec, dealloc, split_index); if (ret) { mlog_errno(ret); goto out; } } else { ret = ocfs2_merge_rec_right(path, handle, et, split_rec, split_index); if (ret) { mlog_errno(ret); goto out; } } if (ctxt->c_split_covers_rec) { /* * The merge may have left an empty extent in * our leaf. Try to rotate it away. */ ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) mlog_errno(ret); ret = 0; } } out: return ret; } static void ocfs2_subtract_from_rec(struct super_block *sb, enum ocfs2_split_type split, struct ocfs2_extent_rec *rec, struct ocfs2_extent_rec *split_rec) { u64 len_blocks; len_blocks = ocfs2_clusters_to_blocks(sb, le16_to_cpu(split_rec->e_leaf_clusters)); if (split == SPLIT_LEFT) { /* * Region is on the left edge of the existing * record. */ le32_add_cpu(&rec->e_cpos, le16_to_cpu(split_rec->e_leaf_clusters)); le64_add_cpu(&rec->e_blkno, len_blocks); le16_add_cpu(&rec->e_leaf_clusters, -le16_to_cpu(split_rec->e_leaf_clusters)); } else { /* * Region is on the right edge of the existing * record. */ le16_add_cpu(&rec->e_leaf_clusters, -le16_to_cpu(split_rec->e_leaf_clusters)); } } /* * Do the final bits of extent record insertion at the target leaf * list. If this leaf is part of an allocation tree, it is assumed * that the tree above has been prepared. */ static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, struct ocfs2_extent_list *el, struct ocfs2_insert_type *insert, struct inode *inode) { int i = insert->ins_contig_index; unsigned int range; struct ocfs2_extent_rec *rec; BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); if (insert->ins_split != SPLIT_NONE) { i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); BUG_ON(i == -1); rec = &el->l_recs[i]; ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, insert_rec); goto rotate; } /* * Contiguous insert - either left or right. */ if (insert->ins_contig != CONTIG_NONE) { rec = &el->l_recs[i]; if (insert->ins_contig == CONTIG_LEFT) { rec->e_blkno = insert_rec->e_blkno; rec->e_cpos = insert_rec->e_cpos; } le16_add_cpu(&rec->e_leaf_clusters, le16_to_cpu(insert_rec->e_leaf_clusters)); return; } /* * Handle insert into an empty leaf. */ if (le16_to_cpu(el->l_next_free_rec) == 0 || ((le16_to_cpu(el->l_next_free_rec) == 1) && ocfs2_is_empty_extent(&el->l_recs[0]))) { el->l_recs[0] = *insert_rec; el->l_next_free_rec = cpu_to_le16(1); return; } /* * Appending insert. */ if (insert->ins_appending == APPEND_TAIL) { i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; range = le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters); BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= le16_to_cpu(el->l_count), "inode %lu, depth %u, count %u, next free %u, " "rec.cpos %u, rec.clusters %u, " "insert.cpos %u, insert.clusters %u\n", inode->i_ino, le16_to_cpu(el->l_tree_depth), le16_to_cpu(el->l_count), le16_to_cpu(el->l_next_free_rec), le32_to_cpu(el->l_recs[i].e_cpos), le16_to_cpu(el->l_recs[i].e_leaf_clusters), le32_to_cpu(insert_rec->e_cpos), le16_to_cpu(insert_rec->e_leaf_clusters)); i++; el->l_recs[i] = *insert_rec; le16_add_cpu(&el->l_next_free_rec, 1); return; } rotate: /* * Ok, we have to rotate. * * At this point, it is safe to assume that inserting into an * empty leaf and appending to a leaf have both been handled * above. * * This leaf needs to have space, either by the empty 1st * extent record, or by virtue of an l_next_rec < l_count. */ ocfs2_rotate_leaf(el, insert_rec); } static void ocfs2_adjust_rightmost_records(struct inode *inode, handle_t *handle, struct ocfs2_path *path, struct ocfs2_extent_rec *insert_rec) { int ret, i, next_free; struct buffer_head *bh; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; /* * Update everything except the leaf block. */ for (i = 0; i < path->p_tree_depth; i++) { bh = path->p_node[i].bh; el = path->p_node[i].el; next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0) { ocfs2_error(inode->i_sb, "Dinode %llu has a bad extent list", (unsigned long long)OCFS2_I(inode)->ip_blkno); ret = -EIO; return; } rec = &el->l_recs[next_free - 1]; rec->e_int_clusters = insert_rec->e_cpos; le32_add_cpu(&rec->e_int_clusters, le16_to_cpu(insert_rec->e_leaf_clusters)); le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); ret = ocfs2_journal_dirty(handle, bh); if (ret) mlog_errno(ret); } } static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, struct ocfs2_extent_rec *insert_rec, struct ocfs2_path *right_path, struct ocfs2_path **ret_left_path) { int ret, next_free; struct ocfs2_extent_list *el; struct ocfs2_path *left_path = NULL; *ret_left_path = NULL; /* * This shouldn't happen for non-trees. The extent rec cluster * count manipulation below only works for interior nodes. */ BUG_ON(right_path->p_tree_depth == 0); /* * If our appending insert is at the leftmost edge of a leaf, * then we might need to update the rightmost records of the * neighboring path. */ el = path_leaf_el(right_path); next_free = le16_to_cpu(el->l_next_free_rec); if (next_free == 0 || (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { u32 left_cpos; ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &left_cpos); if (ret) { mlog_errno(ret); goto out; } mlog(0, "Append may need a left path update. cpos: %u, " "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), left_cpos); /* * No need to worry if the append is already in the * leftmost leaf. */ if (left_cpos) { left_path = ocfs2_new_path_from_path(right_path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(INODE_CACHE(inode), left_path, left_cpos); if (ret) { mlog_errno(ret); goto out; } /* * ocfs2_insert_path() will pass the left_path to the * journal for us. */ } } ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path); if (ret) { mlog_errno(ret); goto out; } ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); *ret_left_path = left_path; ret = 0; out: if (ret != 0) ocfs2_free_path(left_path); return ret; } static void ocfs2_split_record(struct inode *inode, struct ocfs2_path *left_path, struct ocfs2_path *right_path, struct ocfs2_extent_rec *split_rec, enum ocfs2_split_type split) { int index; u32 cpos = le32_to_cpu(split_rec->e_cpos); struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; struct ocfs2_extent_rec *rec, *tmprec; right_el = path_leaf_el(right_path); if (left_path) left_el = path_leaf_el(left_path); el = right_el; insert_el = right_el; index = ocfs2_search_extent_list(el, cpos); if (index != -1) { if (index == 0 && left_path) { BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); /* * This typically means that the record * started in the left path but moved to the * right as a result of rotation. We either * move the existing record to the left, or we * do the later insert there. * * In this case, the left path should always * exist as the rotate code will have passed * it back for a post-insert update. */ if (split == SPLIT_LEFT) { /* * It's a left split. Since we know * that the rotate code gave us an * empty extent in the left path, we * can just do the insert there. */ insert_el = left_el; } else { /* * Right split - we have to move the * existing record over to the left * leaf. The insert will be into the * newly created empty extent in the * right leaf. */ tmprec = &right_el->l_recs[index]; ocfs2_rotate_leaf(left_el, tmprec); el = left_el; memset(tmprec, 0, sizeof(*tmprec)); index = ocfs2_search_extent_list(left_el, cpos); BUG_ON(index == -1); } } } else { BUG_ON(!left_path); BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); /* * Left path is easy - we can just allow the insert to * happen. */ el = left_el; insert_el = left_el; index = ocfs2_search_extent_list(el, cpos); BUG_ON(index == -1); } rec = &el->l_recs[index]; ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); ocfs2_rotate_leaf(insert_el, split_rec); } /* * This function only does inserts on an allocation b-tree. For tree * depth = 0, ocfs2_insert_at_leaf() is called directly. * * right_path is the path we want to do the actual insert * in. left_path should only be passed in if we need to update that * portion of the tree after an edge insert. */ static int ocfs2_insert_path(struct inode *inode, handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *left_path, struct ocfs2_path *right_path, struct ocfs2_extent_rec *insert_rec, struct ocfs2_insert_type *insert) { int ret, subtree_index; struct buffer_head *leaf_bh = path_leaf_bh(right_path); if (left_path) { int credits = handle->h_buffer_credits; /* * There's a chance that left_path got passed back to * us without being accounted for in the * journal. Extend our transaction here to be sure we * can change those blocks. */ credits += left_path->p_tree_depth; ret = ocfs2_extend_trans(handle, credits); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); if (ret < 0) { mlog_errno(ret); goto out; } } /* * Pass both paths to the journal. The majority of inserts * will be touching all components anyway. */ ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); if (ret < 0) { mlog_errno(ret); goto out; } if (insert->ins_split != SPLIT_NONE) { /* * We could call ocfs2_insert_at_leaf() for some types * of splits, but it's easier to just let one separate * function sort it all out. */ ocfs2_split_record(inode, left_path, right_path, insert_rec, insert->ins_split); /* * Split might have modified either leaf and we don't * have a guarantee that the later edge insert will * dirty this for us. */ if (left_path) ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); if (ret) mlog_errno(ret); } else ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), insert, inode); ret = ocfs2_journal_dirty(handle, leaf_bh); if (ret) mlog_errno(ret); if (left_path) { /* * The rotate code has indicated that we need to fix * up portions of the tree after the insert. * * XXX: Should we extend the transaction here? */ subtree_index = ocfs2_find_subtree_root(et, left_path, right_path); ocfs2_complete_edge_insert(handle, left_path, right_path, subtree_index); } ret = 0; out: return ret; } static int ocfs2_do_insert_extent(struct inode *inode, handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_extent_rec *insert_rec, struct ocfs2_insert_type *type) { int ret, rotate = 