/****************************************************************************** ** Device driver for the PCI-SCSI NCR538XX controller family. ** ** Copyright (C) 1994 Wolfgang Stanglmeier ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** **----------------------------------------------------------------------------- ** ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver ** and is currently maintained by ** ** Gerard Roudier ** ** Being given that this driver originates from the FreeBSD version, and ** in order to keep synergy on both, any suggested enhancements and corrections ** received on Linux are automatically a potential candidate for the FreeBSD ** version. ** ** The original driver has been written for 386bsd and FreeBSD by ** Wolfgang Stanglmeier ** Stefan Esser ** ** And has been ported to NetBSD by ** Charles M. Hannum ** **----------------------------------------------------------------------------- ** ** Brief history ** ** December 10 1995 by Gerard Roudier: ** Initial port to Linux. ** ** June 23 1996 by Gerard Roudier: ** Support for 64 bits architectures (Alpha). ** ** November 30 1996 by Gerard Roudier: ** Support for Fast-20 scsi. ** Support for large DMA fifo and 128 dwords bursting. ** ** February 27 1997 by Gerard Roudier: ** Support for Fast-40 scsi. ** Support for on-Board RAM. ** ** May 3 1997 by Gerard Roudier: ** Full support for scsi scripts instructions pre-fetching. ** ** May 19 1997 by Richard Waltham : ** Support for NvRAM detection and reading. ** ** August 18 1997 by Cort : ** Support for Power/PC (Big Endian). ** ** June 20 1998 by Gerard Roudier ** Support for up to 64 tags per lun. ** O(1) everywhere (C and SCRIPTS) for normal cases. ** Low PCI traffic for command handling when on-chip RAM is present. ** Aggressive SCSI SCRIPTS optimizations. ** ** 2005 by Matthew Wilcox and James Bottomley ** PCI-ectomy. This driver now supports only the 720 chip (see the ** NCR_Q720 and zalon drivers for the bus probe logic). ** ******************************************************************************* */ /* ** Supported SCSI-II features: ** Synchronous negotiation ** Wide negotiation (depends on the NCR Chip) ** Enable disconnection ** Tagged command queuing ** Parity checking ** Etc... ** ** Supported NCR/SYMBIOS chips: ** 53C720 (Wide, Fast SCSI-2, intfly problems) */ /* Name and version of the driver */ #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g" #define SCSI_NCR_DEBUG_FLAGS (0) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ncr53c8xx.h" #define NAME53C8XX "ncr53c8xx" /*========================================================== ** ** Debugging tags ** **========================================================== */ #define DEBUG_ALLOC (0x0001) #define DEBUG_PHASE (0x0002) #define DEBUG_QUEUE (0x0008) #define DEBUG_RESULT (0x0010) #define DEBUG_POINTER (0x0020) #define DEBUG_SCRIPT (0x0040) #define DEBUG_TINY (0x0080) #define DEBUG_TIMING (0x0100) #define DEBUG_NEGO (0x0200) #define DEBUG_TAGS (0x0400) #define DEBUG_SCATTER (0x0800) #define DEBUG_IC (0x1000) /* ** Enable/Disable debug messages. ** Can be changed at runtime too. */ #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT static int ncr_debug = SCSI_NCR_DEBUG_FLAGS; #define DEBUG_FLAGS ncr_debug #else #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS #endif static inline struct list_head *ncr_list_pop(struct list_head *head) { if (!list_empty(head)) { struct list_head *elem = head->next; list_del(elem); return elem; } return NULL; } /*========================================================== ** ** Simple power of two buddy-like allocator. ** ** This simple code is not intended to be fast, but to ** provide power of 2 aligned memory allocations. ** Since the SCRIPTS processor only supplies 8 bit ** arithmetic, this allocator allows simple and fast ** address calculations from the SCRIPTS code. ** In addition, cache