/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" #include #include #include #include static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj); static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj, bool pipelined); static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj); static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj); static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write); static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, uint64_t offset, uint64_t size); static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj); static int i915_gem_object_wait_rendering(struct drm_gem_object *obj); static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment); static void i915_gem_clear_fence_reg(struct drm_gem_object *obj); static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv); static void i915_gem_free_object_tail(struct drm_gem_object *obj); static LIST_HEAD(shrink_list); static DEFINE_SPINLOCK(shrink_list_lock); static inline bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv) { return obj_priv->gtt_space && !obj_priv->active && obj_priv->pin_count == 0; } int i915_gem_do_init(struct drm_device *dev, unsigned long start, unsigned long end) { drm_i915_private_t *dev_priv = dev->dev_private; if (start >= end || (start & (PAGE_SIZE - 1)) != 0 || (end & (PAGE_SIZE - 1)) != 0) { return -EINVAL; } drm_mm_init(&dev_priv->mm.gtt_space, start, end - start); dev->gtt_total = (uint32_t) (end - start); return 0; } int i915_gem_init_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_init *args = data; int ret; mutex_lock(&dev->struct_mutex); ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end); mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_get_aperture *args = data; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; args->aper_size = dev->gtt_total; args->aper_available_size = (args->aper_size - atomic_read(&dev->pin_memory)); return 0; } /** * Creates a new mm object and returns a handle to it. */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_create *args = data; struct drm_gem_object *obj; int ret; u32 handle; args->size = roundup(args->size, PAGE_SIZE); /* Allocate the new object */ obj = i915_gem_alloc_object(dev, args->size); if (obj == NULL) return -ENOMEM; ret = drm_gem_handle_create(file_priv, obj, &handle); if (ret) { drm_gem_object_unreference_unlocked(obj); return ret; } /* Sink the floating reference from kref_init(handlecount) */ drm_gem_object_handle_unreference_unlocked(obj); args->handle = handle; return 0; } static inline int fast_shmem_read(struct page **pages, loff_t page_base, int page_offset, char __user *data, int length) { char __iomem *vaddr; int unwritten; vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0); if (vaddr == NULL) return -ENOMEM; unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length); kunmap_atomic(vaddr, KM_USER0); if (unwritten) return -EFAULT; return 0; } static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj) { drm_i915_private_t *dev_priv = obj->dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && obj_priv->tiling_mode != I915_TILING_NONE; } static inline void slow_shmem_copy(struct page *dst_page, int dst_offset, struct page *src_page, int src_offset, int length) { char *dst_vaddr, *src_vaddr; dst_vaddr = kmap(dst_page); src_vaddr = kmap(src_page); memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length); kunmap(src_page); kunmap(dst_page); } static inline void slow_shmem_bit17_copy(struct page *gpu_page, int gpu_offset, struct page *cpu_page, int cpu_offset, int length, int is_read) { char *gpu_vaddr, *cpu_vaddr; /* Use the unswizzled path if this page isn't affected. */ if ((page_to_phys(gpu_page) & (1 << 17)) == 0) { if (is_read) return slow_shmem_copy(cpu_page, cpu_offset, gpu_page, gpu_offset, length); else return slow_shmem_copy(gpu_page, gpu_offset, cpu_page, cpu_offset, length); } gpu_vaddr = kmap(gpu_page); cpu_vaddr = kmap(cpu_page); /* Copy the data, XORing A6 with A17 (1). The user already knows he's * XORing with the other bits (A9 for Y, A9 and A10 for X) */ while (length > 0) { int cacheline_end = ALIGN(gpu_offset + 1, 64); int this_length = min(cacheline_end - gpu_offset, length); int swizzled_gpu_offset = gpu_offset ^ 64; if (is_read) { memcpy(cpu_vaddr + cpu_offset, gpu_vaddr + swizzled_gpu_offset, this_length); } else { memcpy(gpu_vaddr + swizzled_gpu_offset, cpu_vaddr + cpu_offset, this_length); } cpu_offset += this_length; gpu_offset += this_length; length -= this_length; } kunmap(cpu_page); kunmap(gpu_page); } /** * This is the fast shmem pread path, which attempts to copy_from_user directly * from the backing pages of the object to the user's address space. On a * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow(). */ static int i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file_priv) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); ssize_t remain; loff_t offset, page_base; char __user *user_data; int page_offset, page_length; int ret; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; mutex_lock(&dev->struct_mutex); ret = i915_gem_object_get_pages(obj, 0); if (ret != 0) goto fail_unlock; ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, args->size); if (ret != 0) goto fail_put_pages; obj_priv = to_intel_bo(obj); offset = args->offset; while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ page_base = (offset & ~(PAGE_SIZE-1)); page_offset = offset & (PAGE_SIZE-1); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; ret = fast_shmem_read(obj_priv->pages, page_base, page_offset, user_data, page_length); if (ret) goto fail_put_pages; remain -= page_length; user_data += page_length; offset += page_length; } fail_put_pages: i915_gem_object_put_pages(obj); fail_unlock: mutex_unlock(&dev->struct_mutex); return ret; } static int i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj) { int ret; ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN); /* If we've insufficient memory to map in the pages, attempt * to make some space by throwing out some old buffers. */ if (ret == -ENOMEM) { struct drm_device *dev = obj->dev; ret = i915_gem_evict_something(dev, obj->size, i915_gem_get_gtt_alignment(obj)); if (ret) return ret; ret = i915_gem_object_get_pages(obj, 0); } return ret; } /** * This is the fallback shmem pread path, which allocates temporary storage * in kernel space to copy_to_user into outside of the struct_mutex, so we * can copy out of the object's backing pages while holding the struct mutex * and not take page faults. */ static int i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file_priv) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct mm_struct *mm = current->mm; struct page **user_pages; ssize_t remain; loff_t offset, pinned_pages, i; loff_t first_data_page, last_data_page, num_pages; int shmem_page_index, shmem_page_offset; int data_page_index, data_page_offset; int page_length; int ret; uint64_t data_ptr = args->data_ptr; int do_bit17_swizzling; remain = args->size; /* Pin the user pages containing the data. We can't fault while * holding the struct mutex, yet we want to hold it while * dereferencing the user data. */ first_data_page = data_ptr / PAGE_SIZE; last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; num_pages = last_data_page - first_data_page + 1; user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); if (user_pages == NULL) return -ENOMEM; down_read(&mm->mmap_sem); pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, num_pages, 1, 0, user_pages, NULL); up_read(&mm->mmap_sem); if (pinned_pages < num_pages) { ret = -EFAULT; goto fail_put_user_pages; } do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); mutex_lock(&dev->struct_mutex); ret = i915_gem_object_get_pages_or_evict(obj); if (ret) goto fail_unlock; ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, args->size); if (ret != 0) goto fail_put_pages; obj_priv = to_intel_bo(obj); offset = args->offset; while (remain > 0) { /* Operation in this page * * shmem_page_index = page number within shmem file * shmem_page_offset = offset within page in shmem file * data_page_index = page number in get_user_pages return * data_page_offset = offset with data_page_index page. * page_length = bytes to copy for this page */ shmem_page_index = offset / PAGE_SIZE; shmem_page_offset = offset & ~PAGE_MASK; data_page_index = data_ptr / PAGE_SIZE - first_data_page; data_page_offset = data_ptr & ~PAGE_MASK; page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; if ((data_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - data_page_offset; if (do_bit17_swizzling) { slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index], shmem_page_offset, user_pages[data_page_index], data_page_offset, page_length, 1); } else { slow_shmem_copy(user_pages[data_page_index], data_page_offset, obj_priv->pages[shmem_page_index], shmem_page_offset, page_length); } remain -= page_length; data_ptr += page_length; offset += page_length; } fail_put_pages: i915_gem_object_put_pages(obj); fail_unlock: mutex_unlock(&dev->struct_mutex); fail_put_user_pages: for (i = 0; i < pinned_pages; i++) { SetPageDirty(user_pages[i]); page_cache_release(user_pages[i]); } drm_free_large(user_pages); return ret; } /** * Reads data from the object referenced by handle. * * On error, the contents of *data are undefined. */ int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_pread *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; int ret; obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) return -ENOENT; obj_priv = to_intel_bo(obj); /* Bounds check source. * * XXX: This could use review for overflow issues... */ if (args->offset > obj->size || args->size > obj->size || args->offset + args->size > obj->size) { drm_gem_object_unreference_unlocked(obj); return -EINVAL; } if (i915_gem_object_needs_bit17_swizzle(obj)) { ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv); } else { ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv); if (ret != 0) ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv); } drm_gem_object_unreference_unlocked(obj); return ret; } /* This is the fast write path which cannot handle * page faults in the source data */ static inline int fast_user_write(struct io_mapping *mapping, loff_t page_base, int page_offset, char __user *user_data, int length) { char *vaddr_atomic; unsigned long unwritten; vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0); unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset, user_data, length); io_mapping_unmap_atomic(vaddr_atomic, KM_USER0); if (unwritten) return -EFAULT; return 0; } /* Here's the write path which can sleep for * page faults */ static inline void slow_kernel_write(struct io_mapping *mapping, loff_t gtt_base, int gtt_offset, struct page *user_page, int user_offset, int length) { char __iomem *dst_vaddr; char *src_vaddr; dst_vaddr = io_mapping_map_wc(mapping, gtt_base); src_vaddr = kmap(user_page); memcpy_toio(dst_vaddr + gtt_offset, src_vaddr + user_offset, length); kunmap(user_page); io_mapping_unmap(dst_vaddr); } static inline int fast_shmem_write(struct page **pages, loff_t page_base, int page_offset, char __user *data, int length) { char __iomem *vaddr; unsigned long unwritten; vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0); if (vaddr == NULL) return -ENOMEM; unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length); kunmap_atomic(vaddr, KM_USER0); if (unwritten) return -EFAULT; return 0; } /** * This is the fast pwrite path, where we copy the data directly from the * user into the GTT, uncached. */ static int i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); drm_i915_private_t *dev_priv = dev->dev_private; ssize_t remain; loff_t offset, page_base; char __user *user_data; int page_offset, page_length; int ret; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; if (!access_ok(VERIFY_READ, user_data, remain)) return -EFAULT; mutex_lock(&dev->struct_mutex); ret = i915_gem_object_pin(obj, 0); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret) goto fail; obj_priv = to_intel_bo(obj); offset = obj_priv->gtt_offset + args->offset; while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ page_base = (offset & ~(PAGE_SIZE-1)); page_offset = offset & (PAGE_SIZE-1); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base, page_offset, user_data, page_length); /* If we get a fault while copying data, then (presumably) our * source page isn't available. Return the error and we'll * retry in the slow path. */ if (ret) goto fail; remain -= page_length; user_data += page_length; offset += page_length; } fail: i915_gem_object_unpin(obj); mutex_unlock(&dev->struct_mutex); return ret; } /** * This is the fallback GTT pwrite path, which uses get_user_pages to pin * the memory and maps it using kmap_atomic for copying. * * This code resulted in x11perf -rgb10text consuming about 10% more CPU * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit). */ static int i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); drm_i915_private_t *dev_priv = dev->dev_private; ssize_t remain; loff_t gtt_page_base, offset; loff_t first_data_page, last_data_page, num_pages; loff_t pinned_pages, i; struct page **user_pages; struct mm_struct *mm = current->mm; int gtt_page_offset, data_page_offset, data_page_index, page_length; int ret; uint64_t data_ptr = args->data_ptr; remain = args->size; /* Pin the user pages containing the data. We can't fault while * holding the struct mutex, and all of the pwrite implementations * want to hold it while dereferencing the user data. */ first_data_page = data_ptr / PAGE_SIZE; last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; num_pages = last_data_page - first_data_page + 1; user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); if (user_pages == NULL) return -ENOMEM; down_read(&mm->mmap_sem); pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, num_pages, 0, 0, user_pages, NULL); up_read(&mm->mmap_sem); if (pinned_pages < num_pages) { ret = -EFAULT; goto out_unpin_pages; } mutex_lock(&dev->struct_mutex); ret = i915_gem_object_pin(obj, 0); if (ret) goto out_unlock; ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret) goto out_unpin_object; obj_priv = to_intel_bo(obj); offset = obj_priv->gtt_offset + args->offset; while (remain > 0) { /* Operation in this page * * gtt_page_base = page offset within aperture * gtt_page_offset = offset within page in aperture * data_page_index = page number in get_user_pages return * data_page_offset = offset with data_page_index page. * page_length = bytes to copy for this page */ gtt_page_base = offset & PAGE_MASK; gtt_page_offset = offset & ~PAGE_MASK; data_page_index = data_ptr / PAGE_SIZE - first_data_page; data_page_offset = data_ptr & ~PAGE_MASK; page_length = remain; if ((gtt_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - gtt_page_offset; if ((data_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - data_page_offset; slow_kernel_write(dev_priv->mm.gtt_mapping, gtt_page_base, gtt_page_offset, user_pages[data_page_index], data_page_offset, page_length); remain -= page_length; offset += page_length; data_ptr += page_length; } out_unpin_object: i915_gem_object_unpin(obj); out_unlock: mutex_unlock(&dev->struct_mutex); out_unpin_pages: for (i = 0; i < pinned_pages; i++) page_cache_release(user_pages[i]); drm_free_large(user_pages); return ret; } /** * This is the fast shmem pwrite path, which attempts to directly * copy_from_user into the kmapped pages backing the object. */ static int i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); ssize_t remain; loff_t offset, page_base; char __user *user_data; int page_offset, page_length; int ret; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; mutex_lock(&dev->struct_mutex); ret = i915_gem_object_get_pages(obj, 0); if (ret != 0) goto fail_unlock; ret = i915_gem_object_set_to_cpu_domain(obj, 1); if (ret != 0) goto fail_put_pages; obj_priv = to_intel_bo(obj); offset = args->offset; obj_priv->dirty = 1; while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ page_base = (offset & ~(PAGE_SIZE-1)); page_offset = offset & (PAGE_SIZE-1); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; ret = fast_shmem_write(obj_priv->pages, page_base, page_offset, user_data, page_length); if (ret) goto fail_put_pages; remain -= page_length; user_data += page_length; offset += page_length; } fail_put_pages: i915_gem_object_put_pages(obj); fail_unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * This is the fallback shmem pwrite path, which uses get_user_pages to pin * the memory and maps it using kmap_atomic for copying. * * This avoids taking mmap_sem for faulting on the user's address while the * struct_mutex is held. */ static int i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct mm_struct *mm = current->mm; struct page **user_pages; ssize_t remain; loff_t offset, pinned_pages, i; loff_t first_data_page, last_data_page, num_pages; int shmem_page_index, shmem_page_offset; int data_page_index, data_page_offset; int page_length; int ret; uint64_t data_ptr = args->data_ptr; int do_bit17_swizzling; remain = args->size; /* Pin the user pages containing the data. We can't fault while * holding the struct mutex, and all of the pwrite implementations * want to hold it while dereferencing the user data. */ first_data_page = data_ptr / PAGE_SIZE; last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; num_pages = last_data_page - first_data_page + 1; user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); if (user_pages == NULL) return -ENOMEM; down_read(&mm->mmap_sem); pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, num_pages, 0, 0, user_pages, NULL); up_read(&mm->mmap_sem); if (pinned_pages < num_pages) { ret = -EFAULT; goto fail_put_user_pages; } do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); mutex_lock(&dev->struct_mutex); ret = i915_gem_object_get_pages_or_evict(obj); if (ret) goto fail_unlock; ret = i915_gem_object_set_to_cpu_domain(obj, 1); if (ret != 0) goto fail_put_pages; obj_priv = to_intel_bo(obj); offset = args->offset; obj_priv->dirty = 1; while (remain > 0) { /* Operation in this page * * shmem_page_index = page number within shmem file * shmem_page_offset = offset within page in shmem file * data_page_index = page number in get_user_pages return * data_page_offset = offset with data_page_index page. * page_length = bytes to copy for this page */ shmem_page_index = offset / PAGE_SIZE; shmem_page_offset = offset & ~PAGE_MASK; data_page_index = data_ptr / PAGE_SIZE - first_data_page; data_page_offset = data_ptr & ~PAGE_MASK; page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; if ((data_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - data_page_offset; if (do_bit17_swizzling) { slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index], shmem_page_offset, user_pages[data_page_index], data_page_offset, page_length, 0); } else { slow_shmem_copy(obj_priv->pages[shmem_page_index], shmem_page_offset, user_pages[data_page_index], data_page_offset, page_length); } remain -= page_length; data_ptr += page_length; offset += page_length; } fail_put_pages: i915_gem_object_put_pages(obj); fail_unlock: mutex_unlock(&dev->struct_mutex); fail_put_user_pages: for (i = 0; i < pinned_pages; i++) page_cache_release(user_pages[i]); drm_free_large(user_pages); return ret; } /** * Writes data to the object referenced by handle. * * On error, the contents of the buffer that were to be modified are undefined. */ int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_pwrite *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; int ret = 0; obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) return -ENOENT; obj_priv = to_intel_bo(obj); /* Bounds check destination. * * XXX: This could use review for overflow issues... */ if (args->offset > obj->size || args->size > obj->size || args->offset + args->size > obj->size) { drm_gem_object_unreference_unlocked(obj); return -EINVAL; } /* We can only do the GTT pwrite on untiled buffers, as otherwise * it would end up going through the fenced access, and we'll get * different detiling behavior between reading and writing. * pread/pwrite currently are reading and writing from the CPU * perspective, requiring manual detiling by the client. */ if (obj_priv->phys_obj) ret = i915_gem_phys_pwrite(dev, obj, args, file_priv); else if (obj_priv->tiling_mode == I915_TILING_NONE && dev->gtt_total != 0 && obj->write_domain != I915_GEM_DOMAIN_CPU) { ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv); if (ret == -EFAULT) { ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file_priv); } } else if (i915_gem_object_needs_bit17_swizzle(obj)) { ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv); } else { ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv); if (ret == -EFAULT) { ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv); } } #if WATCH_PWRITE if (ret) DRM_INFO("pwrite failed %d\n", ret); #endif drm_gem_object_unreference_unlocked(obj); return ret; } /** * Called when user space prepares to use an object with the CPU, either * through the mmap ioctl's mapping or a GTT mapping. */ int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_set_domain *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; uint32_t read_domains = args->read_domains; uint32_t write_domain = args->write_domain; int ret; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; /* Only handle setting domains to types used by the CPU. */ if (write_domain & I915_GEM_GPU_DOMAINS) return -EINVAL; if (read_domains & I915_GEM_GPU_DOMAINS) return -EINVAL; /* Having something in the write domain implies it's in the read * domain, and only that read domain. Enforce that in the request. */ if (write_domain != 0 && read_domains != write_domain) return -EINVAL; obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) return -ENOENT; obj_priv = to_intel_bo(obj); mutex_lock(&dev->struct_mutex); intel_mark_busy(dev, obj); #if WATCH_BUF DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n", obj, obj->size, read_domains, write_domain); #endif if (read_domains & I915_GEM_DOMAIN_GTT) { ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); /* Update the LRU on the fence for the CPU access that's * about to occur. */ if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj_priv->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); } /* Silently promote "you're not bound, there was nothing to do" * to success, since the client was just asking us to * make sure everything was done. */ if (ret == -EINVAL) ret = 0; } else { ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); } /* Maintain LRU order of "inactive" objects */ if (ret == 0 && i915_gem_object_is_inactive(obj_priv)) list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return ret; } /** * Called when user space has done writes to this buffer */ int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_sw_finish *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; int ret = 0; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; mutex_lock(&dev->struct_mutex); obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { mutex_unlock(&dev->struct_mutex); return -ENOENT; } #if WATCH_BUF DRM_INFO("%s: sw_finish %d (%p %zd)\n", __func__, args->handle, obj, obj->size); #endif obj_priv = to_intel_bo(obj); /* Pinned buffers may be scanout, so flush the cache */ if (obj_priv->pin_count) i915_gem_object_flush_cpu_write_domain(obj); drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return ret; } /** * Maps the contents of an object, returning the address it is mapped * into. * * While the mapping holds a reference on the contents of the object, it doesn't * imply a ref on the object itself. */ int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_mmap *args = data; struct drm_gem_object *obj; loff_t offset; unsigned long addr; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) return -ENOENT; offset = args->offset; down_write(¤t->mm->mmap_sem); addr = do_mmap(obj->filp, 0, args->size, PROT_READ | PROT_WRITE, MAP_SHARED, args->offset); up_write(¤t->mm->mmap_sem); drm_gem_object_unreference_unlocked(obj); if (IS_ERR((void *)addr)) return addr; args->addr_ptr = (uint64_t) addr; return 0; } /** * i915_gem_fault - fault a page into the GTT * vma: VMA in question * vmf: fault info * * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped * from userspace. The fault handler takes care of binding the object to * the GTT (if needed), allocating and programming a fence register (again, * only if needed based on whether the old reg is still valid or the object * is tiled) and inserting a new PTE into the faulting process. * * Note that the faulting process may involve evicting existing objects * from the GTT and/or fence registers to make room. So performance may * suffer if the GTT working set is large or there are few fence registers * left. */ int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct drm_gem_object *obj = vma->vm_private_data; struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); pgoff_t page_offset; unsigned long pfn; int ret = 0; bool write = !!(vmf->flags & FAULT_FLAG_WRITE); /* We don't use vmf->pgoff since that has the fake offset */ page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> PAGE_SHIFT; /* Now bind it into the GTT if needed */ mutex_lock(&dev->struct_mutex); if (!obj_priv->gtt_space) { ret = i915_gem_object_bind_to_gtt(obj, 0); if (ret) goto unlock; ret = i915_gem_object_set_to_gtt_domain(obj, write); if (ret) goto unlock; } /* Need a new fence register? */ if (obj_priv->tiling_mode != I915_TILING_NONE) { ret = i915_gem_object_get_fence_reg(obj); if (ret) goto unlock; } if (i915_gem_object_is_inactive(obj_priv)) list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) + page_offset; /* Finally, remap it using the new GTT offset */ ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); unlock: mutex_unlock(&dev->struct_mutex); switch (ret) { case 0: case -ERESTARTSYS: return VM_FAULT_NOPAGE; case -ENOMEM: case -EAGAIN: return VM_FAULT_OOM; default: return VM_FAULT_SIGBUS; } } /** * i915_gem_create_mmap_offset - create a fake mmap offset for an object * @obj: obj in question * * GEM memory mapping works by handing back to userspace a fake mmap offset * it can use in a subsequent mmap(2) call. The DRM core code then looks * up the object based on the offset and sets up the various memory mapping * structures. * * This routine allocates and attaches a fake offset for @obj. */ static int i915_gem_create_mmap_offset(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_gem_mm *mm = dev->mm_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct drm_map_list *list; struct drm_local_map *map; int ret = 0; /* Set the object up for mmap'ing */ list = &obj->map_list; list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL); if (!list->map) return -ENOMEM; map = list->map; map->type = _DRM_GEM; map->size = obj->size; map->handle = obj; /* Get a DRM GEM mmap offset allocated... */ list->file_offset_node = drm_mm_search_free(&mm->offset_manager, obj->size / PAGE_SIZE, 0, 0); if (!list->file_offset_node) { DRM_ERROR("failed to allocate offset for bo %d\n", obj->name); ret = -ENOMEM; goto out_free_list; } list->file_offset_node = drm_mm_get_block(list->file_offset_node, obj->size / PAGE_SIZE, 0); if (!list->file_offset_node) { ret = -ENOMEM; goto out_free_list; } list->hash.key = list->file_offset_node->start; if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) { DRM_ERROR("failed to add to map hash\n"); ret = -ENOMEM; goto out_free_mm; } /* By now we should be all set, any drm_mmap request on the offset * below will get to our mmap & fault handler */ obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT; return 0; out_free_mm: drm_mm_put_block(list->file_offset_node); out_free_list: kfree(list->map); return ret; } /** * i915_gem_release_mmap - remove physical page mappings * @obj: obj in question * * Preserve the reservation of the mmapping with the DRM core code, but * relinquish ownership of the pages back to the system. * * It is vital that we remove the page mapping if we have mapped a tiled * object through the GTT and then lose the fence register due to * resource pressure. Similarly if the object has been moved out of the * aperture, than pages mapped into userspace must be revoked. Removing the * mapping will then trigger a page fault on the next user access, allowing * fixup by i915_gem_fault(). */ void i915_gem_release_mmap(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); if (dev->dev_mapping) unmap_mapping_range(dev->dev_mapping, obj_priv->mmap_offset, obj->size, 1); } static void i915_gem_free_mmap_offset(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct drm_gem_mm *mm = dev->mm_private; struct drm_map_list *list; list = &obj->map_list; drm_ht_remove_item(&mm->offset_hash, &list->hash); if (list->file_offset_node) { drm_mm_put_block(list->file_offset_node); list->file_offset_node = NULL; } if (list->map) { kfree(list->map); list->map = NULL; } obj_priv->mmap_offset = 0; } /** * i915_gem_get_gtt_alignment - return required GTT alignment for an object * @obj: object to check * * Return the required GTT alignment for an object, taking into account * potential fence register mapping if needed. */ static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int start, i; /* * Minimum alignment is 4k (GTT page size), but might be greater * if a fence register is needed for the object. */ if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE) return 4096; /* * Previous chips need to be aligned to the size of the smallest * fence register that can contain the object. */ if (IS_I9XX(dev)) start = 1024*1024; else start = 512*1024; for (i = start; i < obj->size; i <<= 1) ; return i; } /** * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing * @dev: DRM device * @data: GTT mapping ioctl data * @file_priv: GEM object info * * Simply returns the fake offset to userspace so it can mmap it. * The mmap call will end up in drm_gem_mmap(), which will set things * up so we can get faults in the handler above. * * The fault handler will take care of binding the object into the GTT * (since it may have been evicted to make room for something), allocating * a fence register, and mapping the appropriate aperture address into * userspace. */ int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_mmap_gtt *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; int ret; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) return -ENOENT; mutex_lock(&dev->struct_mutex); obj_priv = to_intel_bo(obj); if (obj_priv->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to mmap a purgeable buffer\n"); drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return -EINVAL; } if (!obj_priv->mmap_offset) { ret = i915_gem_create_mmap_offset(obj); if (ret) { drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return ret; } } args->offset = obj_priv->mmap_offset; /* * Pull it into the GTT so that we have a page list (makes the * initial fault faster and any subsequent flushing possible). */ if (!obj_priv->agp_mem) { ret = i915_gem_object_bind_to_gtt(obj, 0); if (ret) { drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return ret; } } drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } void i915_gem_object_put_pages(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int page_count = obj->size / PAGE_SIZE; int i; BUG_ON(obj_priv->pages_refcount == 0); BUG_ON(obj_priv->madv == __I915_MADV_PURGED); if (--obj_priv->pages_refcount != 0) return; if (obj_priv->tiling_mode != I915_TILING_NONE) i915_gem_object_save_bit_17_swizzle(obj); if (obj_priv->madv == I915_MADV_DONTNEED) obj_priv->dirty = 0; for (i = 0; i < page_count; i++) { if (obj_priv->dirty) set_page_dirty(obj_priv->pages[i]); if (obj_priv->madv == I915_MADV_WILLNEED) mark_page_accessed(obj_priv->pages[i]); page_cache_release(obj_priv->pages[i]); } obj_priv->dirty = 0; drm_free_large(obj_priv->pages); obj_priv->pages = NULL; } static uint32_t i915_gem_next_request_seqno(struct drm_device *dev, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; ring->outstanding_lazy_request = true; return dev_priv->next_seqno; } static void i915_gem_object_move_to_active(struct drm_gem_object *obj, struct intel_ring_buffer *ring) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); uint32_t seqno = i915_gem_next_request_seqno(dev, ring); BUG_ON(ring == NULL); obj_priv->ring = ring; /* Add a reference if we're newly entering the active list. */ if (!obj_priv->active) { drm_gem_object_reference(obj); obj_priv->active = 1; } /* Move from whatever list we were on to the tail of execution. */ spin_lock(&dev_priv->mm.active_list_lock); list_move_tail(&obj_priv->list, &ring->active_list); spin_unlock(&dev_priv->mm.active_list_lock); obj_priv->last_rendering_seqno = seqno; } static void i915_gem_object_move_to_flushing(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); BUG_ON(!obj_priv->active); list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list); obj_priv->last_rendering_seqno = 0; } /* Immediately discard the backing storage */ static void i915_gem_object_truncate(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct inode *inode; /* Our goal here is to return as much of the memory as * is possible back to the system as we are called from OOM. * To do this we must instruct the shmfs to drop all of its * backing pages, *now*. Here we mirror the actions taken * when by shmem_delete_inode() to release the backing store. */ inode = obj->filp->f_path.dentry->d_inode; truncate_inode_pages(inode->i_mapping, 0); if (inode->i_op->truncate_range) inode->i_op->truncate_range(inode, 0, (loff_t)-1); obj_priv->madv = __I915_MADV_PURGED; } static inline int i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv) { return obj_priv->madv == I915_MADV_DONTNEED; } static void i915_gem_object_move_to_inactive(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); i915_verify_inactive(dev, __FILE__, __LINE__); if (obj_priv->pin_count != 0) list_del_init(&obj_priv->list); else list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); BUG_ON(!list_empty(&obj_priv->gpu_write_list)); obj_priv->last_rendering_seqno = 0; obj_priv->ring = NULL; if (obj_priv->active) { obj_priv->active = 0; drm_gem_object_unreference(obj); } i915_verify_inactive(dev, __FILE__, __LINE__); } void i915_gem_process_flushing_list(struct drm_device *dev, uint32_t flush_domains, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv, *next; list_for_each_entry_safe(obj_priv, next, &dev_priv->mm.gpu_write_list, gpu_write_list) { struct drm_gem_object *obj = &obj_priv->base; if ((obj->write_domain & flush_domains) == obj->write_domain && obj_priv->ring->ring_flag == ring->ring_flag) { uint32_t old_write_domain = obj->write_domain; obj->write_domain = 0; list_del_init(&obj_priv->gpu_write_list); i915_gem_object_move_to_active(obj, ring); /* update the fence lru list */ if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj_priv->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); } trace_i915_gem_object_change_domain(obj, obj->read_domains, old_write_domain); } } } uint32_t i915_add_request(struct drm_device *dev, struct drm_file *file_priv, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_file_private *i915_file_priv = NULL; struct drm_i915_gem_request *request; uint32_t seqno; int was_empty; if (file_priv != NULL) i915_file_priv = file_priv->driver_priv; request = kzalloc(sizeof(*request), GFP_KERNEL); if (request == NULL) return 0; seqno = ring->add_request(dev, ring, file_priv, 0); request->seqno = seqno; request->ring = ring; request->emitted_jiffies = jiffies; was_empty = list_empty(&ring->request_list); list_add_tail(&request->list, &ring->request_list); if (i915_file_priv) { list_add_tail(&request->client_list, &i915_file_priv->mm.request_list); } else { INIT_LIST_HEAD(&request->client_list); } if (!dev_priv->mm.suspended) { mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD); if (was_empty) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); } return seqno; } /** * Command execution barrier * * Ensures that all commands in the ring are finished * before signalling the CPU */ static void i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring) { uint32_t flush_domains = 0; /* The sampler always gets flushed on i965 (sigh) */ if (IS_I965G(dev)) flush_domains |= I915_GEM_DOMAIN_SAMPLER; ring->flush(dev, ring, I915_GEM_DOMAIN_COMMAND, flush_domains); } /** * Moves buffers associated only with the given active seqno from the active * to inactive list, potentially freeing them. */ static void i915_gem_retire_request(struct drm_device *dev, struct drm_i915_gem_request *request) { drm_i915_private_t *dev_priv = dev->dev_private; trace_i915_gem_request_retire(dev, request->seqno); /* Move any buffers on the active list that are no longer referenced * by the ringbuffer to the flushing/inactive lists as appropriate. */ spin_lock(&dev_priv->mm.active_list_lock); while (!list_empty(&request->ring->active_list)) { struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; obj_priv = list_first_entry(&request->ring->active_list, struct drm_i915_gem_object, list); obj = &obj_priv->base; /* If the seqno being retired doesn't match the oldest in the * list, then the oldest in the list must still be newer than * this seqno. */ if (obj_priv->last_rendering_seqno != request->seqno) goto out; #if WATCH_LRU DRM_INFO("%s: retire %d moves to inactive list %p\n", __func__, request->seqno, obj); #endif if (obj->write_domain != 0) i915_gem_object_move_to_flushing(obj); else { /* Take a reference on the object so it won't be * freed while the spinlock is held. The list * protection for this spinlock is safe when breaking * the lock like this since the next thing we do * is just get the head of the list again. */ drm_gem_object_reference(obj); i915_gem_object_move_to_inactive(obj); spin_unlock(&dev_priv->mm.active_list_lock); drm_gem_object_unreference(obj); spin_lock(&dev_priv->mm.active_list_lock); } } out: spin_unlock(&dev_priv->mm.active_list_lock); } /** * Returns true if seq1 is later than seq2. */ bool i915_seqno_passed(uint32_t seq1, uint32_t seq2) { return (int32_t)(seq1 - seq2) >= 0; } uint32_t i915_get_gem_seqno(struct drm_device *dev, struct intel_ring_buffer *ring) { return ring->get_gem_seqno(dev, ring); } /** * This function clears the request list as sequence numbers are passed. */ static void i915_gem_retire_requests_ring(struct drm_device *dev, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t seqno; if (!ring->status_page.page_addr || list_empty(&ring->request_list)) return; seqno = i915_get_gem_seqno(dev, ring); while (!list_empty(&ring->request_list)) { struct drm_i915_gem_request *request; uint32_t retiring_seqno; request = list_first_entry(&ring->request_list, struct drm_i915_gem_request, list); retiring_seqno = request->seqno; if (i915_seqno_passed(seqno, retiring_seqno) || atomic_read(&dev_priv->mm.wedged)) { i915_gem_retire_request(dev, request); list_del(&request->list); list_del(&request->client_list); kfree(request); } else break; } if (unlikely (dev_priv->trace_irq_seqno && i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) { ring->user_irq_put(dev, ring); dev_priv->trace_irq_seqno = 0; } } void i915_gem_retire_requests(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; if (!list_empty(&dev_priv->mm.deferred_free_list)) { struct drm_i915_gem_object *obj_priv, *tmp; /* We must be careful that during unbind() we do not * accidentally infinitely recurse into retire requests. * Currently: * retire -> free -> unbind -> wait -> retire_ring */ list_for_each_entry_safe(obj_priv, tmp, &dev_priv->mm.deferred_free_list, list) i915_gem_free_object_tail(&obj_priv->base); } i915_gem_retire_requests_ring(dev, &dev_priv->render_ring); if (HAS_BSD(dev)) i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring); } static void i915_gem_retire_work_handler(struct work_struct *work) { drm_i915_private_t *dev_priv; struct drm_device *dev; dev_priv = container_of(work, drm_i915_private_t, mm.retire_work.work); dev = dev_priv->dev; mutex_lock(&dev->struct_mutex); i915_gem_retire_requests(dev); if (!dev_priv->mm.suspended && (!list_empty(&dev_priv->render_ring.request_list) || (HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list)))) queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); mutex_unlock(&dev->struct_mutex); } int i915_do_wait_request(struct drm_device *dev, uint32_t seqno, bool interruptible, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; u32 ier; int ret = 0; BUG_ON(seqno == 0); if (seqno == dev_priv->next_seqno) { seqno = i915_add_request(dev, NULL, ring); if (seqno == 0) return -ENOMEM; } if (atomic_read(&dev_priv->mm.wedged)) return -EIO; if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) { if (HAS_PCH_SPLIT(dev)) ier = I915_READ(DEIER) | I915_READ(GTIER); else ier = I915_READ(IER); if (!ier) { DRM_ERROR("something (likely vbetool) disabled " "interrupts, re-enabling\n"); i915_driver_irq_preinstall(dev); i915_driver_irq_postinstall(dev); } trace_i915_gem_request_wait_begin(dev, seqno); ring->waiting_gem_seqno = seqno; ring->user_irq_get(dev, ring); if (interruptible) ret = wait_event_interruptible(ring->irq_queue, i915_seqno_passed( ring->get_gem_seqno(dev, ring), seqno) || atomic_read(&dev_priv->mm.wedged)); else wait_event(ring->irq_queue, i915_seqno_passed( ring->get_gem_seqno(dev, ring), seqno) || atomic_read(&dev_priv->mm.wedged)); ring->user_irq_put(dev, ring); ring->waiting_gem_seqno = 0; trace_i915_gem_request_wait_end(dev, seqno); } if (atomic_read(&dev_priv->mm.wedged)) ret = -EIO; if (ret && ret != -ERESTARTSYS) DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n", __func__, ret, seqno, ring->get_gem_seqno(dev, ring), dev_priv->next_seqno); /* Directly dispatch request retiring. While we have the work queue * to handle this, the waiter on a request often wants an associated * buffer to have made it to the inactive list, and we would need * a separate wait queue to handle that. */ if (ret == 0) i915_gem_retire_requests_ring(dev, ring); return ret; } /** * Waits for a sequence number to be signaled, and cleans up the * request and object lists