0; u32 cpos; struct ocfs2_path *right_path = NULL; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *el; el = et->et_root_el; ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } if (le16_to_cpu(el->l_tree_depth) == 0) { ocfs2_insert_at_leaf(insert_rec, el, type, inode); goto out_update_clusters; } right_path = ocfs2_new_path_from_et(et); if (!right_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* * Determine the path to start with. Rotations need the * rightmost path, everything else can go directly to the * target leaf. */ cpos = le32_to_cpu(insert_rec->e_cpos); if (type->ins_appending == APPEND_NONE && type->ins_contig == CONTIG_NONE) { rotate = 1; cpos = UINT_MAX; } ret = ocfs2_find_path(et->et_ci, right_path, cpos); if (ret) { mlog_errno(ret); goto out; } /* * Rotations and appends need special treatment - they modify * parts of the tree's above them. * * Both might pass back a path immediate to the left of the * one being inserted to. This will be cause * ocfs2_insert_path() to modify the rightmost records of * left_path to account for an edge insert. * * XXX: When modifying this code, keep in mind that an insert * can wind up skipping both of these two special cases... */ if (rotate) { ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, le32_to_cpu(insert_rec->e_cpos), right_path, &left_path); if (ret) { mlog_errno(ret); goto out; } /* * ocfs2_rotate_tree_right() might have extended the * transaction without re-journaling our tree root. */ ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } } else if (type->ins_appending == APPEND_TAIL && type->ins_contig != CONTIG_LEFT) { ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, right_path, &left_path); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_insert_path(inode, handle, et, left_path, right_path, insert_rec, type); if (ret) { mlog_errno(ret); goto out; } out_update_clusters: if (type->ins_split == SPLIT_NONE) ocfs2_et_update_clusters(et, le16_to_cpu(insert_rec->e_leaf_clusters)); ret = ocfs2_journal_dirty(handle, et->et_root_bh); if (ret) mlog_errno(ret); out: ocfs2_free_path(left_path); ocfs2_free_path(right_path); return ret; } static enum ocfs2_contig_type ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, struct ocfs2_extent_list *el, int index, struct ocfs2_extent_rec *split_rec) { int status; enum ocfs2_contig_type ret = CONTIG_NONE; u32 left_cpos, right_cpos; struct ocfs2_extent_rec *rec = NULL; struct ocfs2_extent_list *new_el; struct ocfs2_path *left_path = NULL, *right_path = NULL; struct buffer_head *bh; struct ocfs2_extent_block *eb; if (index > 0) { rec = &el->l_recs[index - 1]; } else if (path->p_tree_depth > 0) { status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &left_cpos); if (status) goto out; if (left_cpos != 0) { left_path = ocfs2_new_path_from_path(path); if (!left_path) goto out; status = ocfs2_find_path(INODE_CACHE(inode), left_path, left_cpos); if (status) goto out; new_el = path_leaf_el(left_path); if (le16_to_cpu(new_el->l_next_free_rec) != le16_to_cpu(new_el->l_count)) { bh = path_leaf_bh(left_path); eb = (struct ocfs2_extent_block *)bh->b_data; ocfs2_error(inode->i_sb, "Extent block #%llu has an " "invalid l_next_free_rec of " "%d. It should have " "matched the l_count of %d", (unsigned long long)le64_to_cpu(eb->h_blkno), le16_to_cpu(new_el->l_next_free_rec), le16_to_cpu(new_el->l_count)); status = -EINVAL; goto out; } rec = &new_el->l_recs[ le16_to_cpu(new_el->l_next_free_rec) - 1]; } } /* * We're careful to check for an empty extent record here - * the merge code will know what to do if it sees one. */ if (rec) { if (index == 1 && ocfs2_is_empty_extent(rec)) { if (split_rec->e_cpos == el->l_recs[index].e_cpos) ret = CONTIG_RIGHT; } else { ret = ocfs2_extent_contig(inode, rec, split_rec); } } rec = NULL; if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) rec = &el->l_recs[index + 1]; else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && path->p_tree_depth > 0) { status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, &right_cpos); if (status) goto out; if (right_cpos == 0) goto out; right_path = ocfs2_new_path_from_path(path); if (!right_path) goto out; status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos); if (status) goto out; new_el = path_leaf_el(right_path); rec = &new_el->l_recs[0]; if (ocfs2_is_empty_extent(rec)) { if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { bh = path_leaf_bh(right_path); eb = (struct ocfs2_extent_block *)bh->b_data; ocfs2_error(inode->i_sb, "Extent block #%llu has an " "invalid l_next_free_rec of %d", (unsigned long long)le64_to_cpu(eb->h_blkno), le16_to_cpu(new_el->l_next_free_rec)); status = -EINVAL; goto out; } rec = &new_el->l_recs[1]; } } if (rec) { enum ocfs2_contig_type contig_type; contig_type = ocfs2_extent_contig(inode, rec, split_rec); if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) ret = CONTIG_LEFTRIGHT; else if (ret == CONTIG_NONE) ret = contig_type; } out: if (left_path) ocfs2_free_path(left_path); if (right_path) ocfs2_free_path(right_path); return ret; } static void ocfs2_figure_contig_type(struct inode *inode, struct ocfs2_insert_type *insert, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec, struct ocfs2_extent_tree *et) { int i; enum ocfs2_contig_type contig_type = CONTIG_NONE; BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], insert_rec); if (contig_type != CONTIG_NONE) { insert->ins_contig_index = i; break; } } insert->ins_contig = contig_type; if (insert->ins_contig != CONTIG_NONE) { struct ocfs2_extent_rec *rec = &el->l_recs[insert->ins_contig_index]; unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + le16_to_cpu(insert_rec->e_leaf_clusters); /* * Caller might want us to limit the size of extents, don't * calculate contiguousness if we might exceed that limit. */ if (et->et_max_leaf_clusters && (len > et->et_max_leaf_clusters)) insert->ins_contig = CONTIG_NONE; } } /* * This should only be called against the righmost leaf extent list. * * ocfs2_figure_appending_type() will figure out whether we'll have to * insert at the tail of the rightmost leaf. * * This should also work against the root extent list for tree's with 0 * depth. If we consider the root extent list to be the rightmost leaf node * then the logic here makes sense. */ static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *insert_rec) { int i; u32 cpos = le32_to_cpu(insert_rec->e_cpos); struct ocfs2_extent_rec *rec; insert->ins_appending = APPEND_NONE; BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); if (!el->l_next_free_rec) goto set_tail_append; if (ocfs2_is_empty_extent(&el->l_recs[0])) { /* Were all records empty? */ if (le16_to_cpu(el->l_next_free_rec) == 1) goto set_tail_append; } i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; if (cpos >= (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) goto set_tail_append; return; set_tail_append: insert->ins_appending = APPEND_TAIL; } /* * Helper function called at the begining of an insert. * * This computes a few things that are commonly used in the process of * inserting into the btree: * - Whether the new extent is contiguous with an existing one. * - The current tree depth. * - Whether the insert is an appending one. * - The total # of free records in the tree. * * All of the information is stored on the ocfs2_insert_type * structure. */ static int ocfs2_figure_insert_type(struct inode *inode, struct ocfs2_extent_tree *et, struct buffer_head **last_eb_bh, struct ocfs2_extent_rec *insert_rec, int *free_records, struct ocfs2_insert_type *insert) { int ret; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct ocfs2_path *path = NULL; struct buffer_head *bh = NULL; insert->ins_split = SPLIT_NONE; el = et->et_root_el; insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); if (el->l_tree_depth) { /* * If we have tree depth, we read in the * rightmost extent block ahead of time as * ocfs2_figure_insert_type() and ocfs2_add_branch() * may want it later. */ ret = ocfs2_read_extent_block(et->et_ci, ocfs2_et_get_last_eb_blk(et), &bh); if (ret) { mlog_exit(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; } /* * Unless we have a contiguous insert, we'll need to know if * there is room left in our allocation tree for another * extent record. * * XXX: This test is simplistic, we can search for empty * extent records too. */ *free_records = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); if (!insert->ins_tree_depth) { ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); ocfs2_figure_appending_type(insert, el, insert_rec); return 0; } path = ocfs2_new_path_from_et(et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* * In the case that we're inserting past what the tree * currently accounts for, ocfs2_find_path() will return for * us the rightmost tree path. This is accounted for below in * the appending code. */ ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); /* * Now that we have the path, there's two things we want to determine: * 1) Contiguousness (also set contig_index if this is so) * * 2) Are we doing an append? We can trivially break this up * into two types of appends: simple record append, or a * rotate inside the tail leaf. */ ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); /* * The insert code isn't quite ready to deal with all cases of * left contiguousness. Specifically, if it's an insert into * the 1st record in a leaf, it will require the adjustment of * cluster count on the last record of the path directly to it's * left. For now, just catch that case and fool the layers * above us. This works just fine for tree_depth == 0, which * is why we allow that above. */ if (insert->ins_contig == CONTIG_LEFT && insert->ins_contig_index == 0) insert->ins_contig = CONTIG_NONE; /* * Ok, so we can simply compare against last_eb to figure out * whether the path doesn't exist. This will only happen in * the case that we're doing a tail append, so maybe we can * take advantage of that information somehow. */ if (ocfs2_et_get_last_eb_blk(et) == path_leaf_bh(path)->b_blocknr) { /* * Ok, ocfs2_find_path() returned us the rightmost * tree path. This might be an