line alignment is guaranteed for ** power of 2 cache line size. ** Enhanced in linux-2.3.44 to provide a memory pool ** per pcidev to support dynamic dma mapping. (I would ** have preferred a real bus astraction, btw). ** **========================================================== */ #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ #if PAGE_SIZE >= 8192 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ #else #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */ #endif #define MEMO_FREE_UNUSED /* Free unused pages immediately */ #define MEMO_WARN 1 #define MEMO_GFP_FLAGS GFP_ATOMIC #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ typedef struct device *m_bush_t; /* Something that addresses DMAable */ typedef struct m_link { /* Link between free memory chunks */ struct m_link *next; } m_link_s; typedef struct m_vtob { /* Virtual to Bus address translation */ struct m_vtob *next; m_addr_t vaddr; m_addr_t baddr; } m_vtob_s; #define VTOB_HASH_SHIFT 5 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) #define VTOB_HASH_CODE(m) \ ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) typedef struct m_pool { /* Memory pool of a given kind */ m_bush_t bush; m_addr_t (*getp)(struct m_pool *); void (*freep)(struct m_pool *, m_addr_t); int nump; m_vtob_s *(vtob[VTOB_HASH_SIZE]); struct m_pool *next; struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1]; } m_pool_s; static void *___m_alloc(m_pool_s *mp, int size) { int i = 0; int s = (1 << MEMO_SHIFT); int j; m_addr_t a; m_link_s *h = mp->h; if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) return NULL; while (size > s) { s <<= 1; ++i; } j = i; while (!h[j].next) { if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { h[j].next = (m_link_s *)mp->getp(mp); if (h[j].next) h[j].next->next = NULL; break; } ++j; s <<= 1; } a = (m_addr_t) h[j].next; if (a) { h[j].next = h[j].next->next; while (j > i) { j -= 1; s >>= 1; h[j].next = (m_link_s *) (a+s); h[j].next->next = NULL; } } #ifdef DEBUG printk("___m_alloc(%d) = %p\n", size, (void *) a); #endif return (void *) a; } static void ___m_free(m_pool_s *mp, void *ptr, int size) { int i = 0; int s = (1 << MEMO_SHIFT); m_link_s *q; m_addr_t a, b; m_link_s *h = mp->h; #ifdef DEBUG printk("___m_free(%p, %d)\n", ptr, size); #endif if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) return; while (size > s) { s <<= 1; ++i; } a = (m_addr_t) ptr; while (1) { #ifdef MEMO_FREE_UNUSED if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { mp->freep(mp, a); break; } #endif b = a ^ s; q = &h[i]; while (q->next && q->next != (m_link_s *) b) { q = q->next; } if (!q->next) { ((m_link_s *) a)->next = h[i].next; h[i].next = (m_link_s *) a; break; } q->next = q->next->next; a = a & b; s <<= 1; ++i; } } static DEFINE_SPINLOCK(ncr53c8xx_lock); static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags) { void *p; p = ___m_alloc(mp, size); if (DEBUG_FLAGS & DEBUG_ALLOC) printk ("new %-10s[%4d] @%p.\n", name, size, p); if (p) memset(p, 0, size); else if (uflags & MEMO_WARN) printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size); return p; } #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN) static void __m_free(m_pool_s *mp, void *ptr, int size, char *name) { if (DEBUG_FLAGS & DEBUG_ALLOC) printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr); ___m_free(mp, ptr, size); } /* * With pci bus iommu support, we use a default pool of unmapped memory * for memory we donnot need to DMA from/to and one pool per pcidev for * memory accessed by the PCI chip. `mp0' is the default not DMAable pool. */ static m_addr_t ___mp0_getp(m_pool_s *mp) { m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER); if (m) ++mp->nump; return m; } static void ___mp0_freep(m_pool_s *mp, m_addr_t m) { free_pages(m, MEMO_PAGE_ORDER); --mp->nump; } static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep}; /* * DMAable pools. */ /* * With