appropriately for that event. */ static int i915_wait_request(struct drm_device *dev, uint32_t seqno, struct intel_ring_buffer *ring) { return i915_do_wait_request(dev, seqno, 1, ring); } static void i915_gem_flush(struct drm_device *dev, uint32_t invalidate_domains, uint32_t flush_domains) { drm_i915_private_t *dev_priv = dev->dev_private; if (flush_domains & I915_GEM_DOMAIN_CPU) drm_agp_chipset_flush(dev); dev_priv->render_ring.flush(dev, &dev_priv->render_ring, invalidate_domains, flush_domains); if (HAS_BSD(dev)) dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring, invalidate_domains, flush_domains); } /** * Ensures that all rendering to the object has completed and the object is * safe to unbind from the GTT or access from the CPU. */ static int i915_gem_object_wait_rendering(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int ret; /* This function only exists to support waiting for existing rendering, * not for emitting required flushes. */ BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0); /* If there is rendering queued on the buffer being evicted, wait for * it. */ if (obj_priv->active) { #if WATCH_BUF DRM_INFO("%s: object %p wait for seqno %08x\n", __func__, obj, obj_priv->last_rendering_seqno); #endif ret = i915_wait_request(dev, obj_priv->last_rendering_seqno, obj_priv->ring); if (ret != 0) return ret; } return 0; } /** * Unbinds an object from the GTT aperture. */ int i915_gem_object_unbind(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int ret = 0; #if WATCH_BUF DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj); DRM_INFO("gtt_space %p\n", obj_priv->gtt_space); #endif if (obj_priv->gtt_space == NULL) return 0; if (obj_priv->pin_count != 0) { DRM_ERROR("Attempting to unbind pinned buffer\n"); return -EINVAL; } /* blow away mappings if mapped through GTT */ i915_gem_release_mmap(obj); /* Move the object to the CPU domain to ensure that * any possible CPU writes while it's not in the GTT * are flushed when we go to remap it. This will * also ensure that all pending GPU writes are finished * before we unbind. */ ret = i915_gem_object_set_to_cpu_domain(obj, 1); if (ret == -ERESTARTSYS) return ret; /* Continue on if we fail due to EIO, the GPU is hung so we * should be safe and we need to cleanup or else we might * cause memory corruption through use-after-free. */ /* release the fence reg _after_ flushing */ if (obj_priv->fence_reg != I915_FENCE_REG_NONE) i915_gem_clear_fence_reg(obj); if (obj_priv->agp_mem != NULL) { drm_unbind_agp(obj_priv->agp_mem); drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE); obj_priv->agp_mem = NULL; } i915_gem_object_put_pages(obj); BUG_ON(obj_priv->pages_refcount); if (obj_priv->gtt_space) { atomic_dec(&dev->gtt_count); atomic_sub(obj->size, &dev->gtt_memory); drm_mm_put_block(obj_priv->gtt_space); obj_priv->gtt_space = NULL; } /* Remove ourselves from the LRU list if present. */ spin_lock(&dev_priv->mm.active_list_lock); if (!list_empty(&obj_priv->list)) list_del_init(&obj_priv->list); spin_unlock(&dev_priv->mm.active_list_lock); if (i915_gem_object_is_purgeable(obj_priv)) i915_gem_object_truncate(obj); trace_i915_gem_object_unbind(obj); return ret; } int i915_gpu_idle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; bool lists_empty; uint32_t seqno1, seqno2; int ret; spin_lock(&dev_priv->mm.active_list_lock); lists_empty = (list_empty(&dev_priv->mm.flushing_list) && list_empty(&dev_priv->render_ring.active_list) && (!HAS_BSD(dev) || list_empty(&dev_priv->bsd_ring.active_list))); spin_unlock(&dev_priv->mm.active_list_lock); if (lists_empty) return 0; /* Flush everything onto the inactive list. */ i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); seqno1 = i915_add_request(dev, NULL, &dev_priv->render_ring); if (seqno1 == 0) return -ENOMEM; ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring); if (ret) return ret; if (HAS_BSD(dev)) { seqno2 = i915_add_request(dev, NULL, &dev_priv->bsd_ring); if (seqno2 == 0) return -ENOMEM; ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring); if (ret) return ret; } return 0; } int i915_gem_object_get_pages(struct drm_gem_object *obj, gfp_t gfpmask) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int page_count, i; struct address_space *mapping; struct inode *inode; struct page *page; BUG_ON(obj_priv->pages_refcount == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT); if (obj_priv->pages_refcount++ != 0) return 0; /* Get the list of pages out of our struct file. They'll be pinned * at this point until we release them. */ page_count = obj->size / PAGE_SIZE; BUG_ON(obj_priv->pages != NULL); obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *)); if (obj_priv->pages == NULL) { obj_priv->pages_refcount--; return -ENOMEM; } inode = obj->filp->f_path.dentry->d_inode; mapping = inode->i_mapping; for (i = 0; i < page_count; i++) { page = read_cache_page_gfp(mapping, i, GFP_HIGHUSER | __GFP_COLD | __GFP_RECLAIMABLE | gfpmask); if (IS_ERR(page)) goto err_pages; obj_priv->pages[i] = page; } if (obj_priv->tiling_mode != I915_TILING_NONE) i915_gem_object_do_bit_17_swizzle(obj); return 0; err_pages: while (i--) page_cache_release(obj_priv->pages[i]); drm_free_large(obj_priv->pages); obj_priv->pages = NULL; obj_priv->pages_refcount--; return PTR_ERR(page); } static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg) { struct drm_gem_object *obj = reg->obj; struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int regnum = obj_priv->fence_reg; uint64_t val; val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) & 0xfffff000) << 32; val |= obj_priv->gtt_offset & 0xfffff000; val |= (uint64_t)((obj_priv->stride / 128) - 1) << SANDYBRIDGE_FENCE_PITCH_SHIFT; if (obj_priv->tiling_mode == I915_TILING_Y) val |= 1 << I965_FENCE_TILING_Y_SHIFT; val |= I965_FENCE_REG_VALID; I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val); } static void i965_write_fence_reg(struct drm_i915_fence_reg *reg) { struct drm_gem_object *obj = reg->obj; struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int regnum = obj_priv->fence_reg; uint64_t val; val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) & 0xfffff000) << 32; val |= obj_priv->gtt_offset & 0xfffff000; val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; if (obj_priv->tiling_mode == I915_TILING_Y) val |= 1 << I965_FENCE_TILING_Y_SHIFT; val |= I965_FENCE_REG_VALID; I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val); } static void i915_write_fence_reg(struct drm_i915_fence_reg *reg) { struct drm_gem_object *obj = reg->obj; struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int regnum = obj_priv->fence_reg; int tile_width; uint32_t fence_reg, val; uint32_t pitch_val; if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) || (obj_priv->gtt_offset & (obj->size - 1))) { WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n", __func__, obj_priv->gtt_offset, obj->size); return; } if (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) tile_width = 128; else tile_width = 512; /* Note: pitch better be a power of two tile widths */ pitch_val = obj_priv->stride / tile_width; pitch_val = ffs(pitch_val) - 1; if (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL); else WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL); val = obj_priv->gtt_offset; if (obj_priv->tiling_mode == I915_TILING_Y) val |= 1 << I830_FENCE_TILING_Y_SHIFT; val |= I915_FENCE_SIZE_BITS(obj->size); val |= pitch_val << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; if (regnum < 8) fence_reg = FENCE_REG_830_0 + (regnum * 4); else fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4); I915_WRITE(fence_reg, val); } static void i830_write_fence_reg(struct drm_i915_fence_reg *reg) { struct drm_gem_object *obj = reg->obj; struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int regnum = obj_priv->fence_reg; uint32_t val; uint32_t pitch_val; uint32_t fence_size_bits; if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) || (obj_priv->gtt_offset & (obj->size - 1))) { WARN(1, "%s: object 0x%08x not 512K or size aligned\n", __func__, obj_priv->gtt_offset); return; } pitch_val = obj_priv->stride / 128; pitch_val = ffs(pitch_val) - 1; WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL); val = obj_priv->gtt_offset; if (obj_priv->tiling_mode == I915_TILING_Y) val |= 1 << I830_FENCE_TILING_Y_SHIFT; fence_size_bits = I830_FENCE_SIZE_BITS(obj->size); WARN_ON(fence_size_bits & ~0x00000f00); val |= fence_size_bits; val |= pitch_val << I830_FENCE_PITCH_SHIFT; val |= I830_FENCE_REG_VALID; I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val); } static int i915_find_fence_reg(struct drm_device *dev) { struct drm_i915_fence_reg *reg = NULL; struct drm_i915_gem_object *obj_priv = NULL; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_gem_object *obj = NULL; int i, avail, ret; /* First try to find a free reg */ avail = 0; for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { reg = &dev_priv->fence_regs[i]; if (!reg->obj) return i; obj_priv = to_intel_bo(reg->obj); if (!obj_priv->pin_count) avail++; } if (avail == 0) return -ENOSPC; /* None available, try to steal one or wait for a user to finish */ i = I915_FENCE_REG_NONE; list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { obj = reg->obj; obj_priv = to_intel_bo(obj); if (obj_priv->pin_count) continue; /* found one! */ i = obj_priv->fence_reg; break; } BUG_ON(i == I915_FENCE_REG_NONE); /* We only have a reference on obj from the active list. put_fence_reg * might drop that one, causing a use-after-free in it. So hold a * private reference to obj like the other callers of put_fence_reg * (set_tiling ioctl) do. */ drm_gem_object_reference(obj); ret = i915_gem_object_put_fence_reg(obj); drm_gem_object_unreference(obj); if (ret != 0) return ret; return i; } /** * i915_gem_object_get_fence_reg - set up a fence reg for an object * @obj: object to map through a fence reg * * When mapping objects through the GTT, userspace wants to be able to write * to them without having to worry about swizzling if the object is tiled. * * This function walks the fence regs looking for a free one for @obj, * stealing one if it can't find any. * * It then sets up the reg based on the object's properties: address, pitch * and tiling format. */ int i915_gem_object_get_fence_reg(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct drm_i915_fence_reg *reg = NULL; int ret; /* Just update our place in the LRU if our fence is getting used. */ if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { reg = &dev_priv->fence_regs[obj_priv->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); return 0; } switch (obj_priv->tiling_mode) { case I915_TILING_NONE: WARN(1, "allocating a fence for non-tiled object?\n"); break; case I915_TILING_X: if (!obj_priv->stride) return -EINVAL; WARN((obj_priv->stride & (512 - 1)), "object 0x%08x is X tiled but has non-512B pitch\n", obj_priv->gtt_offset); break; case I915_TILING_Y: if (!obj_priv->stride) return -EINVAL; WARN((obj_priv->stride & (128 - 1)), "object 0x%08x is Y tiled but has non-128B pitch\n", obj_priv->gtt_offset); break; } ret = i915_find_fence_reg(dev); if (ret < 0) return ret; obj_priv->fence_reg = ret; reg = &dev_priv->fence_regs[obj_priv->fence_reg]; list_add_tail(®->lru_list, &dev_priv->mm.fence_list); reg->obj = obj; if (IS_GEN6(dev)) sandybridge_write_fence_reg(reg); else if (IS_I965G(dev)) i965_write_fence_reg(reg); else if (IS_I9XX(dev)) i915_write_fence_reg(reg); else i830_write_fence_reg(reg); trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg, obj_priv->tiling_mode); return 0; } /** * i915_gem_clear_fence_reg - clear out fence register info * @obj: object to clear * * Zeroes out the fence register itself and clears out the associated * data structures in dev_priv and obj_priv. */ static void i915_gem_clear_fence_reg(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj_priv->fence_reg]; if (IS_GEN6(dev)) { I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (obj_priv->fence_reg * 8), 0); } else if (IS_I965G(dev)) { I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0); } else { uint32_t fence_reg; if (obj_priv->fence_reg < 8) fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4; else fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4; I915_WRITE(fence_reg, 0); } reg->obj = NULL; obj_priv->fence_reg = I915_FENCE_REG_NONE; list_del_init(®->lru_list); } /** * i915_gem_object_put_fence_reg - waits on outstanding fenced access * to the buffer to finish, and then resets the fence register. * @obj: tiled object holding a fence register. * * Zeroes out the fence register itself and clears out the associated * data structures in dev_priv and obj_priv. */ int i915_gem_object_put_fence_reg(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); if (obj_priv->fence_reg == I915_FENCE_REG_NONE) return 0; /* If we've changed tiling, GTT-mappings of the object * need to re-fault to ensure that the correct fence register * setup is in place. */ i915_gem_release_mmap(obj); /* On the i915, GPU access to tiled buffers is via a fence, * therefore we must wait for any outstanding access to complete * before clearing the fence. */ if (!IS_I965G(dev)) { int ret; ret = i915_gem_object_flush_gpu_write_domain(obj, false); if (ret != 0) return ret; } i915_gem_object_flush_gtt_write_domain(obj); i915_gem_clear_fence_reg (obj); return 0; } /** * Finds free space in the GTT aperture and binds the object there. */ static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); struct drm_mm_node *free_space; gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN; int ret; if (obj_priv->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to bind a purgeable object\n"); return -EINVAL; } if (alignment == 0) alignment = i915_gem_get_gtt_alignment(obj); if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) { DRM_ERROR("Invalid object alignment requested %u\n", alignment); return -EINVAL; } /* If the object is bigger than the entire aperture, reject it early * before evicting everything in a vain attempt to find space. */ if (obj->size > dev->gtt_total) { DRM_ERROR("Attempting