appending insert. There are * two cases: * 1) We're doing a true append at the tail: * -This might even be off the end of the leaf * 2) We're "appending" by rotating in the tail */ ocfs2_figure_appending_type(insert, el, insert_rec); } out: ocfs2_free_path(path); if (ret == 0) *last_eb_bh = bh; else brelse(bh); return ret; } /* * Insert an extent into an inode btree. * * The caller needs to update fe->i_clusters */ int ocfs2_insert_extent(struct ocfs2_super *osb, handle_t *handle, struct inode *inode, struct ocfs2_extent_tree *et, u32 cpos, u64 start_blk, u32 new_clusters, u8 flags, struct ocfs2_alloc_context *meta_ac) { int status; int uninitialized_var(free_records); struct buffer_head *last_eb_bh = NULL; struct ocfs2_insert_type insert = {0, }; struct ocfs2_extent_rec rec; mlog(0, "add %u clusters at position %u to inode %llu\n", new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); memset(&rec, 0, sizeof(rec)); rec.e_cpos = cpu_to_le32(cpos); rec.e_blkno = cpu_to_le64(start_blk); rec.e_leaf_clusters = cpu_to_le16(new_clusters); rec.e_flags = flags; status = ocfs2_et_insert_check(et, &rec); if (status) { mlog_errno(status); goto bail; } status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec, &free_records, &insert); if (status < 0) { mlog_errno(status); goto bail; } mlog(0, "Insert.appending: %u, Insert.Contig: %u, " "Insert.contig_index: %d, Insert.free_records: %d, " "Insert.tree_depth: %d\n", insert.ins_appending, insert.ins_contig, insert.ins_contig_index, free_records, insert.ins_tree_depth); if (insert.ins_contig == CONTIG_NONE && free_records == 0) { status = ocfs2_grow_tree(inode, handle, et, &insert.ins_tree_depth, &last_eb_bh, meta_ac); if (status) { mlog_errno(status); goto bail; } } /* Finally, we can add clusters. This might rotate the tree for us. */ status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert); if (status < 0) mlog_errno(status); else if (et->et_ops == &ocfs2_dinode_et_ops) ocfs2_extent_map_insert_rec(inode, &rec); bail: brelse(last_eb_bh); mlog_exit(status); return status; } /* * Allcate and add clusters into the extent b-tree. * The new clusters(clusters_to_add) will be inserted at logical_offset. * The extent b-tree's root is specified by et, and * it is not limited to the file storage. Any extent tree can use this * function if it implements the proper ocfs2_extent_tree. */ int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb, struct inode *inode, u32 *logical_offset, u32 clusters_to_add, int mark_unwritten, struct ocfs2_extent_tree *et, handle_t *handle, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, enum ocfs2_alloc_restarted *reason_ret) { int status = 0; int free_extents; enum ocfs2_alloc_restarted reason = RESTART_NONE; u32 bit_off, num_bits; u64 block; u8 flags = 0; BUG_ON(!clusters_to_add); if (mark_unwritten) flags = OCFS2_EXT_UNWRITTEN; free_extents = ocfs2_num_free_extents(osb, et); if (free_extents < 0) { status = free_extents; mlog_errno(status); goto leave; } /* there are two cases which could cause us to EAGAIN in the * we-need-more-metadata case: * 1) we haven't reserved *any* * 2) we are so fragmented, we've needed to add metadata too * many times. */ if (!free_extents && !meta_ac) { mlog(0, "we haven't reserved any metadata!\n"); status = -EAGAIN; reason = RESTART_META; goto leave; } else if ((!free_extents) && (ocfs2_alloc_context_bits_left(meta_ac) < ocfs2_extend_meta_needed(et->et_root_el))) { mlog(0, "filesystem is really fragmented...\n"); status = -EAGAIN; reason = RESTART_META; goto leave; } status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, clusters_to_add, &bit_off, &num_bits); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); goto leave; } BUG_ON(num_bits > clusters_to_add); /* reserve our write early -- insert_extent may update the tree root */ status = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } block = ocfs2_clusters_to_blocks(osb->sb, bit_off); mlog(0, "Allocating %u clusters at block %u for inode %llu\n", num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); status = ocfs2_insert_extent(osb, handle, inode, et, *logical_offset, block, num_bits, flags, meta_ac); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_journal_dirty(handle, et->et_root_bh); if (status < 0) { mlog_errno(status); goto leave; } clusters_to_add -= num_bits; *logical_offset += num_bits; if (clusters_to_add) { mlog(0, "need to alloc once more, wanted = %u\n", clusters_to_add); status = -EAGAIN; reason = RESTART_TRANS; } leave: mlog_exit(status); if (reason_ret) *reason_ret = reason; return status; } static void ocfs2_make_right_split_rec(struct super_block *sb, struct ocfs2_extent_rec *split_rec, u32 cpos, struct ocfs2_extent_rec *rec) { u32 rec_cpos = le32_to_cpu(rec->e_cpos); u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); split_rec->e_cpos = cpu_to_le32(cpos); split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); split_rec->e_blkno = rec->e_blkno; le64_add_cpu(&split_rec->e_blkno, ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); split_rec->e_flags = rec->e_flags; } static int ocfs2_split_and_insert(struct inode *inode, handle_t *handle, struct ocfs2_path *path, struct ocfs2_extent_tree *et, struct buffer_head **last_eb_bh, int split_index, struct ocfs2_extent_rec *orig_split_rec, struct ocfs2_alloc_context *meta_ac) { int ret = 0, depth; unsigned int insert_range, rec_range, do_leftright = 0; struct ocfs2_extent_rec tmprec; struct ocfs2_extent_list *rightmost_el; struct ocfs2_extent_rec rec; struct ocfs2_extent_rec split_rec = *orig_split_rec; struct ocfs2_insert_type insert; struct ocfs2_extent_block *eb; leftright: /* * Store a copy of the record on the stack - it might move * around as the tree is manipulated below. */ rec = path_leaf_el(path)->l_recs[split_index]; rightmost_el = et->et_root_el; depth = le16_to_cpu(rightmost_el->l_tree_depth); if (depth) { BUG_ON(!(*last_eb_bh)); eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; rightmost_el = &eb->h_list; } if (le16_to_cpu(rightmost_el->l_next_free_rec) == le16_to_cpu(rightmost_el->l_count)) { ret = ocfs2_grow_tree(inode, handle, et, &depth, last_eb_bh, meta_ac); if (ret) { mlog_errno(ret); goto out; } } memset(&insert, 0, sizeof(struct ocfs2_insert_type)); insert.ins_appending = APPEND_NONE; insert.ins_contig = CONTIG_NONE; insert.ins_tree_depth = depth; insert_range = le32_to_cpu(split_rec.e_cpos) + le16_to_cpu(split_rec.e_leaf_clusters); rec_range = le32_to_cpu(rec.e_cpos) + le16_to_cpu(rec.e_leaf_clusters); if (split_rec.e_cpos == rec.e_cpos) { insert.ins_split = SPLIT_LEFT; } else if (insert_range == rec_range) { insert.ins_split = SPLIT_RIGHT; } else { /* * Left/right split. We fake this as a right split * first and then make a second pass as a left split. */ insert.ins_split = SPLIT_RIGHT; ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, &rec); split_rec = tmprec; BUG_ON(do_leftright); do_leftright = 1; } ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); if (ret) { mlog_errno(ret); goto out; } if (do_leftright == 1) { u32 cpos; struct ocfs2_extent_list *el; do_leftright++; split_rec = *orig_split_rec; ocfs2_reinit_path(path, 1); cpos = le32_to_cpu(split_rec.e_cpos); ret = ocfs2_find_path(et->et_ci, path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); split_index = ocfs2_search_extent_list(el, cpos); goto leftright; } out: return ret; } static int ocfs2_replace_extent_rec(struct inode *inode, handle_t *handle, struct ocfs2_path *path, struct ocfs2_extent_list *el, int split_index, struct ocfs2_extent_rec *split_rec) { int ret; ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path, path_num_items(path) - 1); if (ret) { mlog_errno(ret); goto out; } el->l_recs[split_index] = *split_rec; ocfs2_journal_dirty(handle, path_leaf_bh(path)); out: return ret; } /* * Mark part or all of the extent record at split_index in the leaf * pointed to by path as written. This removes the unwritten * extent flag. * * Care is taken to handle contiguousness so as to not grow the tree. * * meta_ac is not strictly necessary - we only truly need it if growth * of the tree is required. All other cases will degrade into a less * optimal tree layout. * * last_eb_bh should be the rightmost leaf block for any extent * btree. Since a split may grow the tree or a merge might shrink it, * the caller cannot trust the contents of that buffer after this call. * * This code is optimized for readability - several passes might be * made over certain portions of the tree. All of those blocks will * have been brought into cache (and pinned via the journal), so the * extra overhead is not expressed in terms of disk reads. */ static int __ocfs2_mark_extent_written(struct inode *inode, struct ocfs2_extent_tree *et, handle_t *handle, struct ocfs2_path *path, int split_index, struct ocfs2_extent_rec *split_rec, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0; struct ocfs2_extent_list *el = path_leaf_el(path); struct buffer_head *last_eb_bh = NULL; struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; struct ocfs2_merge_ctxt ctxt; struct ocfs2_extent_list *rightmost_el; if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { ret = -EIO; mlog_errno(ret); goto out; } if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { ret = -EIO; mlog_errno(ret); goto out; } ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, split_index, split_rec); /* * The core merge / split code wants to know how much room is * left in this inodes allocation tree, so we pass the * rightmost extent list. */ if (path->p_tree_depth) { struct ocfs2_extent_block *eb; ret = ocfs2_read_extent_block(et->et_ci, ocfs2_et_get_last_eb_blk(et), &last_eb_bh); if (ret) { mlog_exit(ret); goto out; } eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; rightmost_el = &eb->h_list; } else rightmost_el = path_root_el(path); if (rec->e_cpos == split_rec->e_cpos && rec->e_leaf_clusters == split_rec->e_leaf_clusters) ctxt.c_split_covers_rec = 1; else ctxt.c_split_covers_rec = 0; ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, ctxt.c_split_covers_rec); if (ctxt.c_contig_type == CONTIG_NONE) { if (ctxt.c_split_covers_rec) ret = ocfs2_replace_extent_rec(inode, handle, path, el, split_index, split_rec); else ret = ocfs2_split_and_insert(inode, handle, path, et, &last_eb_bh, split_index, split_rec, meta_ac); if (ret) mlog_errno(ret); } else { ret = ocfs2_try_to_merge_extent(handle, et, path, split_index, split_rec, dealloc, &ctxt); if (ret) mlog_errno(ret); } out: brelse(last_eb_bh); return ret; } /* * Mark the already-existing extent at cpos as written for len clusters. * * If the existing extent is larger than the request, initiate a * split. An attempt will be made at merging with adjacent extents. * * The caller is responsible for passing down meta_ac if we'll need it. */ int ocfs2_mark_extent_written(struct inode *inode, struct ocfs2_extent_tree *et, handle_t *handle, u32 cpos, u32 len, u32 phys, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, index; u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); struct ocfs2_extent_rec split_rec; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *el; mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " "that are being written to, but the feature bit " "is not set in the super block.", (unsigned long long)OCFS2_I(inode)->ip_blkno); ret = -EROFS; goto out; } /* * XXX: This should be fixed up so that we just re-insert the * next extent records. * * XXX: This is a hack on the extent tree, maybe it should be * an op? */ if (et->et_ops == &ocfs2_dinode_et_ops) ocfs2_extent_map_trunc(inode, 0); left_path = ocfs2_new_path_from_et(et); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(left_path); index = ocfs2_search_extent_list(el, cpos); if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { ocfs2_error(inode->i_sb, "Inode %llu has an extent at cpos %u which can no " "longer be found.\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); ret = -EROFS; goto out; } memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); split_rec.e_cpos = cpu_to_le32(cpos); split_rec.e_leaf_clusters = cpu_to_le16(len); split_rec.e_blkno = cpu_to_le64(start_blkno); split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; ret = __ocfs2_mark_extent_written(inode, et, handle, left_path, index, &split_rec, meta_ac, dealloc); if (ret) mlog_errno(ret); out: ocfs2_free_path(left_path); return ret; } static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et, handle_t *handle, struct ocfs2_path *path, int index, u32 new_range, struct ocfs2_alloc_context *meta_ac) { int ret, depth, credits = handle->h_buffer_credits; struct buffer_head *last_eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *rightmost_el, *el; struct ocfs2_extent_rec split_rec; struct ocfs2_extent_rec *rec; struct ocfs2_insert_type insert; /* * Setup the record to split before we grow the tree. */ el = path_leaf_el(path); rec = &el->l_recs[index]; ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); depth = path->p_tree_depth; if (depth > 0) { ret = ocfs2_read_extent_block(et->et_ci, ocfs2_et_get_last_eb_blk(et), &last_eb_bh); if (ret < 0) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; rightmost_el = &eb->h_list; } else rightmost_el = path_leaf_el(path); credits += path->p_tree_depth + ocfs2_extend_meta_needed(et->et_root_el); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); goto out; } if (le16_to_cpu(rightmost_el->l_next_free_rec) == le16_to_cpu(rightmost_el->l_count)) { ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh, meta_ac); if (ret) { mlog_errno(ret); goto out; } } memset(&insert, 0, sizeof(struct ocfs2_insert_type)); insert.ins_appending = APPEND_NONE; insert.ins_contig = CONTIG_NONE; insert.ins_split = SPLIT_RIGHT; insert.ins_tree_depth = depth; ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); if (ret) mlog_errno(ret); out: brelse(last_eb_bh); return ret; } static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, struct ocfs2_path *path, int index, struct ocfs2_cached_dealloc_ctxt *dealloc, u32 cpos, u32 len, struct ocfs2_extent_tree *et) { int ret; u32 left_cpos, rec_range, trunc_range; int wants_rotate = 0, is_rightmost_tree_rec = 0; struct super_block *sb = inode->i_sb; struct ocfs2_path *left_path = NULL; struct ocfs2_extent_list *el = path_leaf_el(path); struct ocfs2_extent_rec *rec; struct ocfs2_extent_block *eb; if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) { mlog_errno(ret); goto out; } index--; } if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && path->p_tree_depth) { /* * Check whether this is the rightmost tree record. If * we remove all of this record or part of its right * edge then an update of the record lengths above it * will be required. */ eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; if (eb->h_next_leaf_blk == 0) is_rightmost_tree_rec = 1; } rec = &el->l_recs[index]; if (index == 0 && path->p_tree_depth && le32_to_cpu(rec->e_cpos) == cpos) { /* * Changing the leftmost offset (via partial or whole * record truncate) of an interior (or rightmost) path * means we have to update the subtree that is formed * by this leaf and the one to it's left. * * There are two cases we can skip: * 1) Path is the leftmost one in our inode tree. * 2) The leaf is rightmost and will be empty after * we remove the extent record - the rotate code * knows how to update the newly formed edge. */ ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &left_cpos); if (ret) { mlog_errno(ret); goto out; } if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { left_path = ocfs2_new_path_from_path(path); if (!left_path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); if (ret) { mlog_errno(ret); goto out; } } } ret = ocfs2_extend_rotate_transaction(handle, 0, handle->h_buffer_credits, path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, path); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); if (ret) { mlog_errno(ret); goto out; } rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); trunc_range = cpos + len; if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { int next_free; memset(rec, 0, sizeof(*rec)); ocfs2_cleanup_merge(el, index); wants_rotate = 1; next_free = le16_to_cpu(el->l_next_free_rec); if (is_rightmost_tree_rec && next_free > 1) { /* * We skip the edge update if this path will * be deleted by the rotate code. */ rec = &el->l_recs[next_free - 1]; ocfs2_adjust_rightmost_records(inode, handle, path, rec); } } else if (le32_to_cpu(rec->e_cpos) == cpos) { /* Remove leftmost portion of the record. */ le32_add_cpu(&rec->e_cpos, len); le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); le16_add_cpu(&rec->e_leaf_clusters, -len); } else if (rec_range == trunc_range) { /* Remove rightmost portion of the record */ le16_add_cpu(&rec->e_leaf_clusters, -len); if (is_rightmost_tree_rec) ocfs2_adjust_rightmost_records(inode, handle, path, rec); } else { /* Caller should have trapped this. */ mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, le32_to_cpu(rec->e_cpos), le16_to_cpu(rec->e_leaf_clusters), cpos, len); BUG(); } if (left_path) { int subtree_index; subtree_index = ocfs2_find_subtree_root(et, left_path, path); ocfs2_complete_edge_insert(handle, left_path, path, subtree_index); } ocfs2_journal_dirty(handle, path_leaf_bh(path)); ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); if (ret) { mlog_errno(ret); goto out; } out: ocfs2_free_path(left_path); return ret; } int ocfs2_remove_extent(struct inode *inode, struct ocfs2_extent_tree *et, u32 cpos, u32 len, handle_t *handle, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret, index; u32 rec_range, trunc_range; struct ocfs2_extent_rec *rec; struct ocfs2_extent_list *el; struct ocfs2_path *path = NULL; ocfs2_extent_map_trunc(inode, 0); path = ocfs2_new_path_from_et(et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_find_path(et->et_ci, path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); index = ocfs2_search_extent_list(el, cpos); if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { ocfs2_error(inode->i_sb, "Inode %llu has an extent at cpos %u which can no " "longer be found.\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); ret = -EROFS; goto out; } /* * We have 3 cases of extent removal: * 1) Range covers the entire extent rec * 2) Range begins or ends on one edge of the extent rec * 3) Range is in the middle of the extent rec (no shared edges) * * For case 1 we remove the extent rec and left rotate to * fill the hole. * * For case 2 we just shrink the existing extent rec, with a * tree update if the shrinking edge is also the edge of an * extent block. * * For case 3 we do a right split to turn the extent rec into * something case 2 can handle. */ rec = &el->l_recs[index]; rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); trunc_range = cpos + len; BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " "(cpos %u, len %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, cpos, len, et); if (ret) { mlog_errno(ret); goto out; } } else { ret = ocfs2_split_tree(inode, et, handle, path, index, trunc_range, meta_ac); if (ret) { mlog_errno(ret); goto out; } /* * The split could have manipulated the tree enough to * move the record location, so we have to look for it again. */ ocfs2_reinit_path(path, 1); ret = ocfs2_find_path(et->et_ci, path, cpos); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); index = ocfs2_search_extent_list(el, cpos); if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { ocfs2_error(inode->i_sb, "Inode %llu: split at cpos %u lost record.", (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); ret = -EROFS; goto out; } /* * Double check our values here. If anything is fishy, * it's easier to catch it at the top level. */ rec = &el->l_recs[index]; rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (rec_range != trunc_range) { ocfs2_error(inode->i_sb, "Inode %llu: error after split at cpos %u" "trunc len %u, existing record is (%u,%u)", (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); ret = -EROFS; goto out; } ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, cpos, len, et); if (ret) { mlog_errno(ret); goto out; } } out: ocfs2_free_path(path); return ret; } int ocfs2_remove_btree_range(struct inode *inode, struct ocfs2_extent_tree *et, u32 