to bind an object larger than the aperture\n"); return -E2BIG; } search_free: free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, obj->size, alignment, 0); if (free_space != NULL) { obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size, alignment); if (obj_priv->gtt_space != NULL) obj_priv->gtt_offset = obj_priv->gtt_space->start; } if (obj_priv->gtt_space == NULL) { /* If the gtt is empty and we're still having trouble * fitting our object in, we're out of memory. */ #if WATCH_LRU DRM_INFO("%s: GTT full, evicting something\n", __func__); #endif ret = i915_gem_evict_something(dev, obj->size, alignment); if (ret) return ret; goto search_free; } #if WATCH_BUF DRM_INFO("Binding object of size %zd at 0x%08x\n", obj->size, obj_priv->gtt_offset); #endif ret = i915_gem_object_get_pages(obj, gfpmask); if (ret) { drm_mm_put_block(obj_priv->gtt_space); obj_priv->gtt_space = NULL; if (ret == -ENOMEM) { /* first try to clear up some space from the GTT */ ret = i915_gem_evict_something(dev, obj->size, alignment); if (ret) { /* now try to shrink everyone else */ if (gfpmask) { gfpmask = 0; goto search_free; } return ret; } goto search_free; } return ret; } /* Create an AGP memory structure pointing at our pages, and bind it * into the GTT. */ obj_priv->agp_mem = drm_agp_bind_pages(dev, obj_priv->pages, obj->size >> PAGE_SHIFT, obj_priv->gtt_offset, obj_priv->agp_type); if (obj_priv->agp_mem == NULL) { i915_gem_object_put_pages(obj); drm_mm_put_block(obj_priv->gtt_space); obj_priv->gtt_space = NULL; ret = i915_gem_evict_something(dev, obj->size, alignment); if (ret) return ret; goto search_free; } atomic_inc(&dev->gtt_count); atomic_add(obj->size, &dev->gtt_memory); /* keep track of bounds object by adding it to the inactive list */ list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list); /* Assert that the object is not currently in any GPU domain. As it * wasn't in the GTT, there shouldn't be any way it could have been in * a GPU cache */ BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); trace_i915_gem_object_bind(obj, obj_priv->gtt_offset); return 0; } void i915_gem_clflush_object(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); /* If we don't have a page list set up, then we're not pinned * to GPU, and we can ignore the cache flush because it'll happen * again at bind time. */ if (obj_priv->pages == NULL) return; trace_i915_gem_object_clflush(obj); drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE); } /** Flushes any GPU write domain for the object if it's dirty. */ static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj, bool pipelined) { struct drm_device *dev = obj->dev; uint32_t old_write_domain; if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) return 0; /* Queue the GPU write cache flushing we need. */ old_write_domain = obj->write_domain; i915_gem_flush(dev, 0, obj->write_domain); trace_i915_gem_object_change_domain(obj, obj->read_domains, old_write_domain); if (pipelined) return 0; return i915_gem_object_wait_rendering(obj); } /** Flushes the GTT write domain for the object if it's dirty. */ static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj) { uint32_t old_write_domain; if (obj->write_domain != I915_GEM_DOMAIN_GTT) return; /* No actual flushing is required for the GTT write domain. Writes * to it immediately go to main memory as far as we know, so there's * no chipset flush. It also doesn't land in render cache. */ old_write_domain = obj->write_domain; obj->write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->read_domains, old_write_domain); } /** Flushes the CPU write domain for the object if it's dirty. */ static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; uint32_t old_write_domain; if (obj->write_domain != I915_GEM_DOMAIN_CPU) return; i915_gem_clflush_object(obj); drm_agp_chipset_flush(dev); old_write_domain = obj->write_domain; obj->write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->read_domains, old_write_domain); } int i915_gem_object_flush_write_domain(struct drm_gem_object *obj) { int ret = 0; switch (obj->write_domain) { case I915_GEM_DOMAIN_GTT: i915_gem_object_flush_gtt_write_domain(obj); break; case I915_GEM_DOMAIN_CPU: i915_gem_object_flush_cpu_write_domain(obj); break; default: ret = i915_gem_object_flush_gpu_write_domain(obj, true); break; } return ret; } /** * Moves a single object to the GTT read, and possibly write domain. * * This function returns when the move is complete, including waiting on * flushes to occur. */ int i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); uint32_t old_write_domain, old_read_domains; int ret; /* Not valid to be called on unbound objects. */ if (obj_priv->gtt_space == NULL) return -EINVAL; ret = i915_gem_object_flush_gpu_write_domain(obj, false); if (ret != 0) return ret; old_write_domain = obj->write_domain; old_read_domains = obj->read_domains; /* If we're writing through the GTT domain, then CPU and GPU caches * will need to be invalidated at next use. */ if (write) { ret = i915_gem_object_wait_rendering(obj); if (ret) return ret; obj->read_domains &= I915_GEM_DOMAIN_GTT; } i915_gem_object_flush_cpu_write_domain(obj); /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); obj->read_domains |= I915_GEM_DOMAIN_GTT; if (write) { obj->write_domain = I915_GEM_DOMAIN_GTT; obj_priv->dirty = 1; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return 0; } /* * Prepare buffer for display plane. Use uninterruptible for possible flush * wait, as in modesetting process we're not supposed to be interrupted. */ int i915_gem_object_set_to_display_plane(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); uint32_t old_read_domains; int ret; /* Not valid to be called on unbound objects. */ if (obj_priv->gtt_space == NULL) return -EINVAL; ret = i915_gem_object_flush_gpu_write_domain(obj, true); if (ret != 0) return ret; i915_gem_object_flush_cpu_write_domain(obj); old_read_domains = obj->read_domains; obj->read_domains = I915_GEM_DOMAIN_GTT; trace_i915_gem_object_change_domain(obj, old_read_domains, obj->write_domain); return 0; } /** * Moves a single object to the CPU read, and possibly write domain. * * This function returns when the move is complete, including waiting on * flushes to occur. */ static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write) { uint32_t old_write_domain, old_read_domains; int ret; ret = i915_gem_object_flush_gpu_write_domain(obj, false); if (ret != 0) return ret; i915_gem_object_flush_gtt_write_domain(obj); /* If we have a partially-valid cache of the object in the CPU, * finish invalidating it and free the per-page flags. */ i915_gem_object_set_to_full_cpu_read_domain(obj); old_write_domain = obj->write_domain; old_read_domains = obj->read_domains; /* Flush the CPU cache if it's still invalid. */ if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { i915_gem_clflush_object(obj); obj->read_domains |= I915_GEM_DOMAIN_CPU; } /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); /* If we're writing through the CPU, then the GPU read domains will * need to be invalidated at next use. */ if (write) { ret = i915_gem_object_wait_rendering(obj); if (ret) return ret; obj->read_domains &= I915_GEM_DOMAIN_CPU; obj->write_domain = I915_GEM_DOMAIN_CPU; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return 0; } /* * Set the next domain for the specified object. This * may not actually perform the necessary flushing/invaliding though, * as that may want to be batched with other set_domain operations * * This is (we hope) the only really tricky part of gem. The goal * is fairly simple -- track which caches hold bits of the object * and make sure they remain coherent. A few concrete examples may * help to explain how it works. For shorthand, we use the notation * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the * a pair of read and write domain masks. * * Case 1: the batch buffer * * 1. Allocated * 2. Written by CPU * 3. Mapped to GTT * 4. Read by GPU * 5. Unmapped from GTT * 6. Freed * * Let's take these a step at a time * * 1. Allocated * Pages allocated from the kernel may still have * cache contents, so we set them to (CPU, CPU) always. * 2. Written by CPU (using pwrite) * The pwrite function calls set_domain (CPU, CPU) and * this function does nothing (as nothing changes) * 3. Mapped by GTT * This function asserts that the object is not * currently in any GPU-based read or write domains * 4. Read by GPU * i915_gem_execbuffer calls set_domain (COMMAND, 0). * As write_domain is zero, this function adds in the * current read domains (CPU+COMMAND, 0). * flush_domains is set to CPU. * invalidate_domains is set to COMMAND * clflush is run to get data out of the CPU caches * then i915_dev_set_domain calls i915_gem_flush to * emit an MI_FLUSH and drm_agp_chipset_flush * 5. Unmapped from GTT * i915_gem_object_unbind calls set_domain (CPU, CPU) * flush_domains and invalidate_domains end up both zero * so no flushing/invalidating happens * 6. Freed * yay, done * * Case 2: The shared render buffer * * 1. Allocated * 2. Mapped to GTT * 3. Read/written by GPU * 4. set_domain to (CPU,CPU) * 5. Read/written by CPU * 6. Read/written by GPU * * 1. Allocated * Same as last example, (CPU, CPU) * 2. Mapped to GTT * Nothing changes (assertions find that it is not in the GPU) * 3. Read/written by GPU * execbuffer calls set_domain (RENDER, RENDER) * flush_domains gets CPU * invalidate_domains gets GPU * clflush (obj) * MI_FLUSH and drm_agp_chipset_flush * 4. set_domain (CPU, CPU) * flush_domains gets GPU * invalidate_domains gets CPU * wait_rendering (obj) to make sure all drawing is complete. * This will include an MI_FLUSH to get the data from GPU * to memory * clflush (obj) to invalidate the CPU cache * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) * 5. Read/written by CPU * cache lines are loaded and dirtied * 6. Read written by GPU * Same as last GPU access * * Case 3: The constant buffer * * 1. Allocated * 2. Written by CPU * 3. Read by GPU * 4. Updated (written) by CPU again * 5. Read by GPU * * 1. Allocated * (CPU, CPU) * 2. Written by CPU * (CPU, CPU) * 3. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush * 4. Updated (written) by CPU again * (CPU, CPU) * flush_domains = 0 (no previous write domain) * invalidate_domains = 0 (no new read domains) * 5. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush */ static void i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); uint32_t invalidate_domains = 0; uint32_t flush_domains = 0; uint32_t old_read_domains; BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU); BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU); intel_mark_busy(dev, obj); #if WATCH_BUF DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n", __func__, obj, obj->read_domains, obj->pending_read_domains, obj->write_domain, obj->pending_write_domain); #endif /* * If the object isn't moving to a new write domain, * let the object stay in multiple read domains */ if (obj->pending_write_domain == 0) obj->pending_read_domains |= obj->read_domains; else obj_priv->dirty = 1; /* * Flush the current write domain if * the new read domains don't match. Invalidate * any read domains which differ from the old * write domain */ if (obj->write_domain && obj->write_domain != obj->pending_read_domains) { flush_domains |= obj->write_domain; invalidate_domains |= obj->pending_read_domains & ~obj->write_domain; } /* * Invalidate any read caches which may have * stale data. That is, any new read domains. */ invalidate_domains |= obj->pending_read_domains & ~obj->read_domains; if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) { #if WATCH_BUF DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n", __func__, flush_domains, invalidate_domains); #endif i915_gem_clflush_object(obj); } old_read_domains = obj->read_domains; /* The actual obj->write_domain will be updated with * pending_write_domain after we emit the accumulated flush for all * of our domain changes in execbuffers (which clears objects' * write_domains). So if we have a current write domain that we * aren't changing, set pending_write_domain to that. */ if (flush_domains == 0 && obj->pending_write_domain == 0) obj->pending_write_domain = obj->write_domain; obj->read_domains = obj->pending_read_domains; dev->invalidate_domains |= invalidate_domains; dev->flush_domains |= flush_domains; #if WATCH_BUF DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n", __func__, obj->read_domains, obj->write_domain, dev->invalidate_domains, dev->flush_domains); #endif trace_i915_gem_object_change_domain(obj, old_read_domains, obj->write_domain); } /** * Moves the object from a partially CPU read to a full one. * * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(), * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU). */ static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); if (!obj_priv->page_cpu_valid) return; /* If we're partially in the CPU read domain, finish moving it in. */ if (obj->read_domains & I915_GEM_DOMAIN_CPU) { int i; for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) { if (obj_priv->page_cpu_valid[i]) continue; drm_clflush_pages(obj_priv->pages + i, 1); } } /* Free the page_cpu_valid mappings which are now stale, whether * or not we've got I915_GEM_DOMAIN_CPU. */ kfree(obj_priv->page_cpu_valid); obj_priv->page_cpu_valid = NULL; } /** * Set the CPU read domain on a range of the object. * * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's * not entirely valid. The page_cpu_valid member of the object flags which * pages have been flushed, and will be respected by * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping * of the whole object. * * This function returns when the move is complete, including waiting on * flushes to occur. */ static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, uint64_t offset, uint64_t size) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); uint32_t old_read_domains; int i, ret; if (offset == 0 && size == obj->size) return i915_gem_object_set_to_cpu_domain(obj, 0); ret = i915_gem_object_flush_gpu_write_domain(obj, false); if (ret != 0) return ret; i915_gem_object_flush_gtt_write_domain(obj); /* If we're already fully in the CPU read domain, we're done. */ if (obj_priv->page_cpu_valid == NULL && (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0) return 0; /* Otherwise, create/clear the per-page CPU read domain flag if we're * newly adding I915_GEM_DOMAIN_CPU */ if (obj_priv->page_cpu_valid == NULL) { obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE, GFP_KERNEL); if (obj_priv->page_cpu_valid == NULL) return -ENOMEM; } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE); /* Flush the cache on any pages that are still invalid from the CPU's * perspective. */ for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; i++) { if (obj_priv->page_cpu_valid[i]) continue; drm_clflush_pages(obj_priv->pages + i, 1); obj_priv->page_cpu_valid[i] = 1; } /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); old_read_domains = obj->read_domains; obj->read_domains |= I915_GEM_DOMAIN_CPU; trace_i915_gem_object_change_domain(obj, old_read_domains, obj->write_domain); return 0; } /** * Pin an object to the GTT and evaluate the relocations landing in it. */ static int i915_gem_object_pin_and_relocate(struct drm_gem_object *obj, struct drm_file *file_priv, struct drm_i915_gem_exec_object2 *entry, struct drm_i915_gem_relocation_entry *relocs) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int i, ret; void __iomem *reloc_page; bool need_fence; need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj_priv->tiling_mode != I915_TILING_NONE; /* Check fence reg constraints and rebind if necessary */ if (need_fence && !i915_gem_object_fence_offset_ok(obj, obj_priv->tiling_mode)) { ret = i915_gem_object_unbind(obj); if (ret) return ret; } /* Choose the GTT offset for our buffer and put it there. */ ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment); if (ret) return ret; /* * Pre-965 chips need a fence register set up in order to * properly handle blits to/from tiled surfaces. */ if (need_fence) { ret = i915_gem_object_get_fence_reg(obj); if (ret != 0) { i915_gem_object_unpin(obj); return ret; } } entry->offset = obj_priv->gtt_offset; /* Apply the relocations, using the GTT aperture to avoid cache * flushing requirements. */ for (i = 0; i < entry->relocation_count; i++) { struct drm_i915_gem_relocation_entry *reloc= &relocs[i]; struct drm_gem_object *target_obj; struct drm_i915_gem_object *target_obj_priv; uint32_t reloc_val, reloc_offset; uint32_t __iomem *reloc_entry; target_obj = drm_gem_object_lookup(obj->dev, file_priv, reloc->target_handle); if (target_obj == NULL) { i915_gem_object_unpin(obj); return -ENOENT; } target_obj_priv = to_intel_bo(target_obj); #if WATCH_RELOC DRM_INFO("%s: obj %p offset %08x target %d " "read %08x write %08x gtt %08x " "presumed %08x delta %08x\n", __func__, obj, (int) reloc->offset, (int) reloc->target_handle, (int) reloc->read_domains, (int) reloc->write_domain, (int) target_obj_priv->gtt_offset, (int) reloc->presumed_offset, reloc->delta); #endif /* The target buffer should have appeared before us in the * exec_object list, so it should have a GTT space bound by now. */ if (target_obj_priv->gtt_space == NULL) { DRM_ERROR("No GTT space found for object %d\n", reloc->target_handle); drm_gem_object_unreference(target_obj); i915_gem_object_unpin(obj); return -EINVAL; } /* Validate that the target is in a valid r/w GPU domain */ if (reloc->write_domain & (reloc->write_domain - 1)) { DRM_ERROR("reloc with multiple write domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (reloc->write_domain & I915_GEM_DOMAIN_CPU || reloc->read_domains & I915_GEM_DOMAIN_CPU) { DRM_ERROR("reloc with read/write CPU domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); drm_gem_object_unreference(target_obj); i915_gem_object_unpin(obj); return -EINVAL; } if (reloc->write_domain && target_obj->pending_write_domain && reloc->write_domain != target_obj->pending_write_domain) { DRM_ERROR("Write domain conflict: " "obj %p target %d offset %d " "new %08x old %08x\n", obj, reloc->target_handle, (int) reloc->offset, reloc->write_domain, target_obj->pending_write_domain); drm_gem_object_unreference(target_obj); i915_gem_object_unpin(obj); return -EINVAL; } target_obj->pending_read_domains |= reloc->read_domains; target_obj->pending_write_domain |= reloc->write_domain; /* If the relocation already has the right value in it, no * more work needs to be done. */ if (target_obj_priv->gtt_offset == reloc->presumed_offset) { drm_gem_object_unreference(target_obj); continue; } /* Check that the relocation address is valid... */ if (reloc->offset > obj->size - 4) { DRM_ERROR("Relocation beyond object bounds: " "obj %p target %d offset %d size %d.\n", obj, reloc->target_handle, (int) reloc->offset, (int) obj->size); drm_gem_object_unreference(target_obj); i915_gem_object_unpin(obj); return -EINVAL; } if (reloc->offset & 3) { DRM_ERROR("Relocation not 4-byte aligned: " "obj %p target %d offset %d.\n", obj, reloc->target_handle, (int) reloc->offset); drm_gem_object_unreference(target_obj); i915_gem_object_unpin(obj); return -EINVAL; } /* and points to somewhere within the target object. */ if (reloc->delta >= target_obj->size) { DRM_ERROR("Relocation beyond target object bounds: " "obj %p target %d delta %d size %d.\n", obj, reloc->target_handle, (int) reloc->delta, (int) target_obj->size); drm_gem_object_unreference(target_obj); i915_gem_object_unpin(obj); return -EINVAL; } ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret != 0) { drm_gem_object_unreference(target_obj); i915_gem_object_unpin(obj); return -EINVAL; } /* Map the page containing the relocation we're going to * perform. */ reloc_offset = obj_priv->gtt_offset + reloc->offset; reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, (reloc_offset & ~(PAGE_SIZE - 1)), KM_USER0); reloc_entry = (uint32_t __iomem *)(reloc_page + (reloc_offset & (PAGE_SIZE - 1))); reloc_val = target_obj_priv->gtt_offset + reloc->delta; #if WATCH_BUF DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n", obj, (unsigned int) reloc->offset, readl(reloc_entry), reloc_val); #endif writel(reloc_val, reloc_entry); io_mapping_unmap_atomic(reloc_page, KM_USER0); /* The updated presumed offset for this entry will be * copied back out to the user. */ reloc->presumed_offset = target_obj_priv->gtt_offset; drm_gem_object_unreference(target_obj); } #if WATCH_BUF if (0) i915_gem_dump_object(obj, 128, __func__, ~0); #endif return 0; } /* Throttle our rendering by waiting until the ring has completed our requests * emitted over 20 msec ago. * * Note that if we were to use the current jiffies each time around the loop, * we wouldn't escape the function with any frames outstanding if the time to * render a frame was over 20ms. * * This should get us reasonable parallelism between CPU and GPU but also * relatively low latency when blocking on a particular request to finish. */ static int i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv) { struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; int ret = 0; unsigned long recent_enough = jiffies - msecs_to_jiffies(20); mutex_lock(&dev->struct_mutex); while (!list_empty(&i915_file_priv->mm.request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&i915_file_priv->mm.request_list, struct drm_i915_gem_request, client_list); if (time_after_eq(request->emitted_jiffies, recent_enough)) break; ret = i915_wait_request(dev, request->seqno, request->ring); if (ret != 0) break; } mutex_unlock(&dev->struct_mutex); return ret; } static int i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list, uint32_t buffer_count, struct drm_i915_gem_relocation_entry **relocs) { uint32_t reloc_count = 0, reloc_index = 0, i; int ret; *relocs = NULL; for (i = 0; i < buffer_count; i++) { if (reloc_count + exec_list[i].relocation_count < reloc_count) return -EINVAL; reloc_count += exec_list[i].relocation_count; } *relocs = drm_calloc_large(reloc_count, sizeof(**relocs)); if (*relocs == NULL) { DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count); return -ENOMEM; } for (i = 0; i < buffer_count; i++) { struct drm_i915_gem_relocation_entry __user *user_relocs; user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr; ret = copy_from_user(&(*relocs)[reloc_index], user_relocs, exec_list[i].relocation_count * sizeof(**relocs)); if (ret != 0) { drm_free_large(*relocs); *relocs = NULL; return -EFAULT; } reloc_index += exec_list[i].relocation_count; } return 0; } static int i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list, uint32_t buffer_count, struct drm_i915_gem_relocation_entry *relocs) { uint32_t reloc_count = 0, i; int ret = 0; if (relocs == NULL) return 0; for (i = 0; i < buffer_count; i++) { struct drm_i915_gem_relocation_entry __user *user_relocs; int unwritten; user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr; unwritten = copy_to_user(user_relocs, &relocs[reloc_count], exec_list[i].relocation_count * sizeof(*relocs)); if (unwritten) { ret = -EFAULT; goto err; } reloc_count += exec_list[i].relocation_count; } err: drm_free_large(relocs); return ret; } static int i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec, uint64_t exec_offset) { uint32_t exec_start, exec_len; exec_start = (uint32_t) exec_offset + exec->batch_start_offset; exec_len = (uint32_t) exec->batch_len; if ((exec_start | exec_len) & 0x7) return -EINVAL; if (!exec_start) return -EINVAL; return 0; } static int i915_gem_wait_for_pending_flip(struct drm_device *dev, struct drm_gem_object **object_list, int count) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv; DEFINE_WAIT(wait); int i, ret = 0; for (;;) { prepare_to_wait(&dev_priv->pending_flip_queue, &wait, TASK_INTERRUPTIBLE); for (i = 0; i < count; i++) { obj_priv = to_intel_bo(object_list[i]); if (atomic_read(&obj_priv->pending_flip) > 0) break; } if (i == count) break; if (!signal_pending(current)) { mutex_unlock(&dev->struct_mutex); schedule(); mutex_lock(&dev->struct_mutex); continue; } ret = -ERESTARTSYS; break; } finish_wait(&dev_priv->pending_flip_queue, &wait); return ret; } int i915_gem_do_execbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec_list) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_gem_object **object_list = NULL; struct drm_gem_object *batch_obj; struct drm_i915_gem_object *obj_priv; struct drm_clip_rect *cliprects = NULL; struct drm_i915_gem_relocation_entry *relocs = NULL; int ret = 0, ret2, i, pinned = 0; uint64_t exec_offset; uint32_t seqno, reloc_index; int pin_tries, flips; struct intel_ring_buffer *ring = NULL; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif if (args->flags & I915_EXEC_BSD) { if (!HAS_BSD(dev)) { DRM_ERROR("execbuf with wrong flag\n"); return -EINVAL; } ring = &dev_priv->bsd_ring; } else { ring = &dev_priv->render_ring; } if (args->buffer_count < 1) { DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count); if (object_list == NULL) { DRM_ERROR("Failed to allocate object list for %d buffers\n", args->buffer_count); ret = -ENOMEM; goto pre_mutex_err; } if (args->num_cliprects != 0) { cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects), GFP_KERNEL); if (cliprects == NULL) { ret = -ENOMEM; goto pre_mutex_err; } ret = copy_from_user(cliprects, (struct drm_clip_rect __user *) (uintptr_t) args->cliprects_ptr, sizeof(*cliprects) * args->num_cliprects); if (ret != 0) { DRM_ERROR("copy %d cliprects failed: %d\n", args->num_cliprects, ret); ret = -EFAULT; goto pre_mutex_err; } } ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count, &relocs); if (ret != 0) goto pre_mutex_err; mutex_lock(&dev->struct_mutex); i915_verify_inactive(dev, __FILE__, __LINE__); if (atomic_read(&dev_priv->mm.wedged)) { mutex_unlock(&dev->struct_mutex); ret = -EIO; goto pre_mutex_err; } if (dev_priv->mm.suspended) { mutex_unlock(&dev->struct_mutex); ret = -EBUSY; goto pre_mutex_err; } /* Look up object handles */ flips = 0; for (i = 0; i < args->buffer_count; i++) { object_list[i] = drm_gem_object_lookup(dev, file_priv, exec_list[i].handle); if (object_list[i] == NULL) { DRM_ERROR("Invalid object handle %d at index %d\n", exec_list[i].handle, i); /* prevent error path from reading uninitialized data */ args->buffer_count = i + 1; ret = -ENOENT; goto err; } obj_priv = to_intel_bo(object_list[i]); if (obj_priv->in_execbuffer) { DRM_ERROR("Object %p appears more than once in object list\n", object_list[i]); /* prevent error path from reading uninitialized data */ args->buffer_count = i + 1; ret = -EINVAL; goto err; } obj_priv->in_execbuffer = true; flips += atomic_read(&obj_priv->pending_flip); } if (flips > 0) { ret = i915_gem_wait_for_pending_flip(dev, object_list, args->buffer_count); if (ret) goto err; } /* Pin and relocate */ for (pin_tries = 0; ; pin_tries++) { ret = 0; reloc_index = 0; for (i = 0; i < args->buffer_count; i++) { object_list[i]->pending_read_domains = 0; object_list[i]->pending_write_domain = 0; ret = i915_gem_object_pin_and_relocate(object_list[i], file_priv, &exec_list[i], &relocs[reloc_index]); if (ret) break; pinned = i + 1; reloc_index += exec_list[i].relocation_count; } /* success */ if (ret == 0) break; /* error other than GTT full, or we've already tried again */ if (ret != -ENOSPC || pin_tries >= 1) { if (ret != -ERESTARTSYS) { unsigned long long total_size = 0; int num_fences = 0; for (i = 0; i < args->buffer_count; i++) { obj_priv = to_intel_bo(object_list[i]); total_size += object_list[i]->size; num_fences += exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE && obj_priv->tiling_mode != I915_TILING_NONE; } DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n", pinned+1, args->buffer_count, total_size, num_fences, ret); DRM_ERROR("%d objects [%d pinned], " "%d object bytes [%d pinned], " "%d/%d gtt bytes\n", atomic_read(&dev->object_count), atomic_read(&dev->pin_count), atomic_read(&dev->object_memory), atomic_read(&dev->pin_memory), atomic_read(&dev->gtt_memory), dev->gtt_total); } goto err; } /* unpin all of our buffers */ for (i = 0; i < pinned; i++) i915_gem_object_unpin(object_list[i]); pinned = 0; /* evict everyone