cpos, u32 phys_cpos, u32 len, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret; u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; handle_t *handle; struct ocfs2_alloc_context *meta_ac = NULL; ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); if (ret) { mlog_errno(ret); return ret; } mutex_lock(&tl_inode->i_mutex); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_et_root_journal_access(handle, et, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } vfs_dq_free_space_nodirty(inode, ocfs2_clusters_to_bytes(inode->i_sb, len)); ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac, dealloc); if (ret) { mlog_errno(ret); goto out_commit; } ocfs2_et_update_clusters(et, -len); ret = ocfs2_journal_dirty(handle, et->et_root_bh); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); if (ret) mlog_errno(ret); out_commit: ocfs2_commit_trans(osb, handle); out: mutex_unlock(&tl_inode->i_mutex); if (meta_ac) ocfs2_free_alloc_context(meta_ac); return ret; } int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) { struct buffer_head *tl_bh = osb->osb_tl_bh; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), "slot %d, invalid truncate log parameters: used = " "%u, count = %u\n", osb->slot_num, le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); } static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, unsigned int new_start) { unsigned int tail_index; unsigned int current_tail; /* No records, nothing to coalesce */ if (!le16_to_cpu(tl->tl_used)) return 0; tail_index = le16_to_cpu(tl->tl_used) - 1; current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); return current_tail == new_start; } int ocfs2_truncate_log_append(struct ocfs2_super *osb, handle_t *handle, u64 start_blk, unsigned int num_clusters) { int status, index; unsigned int start_cluster, tl_count; struct inode *tl_inode = osb->osb_tl_inode; struct buffer_head *tl_bh = osb->osb_tl_bh; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; mlog_entry("start_blk = %llu, num_clusters = %u\n", (unsigned long long)start_blk, num_clusters); BUG_ON(mutex_trylock(&tl_inode->i_mutex)); start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); di = (struct ocfs2_dinode *) tl_bh->b_data; /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated * by the underlying call to ocfs2_read_inode_block(), so any * corruption is a code bug */ BUG_ON(!OCFS2_IS_VALID_DINODE(di)); tl = &di->id2.i_dealloc; tl_count = le16_to_cpu(tl->tl_count); mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || tl_count == 0, "Truncate record count on #%llu invalid " "wanted %u, actual %u\n", (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, ocfs2_truncate_recs_per_inode(osb->sb), le16_to_cpu(tl->tl_count)); /* Caller should have known to flush before calling us. */ index = le16_to_cpu(tl->tl_used); if (index >= tl_count) { status = -ENOSPC; mlog_errno(status); goto bail; } status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } mlog(0, "Log truncate of %u clusters starting at cluster %u to " "%llu (index = %d)\n", num_clusters, start_cluster, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { /* * Move index back to the record we are coalescing with. * ocfs2_truncate_log_can_coalesce() guarantees nonzero */ index--; num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", index, le32_to_cpu(tl->tl_recs[index].t_start), num_clusters); } else { tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); tl->tl_used = cpu_to_le16(index + 1); } tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); status = ocfs2_journal_dirty(handle, tl_bh); if (status < 0) { mlog_errno(status); goto bail; } bail: mlog_exit(status); return status; } static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, handle_t *handle, struct inode *data_alloc_inode, struct buffer_head *data_alloc_bh) { int status = 0; int i; unsigned int num_clusters; u64 start_blk; struct ocfs2_truncate_rec rec; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; struct inode *tl_inode = osb->osb_tl_inode; struct buffer_head *tl_bh = osb->osb_tl_bh; mlog_entry_void(); di = (struct ocfs2_dinode *) tl_bh->b_data; tl = &di->id2.i_dealloc; i = le16_to_cpu(tl->tl_used) - 1; while (i >= 0) { /* Caller has given us at least enough credits to * update the truncate log dinode */ status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } tl->tl_used = cpu_to_le16(i); status = ocfs2_journal_dirty(handle, tl_bh); if (status < 0) { mlog_errno(status); goto bail; } /* TODO: Perhaps we can calculate the bulk of the * credits up front rather than extending like * this. */ status = ocfs2_extend_trans(handle, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); if (status < 0) { mlog_errno(status); goto bail; } rec = tl->tl_recs[i]; start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, le32_to_cpu(rec.t_start)); num_clusters = le32_to_cpu(rec.t_clusters); /* if start_blk is not set, we ignore the record as * invalid. */ if (start_blk) { mlog(0, "free record %d, start = %u, clusters = %u\n", i, le32_to_cpu(rec.t_start), num_clusters); status = ocfs2_free_clusters(handle, data_alloc_inode, data_alloc_bh, start_blk, num_clusters); if (status < 0) { mlog_errno(status); goto bail; } } i--; } bail: mlog_exit(status); return status; } /* Expects you to already be holding tl_inode->i_mutex */ int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) { int status; unsigned int num_to_flush; handle_t *handle; struct inode *tl_inode = osb->osb_tl_inode; struct inode *data_alloc_inode = NULL; struct buffer_head *tl_bh = osb->osb_tl_bh; struct buffer_head *data_alloc_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; mlog_entry_void(); BUG_ON(mutex_trylock(&tl_inode->i_mutex)); di = (struct ocfs2_dinode *) tl_bh->b_data; /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated * by the underlying call to ocfs2_read_inode_block(), so any * corruption is a code bug */ BUG_ON(!OCFS2_IS_VALID_DINODE(di)); tl = &di->id2.i_dealloc; num_to_flush = le16_to_cpu(tl->tl_used); mlog(0, "Flush %u records from truncate log #%llu\n", num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); if (!num_to_flush) { status = 0; goto out; } data_alloc_inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!data_alloc_inode) { status = -EINVAL; mlog(ML_ERROR, "Could not get bitmap inode!\n"); goto out; } mutex_lock(&data_alloc_inode->i_mutex); status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); if (status < 0) { mlog_errno(status); goto out_mutex; } handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out_unlock; } status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, data_alloc_bh); if (status < 0) mlog_errno(status); ocfs2_commit_trans(osb, handle); out_unlock: brelse(data_alloc_bh); ocfs2_inode_unlock(data_alloc_inode, 1); out_mutex: mutex_unlock(&data_alloc_inode->i_mutex); iput(data_alloc_inode); out: mlog_exit(status); return status; } int ocfs2_flush_truncate_log(struct ocfs2_super *osb) { int status; struct inode *tl_inode = osb->osb_tl_inode; mutex_lock(&tl_inode->i_mutex); status = __ocfs2_flush_truncate_log(osb); mutex_unlock(&tl_inode->i_mutex); return status; } static void ocfs2_truncate_log_worker(struct work_struct *work) { int status; struct ocfs2_super *osb = container_of(work, struct ocfs2_super, osb_truncate_log_wq.work); mlog_entry_void(); status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); else ocfs2_init_inode_steal_slot(osb); mlog_exit(status); } #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, int cancel) { if (osb->osb_tl_inode) { /* We want to push off log flushes while truncates are * still running. */ if (cancel) cancel_delayed_work(&osb->osb_truncate_log_wq); queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); } } static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, int slot_num, struct inode **tl_inode, struct buffer_head **tl_bh) { int status; struct inode *inode = NULL; struct buffer_head *bh = NULL; inode = ocfs2_get_system_file_inode(osb, TRUNCATE_LOG_SYSTEM_INODE, slot_num); if (!inode) { status = -EINVAL; mlog(ML_ERROR, "Could not get load truncate log inode!\n"); goto bail; } status = ocfs2_read_inode_block(inode, &bh); if (status < 0) { iput(inode); mlog_errno(status); goto bail; } *tl_inode = inode; *tl_bh = bh; bail: mlog_exit(status); return status; } /* called during the 1st stage of node recovery. we stamp a clean * truncate log and pass back a copy for processing later. if the * truncate log does not require processing, a *tl_copy is set to * NULL. */ int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, int slot_num, struct ocfs2_dinode **tl_copy) { int status; struct inode *tl_inode = NULL; struct buffer_head *tl_bh = NULL; struct ocfs2_dinode *di; struct ocfs2_truncate_log *tl; *tl_copy = NULL; mlog(0, "recover truncate log from slot %d\n", slot_num); status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); if (status < 0) { mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *) tl_bh->b_data; /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's * validated by the underlying call to ocfs2_read_inode_block(), * so any corruption is a code bug */ BUG_ON(!OCFS2_IS_VALID_DINODE(di)); tl = &di->id2.i_dealloc; if (le16_to_cpu(tl->tl_used)) { mlog(0, "We'll have %u logs to recover\n", le16_to_cpu(tl->tl_used)); *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); if (!(*tl_copy)) { status = -ENOMEM; mlog_errno(status); goto bail; } /* Assuming the write-out below goes well, this copy * will be passed back to recovery for processing. */ memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); /* All we need to do to clear the truncate log is set * tl_used. */ tl->tl_used = 0; ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); if (status < 0) { mlog_errno(status); goto bail; } } bail: if (tl_inode) iput(tl_inode); brelse(tl_bh); if (status < 0 && (*tl_copy)) { kfree(*tl_copy); *tl_copy = NULL; } mlog_exit(status); return status; } int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, struct ocfs2_dinode *tl_copy) { int status = 0; int i; unsigned int clusters, num_recs, start_cluster; u64 start_blk; handle_t *handle; struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_truncate_log *tl; mlog_entry_void(); if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); return -EINVAL; } tl = &tl_copy->id2.i_dealloc; num_recs = le16_to_cpu(tl->tl_used); mlog(0, "cleanup %u records from %llu\n", num_recs, (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); mutex_lock(&tl_inode->i_mutex); for(i = 0; i < num_recs; i++) { if (ocfs2_truncate_log_needs_flush(osb)) { status = __ocfs2_flush_truncate_log(osb); if (status < 0) { mlog_errno(status); goto bail_up; } } handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_up; } clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); status = ocfs2_truncate_log_append(osb, handle, start_blk, clusters); ocfs2_commit_trans(osb, handle); if (status < 0) { mlog_errno(status); goto bail_up; } } bail_up: mutex_unlock(&tl_inode->i_mutex); mlog_exit(status); return status; } void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) { int status; struct inode *tl_inode = osb->osb_tl_inode; mlog_entry_void(); if (tl_inode) { cancel_delayed_work(&osb->osb_truncate_log_wq); flush_workqueue(ocfs2_wq); status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); brelse(osb->osb_tl_bh); iput(osb->osb_tl_inode); } mlog_exit_void(); } int ocfs2_truncate_log_init(struct ocfs2_super *osb) { int status; struct inode *tl_inode = NULL; struct buffer_head *tl_bh = NULL; mlog_entry_void(); status = ocfs2_get_truncate_log_info(osb, osb->slot_num, &tl_inode, &tl_bh); if (status < 0) mlog_errno(status); /* ocfs2_truncate_log_shutdown keys on the existence of * osb->osb_tl_inode so we don't set any of the osb variables * until we're sure all is well. */ INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, ocfs2_truncate_log_worker); osb->osb_tl_bh = tl_bh; osb->osb_tl_inode = tl_inode; mlog_exit(status); return status; } /* * Delayed de-allocation of suballocator blocks. * * Some sets of block de-allocations might involve multiple suballocator inodes. * * The locking for this can get extremely complicated, especially when * the suballocator inodes to delete from aren't known until deep * within an unrelated codepath. * * ocfs2_extent_block structures are a good example of this - an inode * btree could have been grown by any number of nodes each allocating * out of their own suballoc inode. * * These structures allow the delay of block de-allocation until a * later time, when locking of multiple cluster inodes won't cause * deadlock. */ /* * Describe a single bit freed from a suballocator. For the block * suballocators, it represents one block. For the global cluster * allocator, it represents some clusters and free_bit indicates * clusters number. */ struct ocfs2_cached_block_free { struct ocfs2_cached_block_free *free_next; u64 free_blk; unsigned int free_bit; }; struct ocfs2_per_slot_free_list { struct ocfs2_per_slot_free_list *f_next_suballocator; int f_inode_type; int f_slot; struct ocfs2_cached_block_free *f_first; }; static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, int sysfile_type, int slot, struct ocfs2_cached_block_free *head) { int ret; u64 bg_blkno; handle_t *handle; struct inode *inode; struct buffer_head *di_bh = NULL; struct ocfs2_cached_block_free *tmp; inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); if (!inode) { ret = -EINVAL; mlog_errno(ret); goto out; } mutex_lock(&inode->i_mutex); ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out_mutex; } handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock; } while (head) { bg_blkno = ocfs2_which_suballoc_group(head->free_blk, head->free_bit); mlog(0, "Free bit: (bit %u, blkno %llu)\n", head->free_bit, (unsigned long long)head->free_blk); ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, head->free_bit, bg_blkno, 1); if (ret) { mlog_errno(ret); goto out_journal; } ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); if (ret) { mlog_errno(ret); goto out_journal; } tmp = head; head = head->free_next; kfree(tmp); } out_journal: ocfs2_commit_trans(osb, handle); out_unlock: ocfs2_inode_unlock(inode, 1); brelse(di_bh); out_mutex: mutex_unlock(&inode->i_mutex); iput(inode); out: while(head) { /* Premature exit may have left some dangling items. */ tmp = head; head = head->free_next; kfree(tmp); } return ret; } int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, u64 blkno, unsigned int bit) { int ret = 0; struct ocfs2_cached_block_free *item; item = kmalloc(sizeof(*item), GFP_NOFS); if (item == NULL) { ret = -ENOMEM; mlog_errno(ret); return ret; } mlog(0, "Insert clusters: (bit %u, blk %llu)\n", bit, (unsigned long long)blkno); item->free_blk = blkno; item->free_bit = bit; item->free_next = ctxt->c_global_allocator; ctxt->c_global_allocator = item; return ret; } static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, struct ocfs2_cached_block_free *head) { struct ocfs2_cached_block_free *tmp; struct inode *tl_inode = osb->osb_tl_inode; handle_t *handle; int ret = 0; mutex_lock(&tl_inode->i_mutex); while (head) { if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); break; } } handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); break; } ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, head->free_bit); ocfs2_commit_trans(osb, handle); tmp = head; head = head->free_next; kfree(tmp); if (ret < 0) { mlog_errno(ret); break; } } mutex_unlock(&tl_inode->i_mutex); while (head) { /* Premature exit may have left some dangling items. */ tmp = head; head = head->free_next; kfree(tmp); } return ret; } int ocfs2_run_deallocs(struct ocfs2_super *osb, struct ocfs2_cached_dealloc_ctxt *ctxt) { int ret = 0, ret2; struct ocfs2_per_slot_free_list *fl; if (!ctxt) return 0; while (ctxt->c_first_suballocator) { fl = ctxt->c_first_suballocator; if (fl->f_first) { mlog(0, "Free items: (type %u, slot %d)\n", fl->f_inode_type, fl->f_slot); ret2 = ocfs2_free_cached_blocks(osb, fl->f_inode_type, fl->f_slot, fl->f_first); if (ret2) mlog_errno(ret2); if (!ret) ret = ret2; } ctxt->c_first_suballocator = fl->f_next_suballocator; kfree(fl); } if (ctxt->c_global_allocator) { ret2 = ocfs2_free_cached_clusters(osb, ctxt->c_global_allocator); if (ret2) mlog_errno(ret2); if (!ret) ret = ret2; ctxt->c_global_allocator = NULL; } return ret; } static struct ocfs2_per_slot_free_list * ocfs2_find_per_slot_free_list(int type, int slot, struct ocfs2_cached_dealloc_ctxt *ctxt) { struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; while (fl) { if (fl->f_inode_type == type && fl->f_slot == slot) return fl; fl = fl->f_next_suballocator; } fl = kmalloc(sizeof(*fl), GFP_NOFS); if (fl) { fl->f_inode_type = type; fl->f_slot = slot; fl->f_first = NULL; fl->f_next_suballocator = ctxt->c_first_suballocator; ctxt->c_first_suballocator = fl; } return fl; } static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, int type, int slot, u64 blkno, unsigned int bit) { int ret; struct ocfs2_per_slot_free_list *fl; struct ocfs2_cached_block_free *item; fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); if (fl == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } item = kmalloc(sizeof(*item), GFP_NOFS); if (item == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", type, slot, bit, (unsigned long long)blkno); item->free_blk = blkno; item->free_bit = bit; item->free_next = fl->f_first; fl->f_first = item; ret = 0; out: return ret; } static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, struct ocfs2_extent_block *eb) { return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, le16_to_cpu(eb->h_suballoc_slot), le64_to_cpu(eb->h_blkno), le16_to_cpu(eb->h_suballoc_bit)); } /* This function will figure out whether the currently last extent * block will be deleted, and if it will, what the new last extent * block will be so we can update his h_next_leaf_blk field, as well * as the dinodes i_last_eb_blk */ static int ocfs2_find_new_last_ext_blk(struct inode *inode, unsigned int clusters_to_del, struct ocfs2_path *path, struct buffer_head **new_last_eb) { int next_free, ret = 0; u32 cpos; struct ocfs2_extent_rec *rec; struct ocfs2_extent_block *eb; struct ocfs2_extent_list *el; struct buffer_head *bh = NULL; *new_last_eb = NULL; /* we have no tree, so of course, no last_eb. */ if (!path->p_tree_depth) goto out; /* trunc to zero special case - this makes tree_depth = 0 * regardless of what it is. */ if (OCFS2_I(inode)->ip_clusters == clusters_to_del) goto out; el = path_leaf_el(path); BUG_ON(!el->l_next_free_rec); /* * Make sure that this extent list will actually be empty * after we clear away the data. We can shortcut out if * there's more than one non-empty extent in the * list. Otherwise, a check of the remaining extent is * necessary. */ next_free = le16_to_cpu(el->l_next_free_rec); rec = NULL; if (ocfs2_is_empty_extent(&el->l_recs[0])) { if (next_free > 2) goto out; /* We may have a valid extent in index 1, check it. */ if (next_free == 2) rec = &el->l_recs[1]; /* * Fall through - no more nonempty extents, so we want * to delete this leaf. */ } else { if (next_free > 1) goto out; rec = &el->l_recs[0]; } if (rec) { /* * Check it we'll only be trimming off the end of this * cluster. */ if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) goto out; } ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) bh->b_data; el = &eb->h_list; /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). * Any corruption is a code bug. */ BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); *new_last_eb = bh; get_bh(*new_last_eb); mlog(0, "returning block %llu, (cpos: %u)\n", (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); out: brelse(bh); return ret; } /* * Trim some clusters off the rightmost edge of a tree. Only called * during truncate. * * The caller needs to: * - start journaling of each path component. * - compute and fully set up any new last ext block */ static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, handle_t *handle, struct ocfs2_truncate_context *tc, u32 clusters_to_del, u64 *delete_start) { int ret, i, index = path->p_tree_depth; u32 new_edge = 0; u64 deleted_eb = 0; struct buffer_head *bh; struct ocfs2_extent_list *el; struct ocfs2_extent_rec *rec; *delete_start = 