we can from the aperture */ ret = i915_gem_evict_everything(dev); if (ret && ret != -ENOSPC) goto err; } /* Set the pending read domains for the batch buffer to COMMAND */ batch_obj = object_list[args->buffer_count-1]; if (batch_obj->pending_write_domain) { DRM_ERROR("Attempting to use self-modifying batch buffer\n"); ret = -EINVAL; goto err; } batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND; /* Sanity check the batch buffer, prior to moving objects */ exec_offset = exec_list[args->buffer_count - 1].offset; ret = i915_gem_check_execbuffer (args, exec_offset); if (ret != 0) { DRM_ERROR("execbuf with invalid offset/length\n"); goto err; } i915_verify_inactive(dev, __FILE__, __LINE__); /* Zero the global flush/invalidate flags. These * will be modified as new domains are computed * for each object */ dev->invalidate_domains = 0; dev->flush_domains = 0; for (i = 0; i < args->buffer_count; i++) { struct drm_gem_object *obj = object_list[i]; /* Compute new gpu domains and update invalidate/flush */ i915_gem_object_set_to_gpu_domain(obj); } i915_verify_inactive(dev, __FILE__, __LINE__); if (dev->invalidate_domains | dev->flush_domains) { #if WATCH_EXEC DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", __func__, dev->invalidate_domains, dev->flush_domains); #endif i915_gem_flush(dev, dev->invalidate_domains, dev->flush_domains); } if (dev_priv->render_ring.outstanding_lazy_request) { (void)i915_add_request(dev, file_priv, &dev_priv->render_ring); dev_priv->render_ring.outstanding_lazy_request = false; } if (dev_priv->bsd_ring.outstanding_lazy_request) { (void)i915_add_request(dev, file_priv, &dev_priv->bsd_ring); dev_priv->bsd_ring.outstanding_lazy_request = false; } for (i = 0; i < args->buffer_count; i++) { struct drm_gem_object *obj = object_list[i]; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); uint32_t old_write_domain = obj->write_domain; obj->write_domain = obj->pending_write_domain; if (obj->write_domain) list_move_tail(&obj_priv->gpu_write_list, &dev_priv->mm.gpu_write_list); else list_del_init(&obj_priv->gpu_write_list); trace_i915_gem_object_change_domain(obj, obj->read_domains, old_write_domain); } i915_verify_inactive(dev, __FILE__, __LINE__); #if WATCH_COHERENCY for (i = 0; i < args->buffer_count; i++) { i915_gem_object_check_coherency(object_list[i], exec_list[i].handle); } #endif #if WATCH_EXEC i915_gem_dump_object(batch_obj, args->batch_len, __func__, ~0); #endif /* Exec the batchbuffer */ ret = ring->dispatch_gem_execbuffer(dev, ring, args, cliprects, exec_offset); if (ret) { DRM_ERROR("dispatch failed %d\n", ret); goto err; } /* * Ensure that the commands in the batch buffer are * finished before the interrupt fires */ i915_retire_commands(dev, ring); i915_verify_inactive(dev, __FILE__, __LINE__); for (i = 0; i < args->buffer_count; i++) { struct drm_gem_object *obj = object_list[i]; obj_priv = to_intel_bo(obj); i915_gem_object_move_to_active(obj, ring); #if WATCH_LRU DRM_INFO("%s: move to exec list %p\n", __func__, obj); #endif } /* * Get a seqno representing the execution of the current buffer, * which we can wait on. We would like to mitigate these interrupts, * likely by only creating seqnos occasionally (so that we have * *some* interrupts representing completion of buffers that we can * wait on when trying to clear up gtt space). */ seqno = i915_add_request(dev, file_priv, ring); #if WATCH_LRU i915_dump_lru(dev, __func__); #endif i915_verify_inactive(dev, __FILE__, __LINE__); err: for (i = 0; i < pinned; i++) i915_gem_object_unpin(object_list[i]); for (i = 0; i < args->buffer_count; i++) { if (object_list[i]) { obj_priv = to_intel_bo(object_list[i]); obj_priv->in_execbuffer = false; } drm_gem_object_unreference(object_list[i]); } mutex_unlock(&dev->struct_mutex); pre_mutex_err: /* Copy the updated relocations out regardless of current error * state. Failure to update the relocs would mean that the next * time userland calls execbuf, it would do so with presumed offset * state that didn't match the actual object state. */ ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count, relocs); if (ret2 != 0) { DRM_ERROR("Failed to copy relocations back out: %d\n", ret2); if (ret == 0) ret = ret2; } drm_free_large(object_list); kfree(cliprects); return ret; } /* * Legacy execbuffer just creates an exec2 list from the original exec object * list array and passes it to the real function. */ int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_execbuffer2 exec2; struct drm_i915_gem_exec_object *exec_list = NULL; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret, i; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif if (args->buffer_count < 1) { DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } /* Copy in the exec list from userland */ exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count); exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); if (exec_list == NULL || exec2_list == NULL) { DRM_ERROR("Failed to allocate exec list for %d buffers\n", args->buffer_count); drm_free_large(exec_list); drm_free_large(exec2_list); return -ENOMEM; } ret = copy_from_user(exec_list, (struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, sizeof(*exec_list) * args->buffer_count); if (ret != 0) { DRM_ERROR("copy %d exec entries failed %d\n", args->buffer_count, ret); drm_free_large(exec_list); drm_free_large(exec2_list); return -EFAULT; } for (i = 0; i < args->buffer_count; i++) { exec2_list[i].handle = exec_list[i].handle; exec2_list[i].relocation_count = exec_list[i].relocation_count; exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; exec2_list[i].alignment = exec_list[i].alignment; exec2_list[i].offset = exec_list[i].offset; if (!IS_I965G(dev)) exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; else exec2_list[i].flags = 0; } exec2.buffers_ptr = args->buffers_ptr; exec2.buffer_count = args->buffer_count; exec2.batch_start_offset = args->batch_start_offset; exec2.batch_len = args->batch_len; exec2.DR1 = args->DR1; exec2.DR4 = args->DR4; exec2.num_cliprects = args->num_cliprects; exec2.cliprects_ptr = args->cliprects_ptr; exec2.flags = I915_EXEC_RENDER; ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ for (i = 0; i < args->buffer_count; i++) exec_list[i].offset = exec2_list[i].offset; /* ... and back out to userspace */ ret = copy_to_user((struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, exec_list, sizeof(*exec_list) * args->buffer_count); if (ret) { ret = -EFAULT; DRM_ERROR("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } drm_free_large(exec_list); drm_free_large(exec2_list); return ret; } int i915_gem_execbuffer2(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret; #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif if (args->buffer_count < 1) { DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count); return -EINVAL; } exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); if (exec2_list == NULL) { DRM_ERROR("Failed to allocate exec list for %d buffers\n", args->buffer_count); return -ENOMEM; } ret = copy_from_user(exec2_list, (struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, sizeof(*exec2_list) * args->buffer_count); if (ret != 0) { DRM_ERROR("copy %d exec entries failed %d\n", args->buffer_count, ret); drm_free_large(exec2_list); return -EFAULT; } ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ ret = copy_to_user((struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, exec2_list, sizeof(*exec2_list) * args->buffer_count); if (ret) { ret = -EFAULT; DRM_ERROR("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } drm_free_large(exec2_list); return ret; } int i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int ret; BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT); i915_verify_inactive(dev, __FILE__, __LINE__); if (obj_priv->gtt_space != NULL) { if (alignment == 0) alignment = i915_gem_get_gtt_alignment(obj); if (obj_priv->gtt_offset & (alignment - 1)) { WARN(obj_priv->pin_count, "bo is already pinned with incorrect alignment:" " offset=%x, req.alignment=%x\n", obj_priv->gtt_offset, alignment); ret = i915_gem_object_unbind(obj); if (ret) return ret; } } if (obj_priv->gtt_space == NULL) { ret = i915_gem_object_bind_to_gtt(obj, alignment); if (ret) return ret; } obj_priv->pin_count++; /* If the object is not active and not pending a flush, * remove it from the inactive list */ if (obj_priv->pin_count == 1) { atomic_inc(&dev->pin_count); atomic_add(obj->size, &dev->pin_memory); if (!obj_priv->active && (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) list_del_init(&obj_priv->list); } i915_verify_inactive(dev, __FILE__, __LINE__); return 0; } void i915_gem_object_unpin(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); i915_verify_inactive(dev, __FILE__, __LINE__); obj_priv->pin_count--; BUG_ON(obj_priv->pin_count < 0); BUG_ON(obj_priv->gtt_space == NULL); /* If the object is no longer pinned, and is * neither active nor being flushed, then stick it on * the inactive list */ if (obj_priv->pin_count == 0) { if (!obj_priv->active && (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); atomic_dec(&dev->pin_count); atomic_sub(obj->size, &dev->pin_memory); } i915_verify_inactive(dev, __FILE__, __LINE__); } int i915_gem_pin_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_pin *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; int ret; mutex_lock(&dev->struct_mutex); obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n", args->handle); mutex_unlock(&dev->struct_mutex); return -ENOENT; } obj_priv = to_intel_bo(obj); if (obj_priv->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to pin a purgeable buffer\n"); drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return -EINVAL; } if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) { DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", args->handle); drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return -EINVAL; } obj_priv->user_pin_count++; obj_priv->pin_filp = file_priv; if (obj_priv->user_pin_count == 1) { ret = i915_gem_object_pin(obj, args->alignment); if (ret != 0) { drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return ret; } } /* XXX - flush the CPU caches for pinned objects * as the X server doesn't manage domains yet */ i915_gem_object_flush_cpu_write_domain(obj); args->offset = obj_priv->gtt_offset; drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_unpin_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_pin *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; mutex_lock(&dev->struct_mutex); obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n", args->handle); mutex_unlock(&dev->struct_mutex); return -ENOENT; } obj_priv = to_intel_bo(obj); if (obj_priv->pin_filp != file_priv) { DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", args->handle); drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return -EINVAL; } obj_priv->user_pin_count--; if (obj_priv->user_pin_count == 0) { obj_priv->pin_filp = NULL; i915_gem_object_unpin(obj); } drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_busy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_busy *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n", args->handle); return -ENOENT; } mutex_lock(&dev->struct_mutex); /* Count all active objects as busy, even if they are currently not used * by the gpu. Users of this interface expect objects to eventually * become non-busy without any further actions, therefore emit any * necessary flushes here. */ obj_priv = to_intel_bo(obj); args->busy = obj_priv->active; if (args->busy) { /* Unconditionally flush objects, even when the gpu still uses this * object. Userspace calling this function indicates that it wants to * use this buffer rather sooner than later, so issuing the required * flush earlier is beneficial. */ if (obj->write_domain) { i915_gem_flush(dev, 0, obj->write_domain); (void)i915_add_request(dev, file_priv, obj_priv->ring); } /* Update the active list for the hardware's current position. * Otherwise this only updates on a delayed timer or when irqs * are actually unmasked, and our working set ends up being * larger than required. */ i915_gem_retire_requests_ring(dev, obj_priv->ring); args->busy = obj_priv->active; } drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { return i915_gem_ring_throttle(dev, file_priv); } int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_madvise *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; switch (args->madv) { case I915_MADV_DONTNEED: case I915_MADV_WILLNEED: break; default: return -EINVAL; } obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n", args->handle); return -ENOENT; } mutex_lock(&dev->struct_mutex); obj_priv = to_intel_bo(obj); if (obj_priv->pin_count) { drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n"); return -EINVAL; } if (obj_priv->madv != __I915_MADV_PURGED) obj_priv->madv = args->madv; /* if the object is no longer bound, discard its backing storage */ if (i915_gem_object_is_purgeable(obj_priv) && obj_priv->gtt_space == NULL) i915_gem_object_truncate(obj); args->retained = obj_priv->madv != __I915_MADV_PURGED; drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev, size_t size) { struct drm_i915_gem_object *obj; obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (obj == NULL) return NULL; if (drm_gem_object_init(dev, &obj->base, size) != 0) { kfree(obj); return NULL; } obj->base.write_domain = I915_GEM_DOMAIN_CPU; obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->agp_type = AGP_USER_MEMORY; obj->base.driver_private = NULL; obj->fence_reg = I915_FENCE_REG_NONE; INIT_LIST_HEAD(&obj->list); INIT_LIST_HEAD(&obj->gpu_write_list); obj->madv = I915_MADV_WILLNEED; trace_i915_gem_object_create(&obj->base); return &obj->base; } int i915_gem_init_object(struct drm_gem_object *obj) { BUG(); return 0; } static void i915_gem_free_object_tail(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int ret; ret = i915_gem_object_unbind(obj); if (ret == -ERESTARTSYS) { list_move(&obj_priv->list, &dev_priv->mm.deferred_free_list); return; } if (obj_priv->mmap_offset) i915_gem_free_mmap_offset(obj); drm_gem_object_release(obj); kfree(obj_priv->page_cpu_valid); kfree(obj_priv->bit_17); kfree(obj_priv); } void i915_gem_free_object(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); trace_i915_gem_object_destroy(obj); while (obj_priv->pin_count > 0) i915_gem_object_unpin(obj); if (obj_priv->phys_obj) i915_gem_detach_phys_object(dev, obj); i915_gem_free_object_tail(obj); } int i915_gem_idle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; mutex_lock(&dev->struct_mutex); if (dev_priv->mm.suspended || (dev_priv->render_ring.gem_object == NULL) || (HAS_BSD(dev) && dev_priv->bsd_ring.gem_object == NULL)) { mutex_unlock(&dev->struct_mutex); return 0; } ret = i915_gpu_idle(dev); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } /* Under UMS, be paranoid and evict. */ if (!drm_core_check_feature(dev, DRIVER_MODESET)) { ret = i915_gem_evict_inactive(dev); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } } /* Hack! Don't let anybody do execbuf while we don't control the chip. * We need to replace this with a semaphore, or something. * And not confound mm.suspended! */ dev_priv->mm.suspended = 1; del_timer_sync(&dev_priv->hangcheck_timer); i915_kernel_lost_context(dev); i915_gem_cleanup_ringbuffer(dev); mutex_unlock(&dev->struct_mutex); /* Cancel the retire work handler, which should be idle now. */ cancel_delayed_work_sync(&dev_priv->mm.retire_work); return 0; } /* * 965+ support PIPE_CONTROL commands, which provide finer grained control * over cache flushing. */ static int i915_gem_init_pipe_control(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; int ret; obj = i915_gem_alloc_object(dev, 4096); if (obj == NULL) { DRM_ERROR("Failed to allocate seqno page\n"); ret = -ENOMEM; goto err; } obj_priv = to_intel_bo(obj); obj_priv->agp_type = AGP_USER_CACHED_MEMORY; ret = i915_gem_object_pin(obj, 4096); if (ret) goto err_unref; dev_priv->seqno_gfx_addr = obj_priv->gtt_offset; dev_priv->seqno_page = kmap(obj_priv->pages[0]); if (dev_priv->seqno_page == NULL) goto err_unpin; dev_priv->seqno_obj = obj; memset(dev_priv->seqno_page, 0, PAGE_SIZE); return 0; err_unpin: i915_gem_object_unpin(obj); err_unref: drm_gem_object_unreference(obj); err: return ret; } static void i915_gem_cleanup_pipe_control(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; obj = dev_priv->seqno_obj; obj_priv = to_intel_bo(obj); kunmap(obj_priv->pages[0]); i915_gem_object_unpin(obj); drm_gem_object_unreference(obj); dev_priv->seqno_obj = NULL; dev_priv->seqno_page = NULL; } int i915_gem_init_ringbuffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; dev_priv->render_ring = render_ring; if (!I915_NEED_GFX_HWS(dev)) { dev_priv->render_ring.status_page.page_addr = dev_priv->status_page_dmah->vaddr; memset(dev_priv->render_ring.status_page.page_addr, 0, PAGE_SIZE); } if (HAS_PIPE_CONTROL(dev)) { ret = i915_gem_init_pipe_control(dev); if (ret) return ret; } ret = intel_init_ring_buffer(dev, &dev_priv->render_ring); if (ret) goto cleanup_pipe_control; if (HAS_BSD(dev)) { dev_priv->bsd_ring = bsd_ring; ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring); if (ret) goto cleanup_render_ring; } dev_priv->next_seqno = 1; return 0; cleanup_render_ring: intel_cleanup_ring_buffer(dev, &dev_priv->render_ring); cleanup_pipe_control: if (HAS_PIPE_CONTROL(dev)) i915_gem_cleanup_pipe_control(dev); return ret; } void i915_gem_cleanup_ringbuffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; intel_cleanup_ring_buffer(dev, &dev_priv->render_ring); if (HAS_BSD(dev)) intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring); if (HAS_PIPE_CONTROL(dev)) i915_gem_cleanup_pipe_control(dev); } int i915_gem_entervt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; if (atomic_read(&dev_priv->mm.wedged)) { DRM_ERROR("Reenabling wedged hardware, good luck\n"); atomic_set(&dev_priv->mm.wedged, 0); } mutex_lock(&dev->struct_mutex); dev_priv->mm.suspended = 0; ret = i915_gem_init_ringbuffer(dev); if (ret != 0) { mutex_unlock(&dev->struct_mutex); return ret; } spin_lock(&dev_priv->mm.active_list_lock); BUG_ON(!list_empty(&dev_priv->render_ring.active_list)); BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list)); spin_unlock(&dev_priv->mm.active_list_lock); BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); BUG_ON(!list_empty(&dev_priv->render_ring.request_list)); BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list)); mutex_unlock(&dev->struct_mutex); ret = drm_irq_install(dev); if (ret) goto cleanup_ringbuffer; return 0; cleanup_ringbuffer: mutex_lock(&dev->struct_mutex); i915_gem_cleanup_ringbuffer(dev); dev_priv->mm.suspended = 1; mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; drm_irq_uninstall(dev); return i915_gem_idle(dev); } void i915_gem_lastclose(struct drm_device *dev) { int ret; if (drm_core_check_feature(dev, DRIVER_MODESET)) return; ret = i915_gem_idle(dev); if (ret) DRM_ERROR("failed to idle hardware: %d\n", ret); } void i915_gem_load(struct drm_device *dev) { int i; drm_i915_private_t *dev_priv = dev->dev_private; spin_lock_init(&dev_priv->mm.active_list_lock); INIT_LIST_HEAD(&dev_priv->mm.flushing_list); INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list); INIT_LIST_HEAD(&dev_priv->mm.inactive_list); INIT_LIST_HEAD(&dev_priv->mm.fence_list); INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list); INIT_LIST_HEAD(&dev_priv->render_ring.active_list); INIT_LIST_HEAD(&dev_priv->render_ring.request_list); if (HAS_BSD(dev)) { INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list); INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list); } for (i = 0; i < 16; i++) INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); INIT_DELAYED_WORK(&dev_priv->mm.retire_work, i915_gem_retire_work_handler); spin_lock(&shrink_list_lock); list_add(&dev_priv->mm.shrink_list, &shrink_list); spin_unlock(&shrink_list_lock); /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ if (IS_GEN3(dev)) { u32 tmp = I915_READ(MI_ARB_STATE); if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) { /* arb state is a masked write, so set bit + bit in mask */ tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT); I915_WRITE(MI_ARB_STATE, tmp); } } /* Old X drivers will take 0-2 for front, back, depth buffers */ if (!drm_core_check_feature(dev, DRIVER_MODESET)) dev_priv->fence_reg_start = 3; if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) dev_priv->num_fence_regs = 16; else dev_priv->num_fence_regs = 8; /* Initialize fence registers to zero */ if (IS_I965G(dev)) { for (i = 0; i < 16; i++) I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0); } else { for (i = 0; i < 8; i++) I915_WRITE(FENCE_REG_830_0 + (i * 4), 0); if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) for (i = 0; i < 8; i++) I915_WRITE(FENCE_REG_945_8 + (i * 4), 0); } i915_gem_detect_bit_6_swizzle(dev); init_waitqueue_head(&dev_priv->pending_flip_queue); } /* * Create a physically contiguous memory object for this object * e.g. for cursor + overlay regs */ int i915_gem_init_phys_object(struct drm_device *dev, int id, int size, int align) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_phys_object *phys_obj; int ret; if (dev_priv->mm.phys_objs[id - 1] || !size) return 0; phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); if (!phys_obj) return -ENOMEM; phys_obj->id = id; phys_obj->handle = drm_pci_alloc(dev, size, align); if (!phys_obj->handle) { ret = -ENOMEM; goto kfree_obj; } #ifdef CONFIG_X86 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); #endif dev_priv->mm.phys_objs[id - 1] = phys_obj; return 0; kfree_obj: kfree(phys_obj); return ret; } void i915_gem_free_phys_object(struct drm_device *dev, int id) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_phys_object *phys_obj; if (!dev_priv->mm.phys_objs[id - 1]) return; phys_obj = dev_priv->mm.phys_objs[id - 1]; if (phys_obj->cur_obj) { i915_gem_detach_phys_object(dev, phys_obj->cur_obj); } #ifdef CONFIG_X86 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); #endif drm_pci_free(dev, phys_obj->handle); kfree(phys_obj); dev_priv->mm.phys_objs[id - 1] = NULL; } void i915_gem_free_all_phys_object(struct drm_device *dev) { int i; for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) i915_gem_free_phys_object(dev, i); } void i915_gem_detach_phys_object(struct drm_device *dev, struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv; int i; int ret; int page_count; obj_priv = to_intel_bo(obj); if (!obj_priv->phys_obj) return; ret = i915_gem_object_get_pages(obj, 0); if (ret) goto out; page_count = obj->size / PAGE_SIZE; for (i = 0; i < page_count; i++) { char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0); char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); memcpy(dst, src, PAGE_SIZE); kunmap_atomic(dst, KM_USER0); } drm_clflush_pages(obj_priv->pages, page_count); drm_agp_chipset_flush(dev); i915_gem_object_put_pages(obj); out: obj_priv->phys_obj->cur_obj = NULL; obj_priv->phys_obj = NULL; } int i915_gem_attach_phys_object(struct drm_device *dev, struct drm_gem_object *obj, int id, int align) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv; int ret = 0; int page_count; int i; if (id > I915_MAX_PHYS_OBJECT) return -EINVAL; obj_priv = to_intel_bo(obj); if (obj_priv->phys_obj) { if (obj_priv->phys_obj->id == id) return 0; i915_gem_detach_phys_object(dev, obj); } /* create a new object */ if (!dev_priv->mm.phys_objs[id - 1]) { ret = i915_gem_init_phys_object(dev, id, obj->size, align); if (ret) { DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size); goto out; } } /* bind to the object */ obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1]; obj_priv->phys_obj->cur_obj = obj; ret = i915_gem_object_get_pages(obj, 0); if (ret) { DRM_ERROR("failed to get page list\n"); goto out; } page_count = obj->size / PAGE_SIZE; for (i = 0; i < page_count; i++) { char *src = kmap_atomic(obj_priv->pages[i], KM_USER0); char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); memcpy(dst, src, PAGE_SIZE); kunmap_atomic(src, KM_USER0); } i915_gem_object_put_pages(obj); return 0; out: return ret; } static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); void *obj_addr; int ret; char __user *user_data; user_data = (char __user *) (uintptr_t) args->data_ptr; obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset; DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size); ret = copy_from_user(obj_addr, user_data, args->size); if (ret) return -EFAULT; drm_agp_chipset_flush(dev); return 0; } void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv) { struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; /* Clean up our request list when the client is going away, so that * later retire_requests won't dereference our soon-to-be-gone * file_priv. */ mutex_lock(&dev->struct_mutex); while (!list_empty(&i915_file_priv->mm.request_list)) list_del_init(i915_file_priv->mm.request_list.next); mutex_unlock(&dev->struct_mutex); } static int i915_gpu_is_active(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int lists_empty; spin_lock(&dev_priv->mm.active_list_lock); lists_empty = list_empty(&dev_priv->mm.flushing_list) && list_empty(&dev_priv->render_ring.active_list); if (HAS_BSD(dev)) lists_empty &= list_empty(&dev_priv->bsd_ring.active_list); spin_unlock(&dev_priv->mm.active_list_lock); return !lists_empty; } static int i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) { drm_i915_private_t *dev_priv, *next_dev; struct drm_i915_gem_object *obj_priv, *next_obj; int cnt = 0; int would_deadlock = 1; /* "fast-path" to count number of available objects */ if (nr_to_scan == 0) { spin_lock(&shrink_list_lock); list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) { struct drm_device *dev = dev_priv->dev; if (mutex_trylock(&dev->struct_mutex)) { list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) cnt++; mutex_unlock(&dev->struct_mutex); } } spin_unlock(&shrink_list_lock); return (cnt / 100) * sysctl_vfs_cache_pressure; } spin_lock(&shrink_list_lock); rescan: /* first scan for clean buffers */ list_for_each_entry_safe(dev_priv, next_dev, &shrink_list, mm.shrink_list) { struct drm_device *dev = dev_priv->dev; if (! mutex_trylock(&dev->struct_mutex)) continue; spin_unlock(&shrink_list_lock); i915_gem_retire_requests(dev); list_for_each_entry_safe(obj_priv, next_obj, &dev_priv->mm.inactive_list, list) { if (i915_gem_object_is_purgeable(obj_priv)) { i915_gem_object_unbind(&obj_priv->base); if (--nr_to_scan <= 0) break; } } spin_lock(&shrink_list_lock); mutex_unlock(&dev->struct_mutex); would_deadlock = 0; if (nr_to_scan <= 0) break; } /* second pass, evict/count anything still on the inactive list */ list_for_each_entry_safe(dev_priv, next_dev, &shrink_list, mm.shrink_list) { struct drm_device *dev = dev_priv->dev; if (! mutex_trylock(&dev->struct_mutex)) continue; spin_unlock(&shrink_list_lock); list_for_each_entry_safe(obj_priv, next_obj, &dev_priv->mm.inactive_list, list) { if (nr_to_scan > 0) { i915_gem_object_unbind(&obj_priv->base); nr_to_scan--; } else cnt++; } spin_lock(&shrink_list_lock); mutex_unlock(&dev->struct_mutex); would_deadlock = 0; } if (nr_to_scan) { int active = 0; /* * We are desperate for pages, so as a last resort, wait * for the GPU to finish and discard whatever we can. * This has a dramatic impact to reduce the number of * OOM-killer events whilst running the GPU aggressively. */ list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) { struct drm_device *dev = dev_priv->dev; if (!mutex_trylock(&dev->struct_mutex)) continue; spin_unlock(&shrink_list_lock); if (i915_gpu_is_active(dev)) { i915_gpu_idle(dev); active++; } spin_lock(&shrink_list_lock); mutex_unlock(&dev->struct_mutex); } if (active) goto rescan; } spin_unlock(&shrink_list_lock); if (would_deadlock) return -1; else if (cnt > 0) return (cnt / 100) * sysctl_vfs_cache_pressure; else return 0; } static struct shrinker shrinker = { .shrink = i915_gem_shrink, .seeks = DEFAULT_SEEKS, }; __init void i915_gem_shrinker_init(void) { register_shrinker(&shrinker); } __exit void i915_gem_shrinker_exit(void) { unregister_shrinker(&shrinker); }