0; while (index >= 0) { bh = path->p_node[index].bh; el = path->p_node[index].el; mlog(0, "traveling tree (index = %d, block = %llu)\n", index, (unsigned long long)bh->b_blocknr); BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); if (index != (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { ocfs2_error(inode->i_sb, "Inode %lu has invalid ext. block %llu", inode->i_ino, (unsigned long long)bh->b_blocknr); ret = -EROFS; goto out; } find_tail_record: i = le16_to_cpu(el->l_next_free_rec) - 1; rec = &el->l_recs[i]; mlog(0, "Extent list before: record %d: (%u, %u, %llu), " "next = %u\n", i, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), (unsigned long long)le64_to_cpu(rec->e_blkno), le16_to_cpu(el->l_next_free_rec)); BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); if (le16_to_cpu(el->l_tree_depth) == 0) { /* * If the leaf block contains a single empty * extent and no records, we can just remove * the block. */ if (i == 0 && ocfs2_is_empty_extent(rec)) { memset(rec, 0, sizeof(struct ocfs2_extent_rec)); el->l_next_free_rec = cpu_to_le16(0); goto delete; } /* * Remove any empty extents by shifting things * left. That should make life much easier on * the code below. This condition is rare * enough that we shouldn't see a performance * hit. */ if (ocfs2_is_empty_extent(&el->l_recs[0])) { le16_add_cpu(&el->l_next_free_rec, -1); for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) el->l_recs[i] = el->l_recs[i + 1]; memset(&el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); /* * We've modified our extent list. The * simplest way to handle this change * is to being the search from the * start again. */ goto find_tail_record; } le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); /* * We'll use "new_edge" on our way back up the * tree to know what our rightmost cpos is. */ new_edge = le16_to_cpu(rec->e_leaf_clusters); new_edge += le32_to_cpu(rec->e_cpos); /* * The caller will use this to delete data blocks. */ *delete_start = le64_to_cpu(rec->e_blkno) + ocfs2_clusters_to_blocks(inode->i_sb, le16_to_cpu(rec->e_leaf_clusters)); /* * If it's now empty, remove this record. */ if (le16_to_cpu(rec->e_leaf_clusters) == 0) { memset(rec, 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&el->l_next_free_rec, -1); } } else { if (le64_to_cpu(rec->e_blkno) == deleted_eb) { memset(rec, 0, sizeof(struct ocfs2_extent_rec)); le16_add_cpu(&el->l_next_free_rec, -1); goto delete; } /* Can this actually happen? */ if (le16_to_cpu(el->l_next_free_rec) == 0) goto delete; /* * We never actually deleted any clusters * because our leaf was empty. There's no * reason to adjust the rightmost edge then. */ if (new_edge == 0) goto delete; rec->e_int_clusters = cpu_to_le32(new_edge); le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); /* * A deleted child record should have been * caught above. */ BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); } delete: ret = ocfs2_journal_dirty(handle, bh); if (ret) { mlog_errno(ret); goto out; } mlog(0, "extent list container %llu, after: record %d: " "(%u, %u, %llu), next = %u.\n", (unsigned long long)bh->b_blocknr, i, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), (unsigned long long)le64_to_cpu(rec->e_blkno), le16_to_cpu(el->l_next_free_rec)); /* * We must be careful to only attempt delete of an * extent block (and not the root inode block). */ if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)bh->b_data; /* * Save this for use when processing the * parent block. */ deleted_eb = le64_to_cpu(eb->h_blkno); mlog(0, "deleting this extent block.\n"); ocfs2_remove_from_cache(INODE_CACHE(inode), bh); BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); /* An error here is not fatal. */ if (ret < 0) mlog_errno(ret); } else { deleted_eb = 0; } index--; } ret = 0; out: return ret; } static int ocfs2_do_truncate(struct ocfs2_super *osb, unsigned int clusters_to_del, struct inode *inode, struct buffer_head *fe_bh, handle_t *handle, struct ocfs2_truncate_context *tc, struct ocfs2_path *path) { int status; struct ocfs2_dinode *fe; struct ocfs2_extent_block *last_eb = NULL; struct ocfs2_extent_list *el; struct buffer_head *last_eb_bh = NULL; u64 delete_blk = 0; fe = (struct ocfs2_dinode *) fe_bh->b_data; status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, path, &last_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } /* * Each component will be touched, so we might as well journal * here to avoid having to handle errors later. */ status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path); if (status < 0) { mlog_errno(status); goto bail; } if (last_eb_bh) { status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto bail; } last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; } el = &(fe->id2.i_list); /* * Lower levels depend on this never happening, but it's best * to check it up here before changing the tree. */ if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { ocfs2_error(inode->i_sb, "Inode %lu has an empty extent record, depth %u\n", inode->i_ino, le16_to_cpu(el->l_tree_depth)); status = -EROFS; goto bail; } vfs_dq_free_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); spin_lock(&OCFS2_I(inode)->ip_lock); OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - clusters_to_del; spin_unlock(&OCFS2_I(inode)->ip_lock); le32_add_cpu(&fe->i_clusters, -clusters_to_del); inode->i_blocks = ocfs2_inode_sector_count(inode); status = ocfs2_trim_tree(inode, path, handle, tc, clusters_to_del, &delete_blk); if (status) { mlog_errno(status); goto bail; } if (le32_to_cpu(fe->i_clusters) == 0) { /* trunc to zero is a special case. */ el->l_tree_depth = 0; fe->i_last_eb_blk = 0; } else if (last_eb) fe->i_last_eb_blk = last_eb->h_blkno; status = ocfs2_journal_dirty(handle, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } if (last_eb) { /* If there will be a new last extent block, then by * definition, there cannot be any leaves to the right of * him. */ last_eb->h_next_leaf_blk = 0; status = ocfs2_journal_dirty(handle, last_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } } if (delete_blk) { status = ocfs2_truncate_log_append(osb, handle, delete_blk, clusters_to_del); if (status < 0) { mlog_errno(status); goto bail; } } status = 0; bail: brelse(last_eb_bh); mlog_exit(status); return status; } static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) { set_buffer_uptodate(bh); mark_buffer_dirty(bh); return 0; } static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, unsigned int from, unsigned int to, struct page *page, int zero, u64 *phys) { int ret, partial = 0; ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); if (ret) mlog_errno(ret); if (zero) zero_user_segment(page, from, to); /* * Need to set the buffers we zero'd into uptodate * here if they aren't - ocfs2_map_page_blocks() * might've skipped some */ ret = walk_page_buffers(handle, page_buffers(page), from, to, &partial, ocfs2_zero_func); if (ret < 0) mlog_errno(ret); else if (ocfs2_should_order_data(inode)) { ret = ocfs2_jbd2_file_inode(handle, inode); if (ret < 0) mlog_errno(ret); } if (!partial) SetPageUptodate(page); flush_dcache_page(page); } static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, loff_t end, struct page **pages, int numpages, u64 phys, handle_t *handle) { int i; struct page *page; unsigned int from, to = PAGE_CACHE_SIZE; struct super_block *sb = inode->i_sb; BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); if (numpages == 0) goto out; to = PAGE_CACHE_SIZE; for(i = 0; i < numpages; i++) { page = pages[i]; from = start & (PAGE_CACHE_SIZE - 1); if ((end >> PAGE_CACHE_SHIFT) == page->index) to = end & (PAGE_CACHE_SIZE - 1); BUG_ON(from > PAGE_CACHE_SIZE); BUG_ON(to > PAGE_CACHE_SIZE); ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, &phys); start = (page->index + 1) << PAGE_CACHE_SHIFT; } out: if (pages) ocfs2_unlock_and_free_pages(pages, numpages); } static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, struct page **pages, int *num) { int numpages, ret = 0; struct super_block *sb = inode->i_sb; struct address_space *mapping = inode->i_mapping; unsigned long index; loff_t last_page_bytes; BUG_ON(start > end); BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); numpages = 0; last_page_bytes = PAGE_ALIGN(end); index = start >> PAGE_CACHE_SHIFT; do { pages[numpages] = grab_cache_page(mapping, index); if (!pages[numpages]) { ret = -ENOMEM; mlog_errno(ret); goto out; } numpages++; index++; } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); out: if (ret != 0) { if (pages) ocfs2_unlock_and_free_pages(pages, numpages); numpages = 0; } *num = numpages; return ret; } /* * Zero the area past i_size but still within an allocated * cluster. This avoids exposing nonzero data on subsequent file * extends. * * We need to call this before i_size is updated on the inode because * otherwise block_write_full_page() will skip writeout of pages past * i_size. The new_i_size parameter is passed for this reason. */ int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, u64 range_start, u64 range_end) { int ret = 0, numpages; struct page **pages = NULL; u64 phys; unsigned int ext_flags; struct super_block *sb = inode->i_sb; /* * File systems which don't support sparse files zero on every * extend. */ if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) return 0; pages = kcalloc(ocfs2_pages_per_cluster(sb), sizeof(struct page *), GFP_NOFS); if (pages == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } if (range_start == range_end) goto out; ret = ocfs2_extent_map_get_blocks(inode, range_start >> sb->s_blocksize_bits, &phys, NULL, &ext_flags); if (ret) { mlog_errno(ret); goto out; } /* * Tail is a hole, or is marked unwritten. In either case, we * can count on read and write to return/push zero's. */ if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) goto out; ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, &numpages); if (ret) { mlog_errno(ret); goto out; } ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, numpages, phys, handle); /* * Initiate writeout of the pages we zero'd here. We don't * wait on them - the truncate_inode_pages() call later will * do that for us. */ ret = do_sync_mapping_range(inode->i_mapping, range_start, range_end - 1, SYNC_FILE_RANGE_WRITE); if (ret) mlog_errno(ret); out: if (pages) kfree(pages); return ret; } static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, struct ocfs2_dinode *di) { unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2) - xattrsize); else memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2)); } void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di) { ocfs2_zero_dinode_id2_with_xattr(inode, di); di->id2.i_list.l_tree_depth = 0; di->id2.i_list.l_next_free_rec = 0; di->id2.i_list.l_count = cpu_to_le16( ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); } void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_inline_data *idata = &di->id2.i_data; spin_lock(&oi->ip_lock); oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); /* * We clear the entire i_data structure here so that all * fields can be properly initialized. */ ocfs2_zero_dinode_id2_with_xattr(inode, di); idata->id_count = cpu_to_le16( ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); } int ocfs2_convert_inline_data_to_extents(struct inode *inode, struct buffer_head *di_bh) { int ret, i, has_data, num_pages = 0; handle_t *handle; u64 uninitialized_var(block); struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_alloc_context *data_ac = NULL; struct page **pages = NULL; loff_t end = osb->s_clustersize; struct ocfs2_extent_tree et; int did_quota = 0; has_data = i_size_read(inode) ? 1 : 0; if (has_data) { pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), sizeof(struct page *), GFP_NOFS); if (pages == NULL) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_reserve_clusters(osb, 1, &data_ac); if (ret) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans(osb, ocfs2_inline_to_extents_credits(osb->sb)); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } if (has_data) { u32 bit_off, num; unsigned int page_end; u64 phys; if (vfs_dq_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, 1))) { ret = -EDQUOT; goto out_commit; } did_quota = 1; ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, &num); if (ret) { mlog_errno(ret); goto out_commit; } /* * Save two copies, one for insert, and one that can * be changed by ocfs2_map_and_dirty_page() below. */ block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); /* * Non sparse file systems zero on extend, so no need * to do that now. */ if (!ocfs2_sparse_alloc(osb) && PAGE_CACHE_SIZE < osb->s_clustersize) end = PAGE_CACHE_SIZE; ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); if (ret) { mlog_errno(ret); goto out_commit; } /* * This should populate the 1st page for us and mark * it up to date. */ ret = ocfs2_read_inline_data(inode, pages[0], di_bh); if (ret) { mlog_errno(ret); goto out_commit; } page_end = PAGE_CACHE_SIZE; if (PAGE_CACHE_SIZE > osb->s_clustersize) page_end = osb->s_clustersize; for (i = 0; i < num_pages; i++) ocfs2_map_and_dirty_page(inode, handle, 0, page_end, pages[i], i > 0, &phys); } spin_lock(&oi->ip_lock); oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); ocfs2_dinode_new_extent_list(inode, di); ocfs2_journal_dirty(handle, di_bh); if (has_data) { /* * An error at this point should be extremely rare. If * this proves to be false, we could always re-build * the in-inode data from our pages. */ ocfs2_init_dinode_extent_tree(&et, inode, di_bh); ret = ocfs2_insert_extent(osb, handle, inode, &et, 0, block, 1, 0, NULL); if (ret) { mlog_errno(ret); goto out_commit; } inode->i_blocks = ocfs2_inode_sector_count(inode); } out_commit: if (ret < 0 && did_quota) vfs_dq_free_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, 1)); ocfs2_commit_trans(osb, handle); out_unlock: if (data_ac) ocfs2_free_alloc_context(data_ac); out: if (pages) { ocfs2_unlock_and_free_pages(pages, num_pages); kfree(pages); } return ret; } /* * It is expected, that by the time you call this function, * inode->i_size and fe->i_size have been adjusted. * * WARNING: This will kfree the truncate context */ int ocfs2_commit_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_truncate_context *tc) { int status, i, credits, tl_sem = 0; u32 clusters_to_del, new_highest_cpos, range; struct ocfs2_extent_list *el; handle_t *handle = NULL; struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_path *path = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; mlog_entry_void(); new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, i_size_read(inode)); path = ocfs2_new_path(fe_bh, &di->id2.i_list, ocfs2_journal_access_di); if (!path) { status = -ENOMEM; mlog_errno(status); goto bail; } ocfs2_extent_map_trunc(inode, new_highest_cpos); start: /* * Check that we still have allocation to delete. */ if (OCFS2_I(inode)->ip_clusters == 0) { status = 0; goto bail; } /* * Truncate always works against the rightmost tree branch. */ status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); if (status) { mlog_errno(status); goto bail; } mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", OCFS2_I(inode)->ip_clusters, path->p_tree_depth); /* * By now, el will point to the extent list on the bottom most * portion of this tree. Only the tail record is considered in * each pass. * * We handle the following cases, in order: * - empty extent: delete the remaining branch * - remove the entire record * - remove a partial record * - no record needs to be removed (truncate has completed) */ el = path_leaf_el(path); if (le16_to_cpu(el->l_next_free_rec) == 0) { ocfs2_error(inode->i_sb, "Inode %llu has empty extent block at %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)path_leaf_bh(path)->b_blocknr); status = -EROFS; goto bail; } i = le16_to_cpu(el->l_next_free_rec) - 1; range = le32_to_cpu(el->l_recs[i].e_cpos) + ocfs2_rec_clusters(el, &el->l_recs[i]); if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { clusters_to_del = 0; } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); } else if (range > new_highest_cpos) { clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + le32_to_cpu(el->l_recs[i].e_cpos)) - new_highest_cpos; } else { status = 0; goto bail; } mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); mutex_lock(&tl_inode->i_mutex); tl_sem = 1; /* ocfs2_truncate_log_needs_flush guarantees us at least one * record is free for use. If there isn't any, we flush to get * an empty truncate log. */ if (ocfs2_truncate_log_needs_flush(osb)) { status = __ocfs2_flush_truncate_log(osb); if (status < 0) { mlog_errno(status); goto bail; } } credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, (struct ocfs2_dinode *)fe_bh->b_data, el); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto bail; } status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, tc, path); if (status < 0) { mlog_errno(status); goto bail; } mutex_unlock(&tl_inode->i_mutex); tl_sem = 0; ocfs2_commit_trans(osb, handle); handle = NULL; ocfs2_reinit_path(path, 1); /* * The check above will catch the case where we've truncated * away all allocation. */ goto start; bail: ocfs2_schedule_truncate_log_flush(osb, 1); if (tl_sem) mutex_unlock(&tl_inode->i_mutex); if (handle) ocfs2_commit_trans(osb, handle); ocfs2_run_deallocs(osb, &tc->tc_dealloc); ocfs2_free_path(path); /* This will drop the ext_alloc cluster lock for us */ ocfs2_free_truncate_context(tc); mlog_exit(status); return status; } /* * Expects the inode to already be locked. */ int ocfs2_prepare_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_truncate_context **tc) { int status; unsigned int new_i_clusters; struct ocfs2_dinode *fe; struct ocfs2_extent_block *eb; struct buffer_head *last_eb_bh = NULL; mlog_entry_void(); *tc = NULL; new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, i_size_read(inode)); fe = (struct ocfs2_dinode *) fe_bh->b_data; mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, (unsigned long long)le64_to_cpu(fe->i_size)); *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); if (!(*tc)) { status = -ENOMEM; mlog_errno(status); goto bail; } ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); if (fe->id2.i_list.l_tree_depth) { status = ocfs2_read_extent_block(INODE_CACHE(inode), le64_to_cpu(fe->i_last_eb_blk), &last_eb_bh); if (status < 0) { mlog_errno(status); goto bail; } eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; } (*tc)->tc_last_eb_bh = last_eb_bh; status = 0; bail: if (status < 0) { if (*tc) ocfs2_free_truncate_context(*tc); *tc = NULL; } mlog_exit_void(); return status; } /* * 'start' is inclusive, 'end' is not. */ int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, unsigned int start, unsigned int end, int trunc) { int ret; unsigned int numbytes; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_inline_data *idata = &di->id2.i_data; if (end > i_size_read(inode)) end = i_size_read(inode); BUG_ON(start >= end); if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || !ocfs2_supports_inline_data(osb)) { ocfs2_error(inode->i_sb, "Inline data flags for inode %llu don't agree! " "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, le16_to_cpu(di->i_dyn_features), OCFS2_I(inode)->ip_dyn_features, osb->s_feature_incompat); ret = -EROFS; goto out; } handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } numbytes = end - start; memset(idata->id_data + start, 0, numbytes); /* * No need to worry about the data page here - it's been * truncated already and inline data doesn't need it for * pushing zero's to disk, so we'll let readpage pick it up * later. */ if (trunc) { i_size_write(inode, start); di->i_size = cpu_to_le64(start); } inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_ctime = inode->i_mtime = CURRENT_TIME; di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); ocfs2_journal_dirty(handle, di_bh); out_commit: ocfs2_commit_trans(osb, handle); out: return ret; } static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) { /* * The caller is responsible for completing deallocation * before freeing the context. */ if (tc->tc_dealloc.c_first_suballocator != NULL) mlog(ML_NOTICE, "Truncate completion has non-empty dealloc context\n"); brelse(tc->tc_last_eb_bh); kfree(tc); }