pci bus iommu support, we maintain one pool per pcidev and a * hashed reverse table for virtual to bus physical address translations. */ static m_addr_t ___dma_getp(m_pool_s *mp) { m_addr_t vp; m_vtob_s *vbp; vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB"); if (vbp) { dma_addr_t daddr; vp = (m_addr_t) dma_alloc_coherent(mp->bush, PAGE_SIZE<vaddr = vp; vbp->baddr = daddr; vbp->next = mp->vtob[hc]; mp->vtob[hc] = vbp; ++mp->nump; return vp; } } if (vbp) __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); return 0; } static void ___dma_freep(m_pool_s *mp, m_addr_t m) { m_vtob_s **vbpp, *vbp; int hc = VTOB_HASH_CODE(m); vbpp = &mp->vtob[hc]; while (*vbpp && (*vbpp)->vaddr != m) vbpp = &(*vbpp)->next; if (*vbpp) { vbp = *vbpp; *vbpp = (*vbpp)->next; dma_free_coherent(mp->bush, PAGE_SIZE<vaddr, (dma_addr_t)vbp->baddr); __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); --mp->nump; } } static inline m_pool_s *___get_dma_pool(m_bush_t bush) { m_pool_s *mp; for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next); return mp; } static m_pool_s *___cre_dma_pool(m_bush_t bush) { m_pool_s *mp; mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL"); if (mp) { memset(mp, 0, sizeof(*mp)); mp->bush = bush; mp->getp = ___dma_getp; mp->freep = ___dma_freep; mp->next = mp0.next; mp0.next = mp; } return mp; } static void ___del_dma_pool(m_pool_s *p) { struct m_pool **pp = &mp0.next; while (*pp && *pp != p) pp = &(*pp)->next; if (*pp) { *pp = (*pp)->next; __m_free(&mp0, p, sizeof(*p), "MPOOL"); } } static void *__m_calloc_dma(m_bush_t bush, int size, char *name) { u_long flags; struct m_pool *mp; void *m = NULL; spin_lock_irqsave(&ncr53c8xx_lock, flags); mp = ___get_dma_pool(bush); if (!mp) mp = ___cre_dma_pool(bush); if (mp) m = __m_calloc(mp, size, name); if (mp && !mp->nump) ___del_dma_pool(mp); spin_unlock_irqrestore(&ncr53c8xx_lock, flags); return m; } static void __m_free_dma(m_bush_t bush, void *m, int size, char *name) { u_long flags; struct m_pool *mp; spin_lock_irqsave(&ncr53c8xx_lock, flags); mp = ___get_dma_pool(bush); if (mp) __m_free(mp, m, size, name); if (mp && !mp->nump) ___del_dma_pool(mp); spin_unlock_irqrestore(&ncr53c8xx_lock, flags); } static m_addr_t __vtobus(m_bush_t bush, void *m) { u_long flags; m_pool_s *mp; int hc = VTOB_HASH_CODE(m); m_vtob_s *vp = NULL; m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; spin_lock_irqsave(&ncr53c8xx_lock, flags); mp = ___get_dma_pool(bush); if (mp) { vp = mp->vtob[hc]; while (vp && (m_addr_t) vp->vaddr != a) vp = vp->next; } spin_unlock_irqrestore(&ncr53c8xx_lock, flags); return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; } #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n) #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n) #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n) #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n) #define _vtobus(np, p) __vtobus(np->dev, p) #define vtobus(p) _vtobus(np, p) /* * Deal with DMA mapping/unmapping. */ /* To keep track of the dma mapping (sg/single) that has been set */ #define __data_mapped SCp.phase #define __data_mapping SCp.have_data_in static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd) { switch(cmd->__data_mapped) { case 2: dma_unmap_sg(dev, cmd->buffer, cmd->use_sg, cmd->sc_data_direction); break; case 1: dma_unmap_single(dev, cmd->__data_mapping, cmd->request_bufflen, cmd->sc_data_direction); break; } cmd->__data_mapped = 0; } static u_long __map_scsi_single_data(struct device *dev, struct scsi_cmnd *cmd) { dma_addr_t mapping; if (cmd->request_bufflen == 0) return 0; mapping = dma_map_single(dev, cmd->request_buffer, cmd->request_bufflen, cmd->sc_data_direction); cmd->__data_mapped = 1; cmd->__data_mapping = mapping; return mapping; } static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd) { int use_sg; if (cmd->use_sg == 0) return 0; use_sg = dma_map_sg(dev, cmd->buffer, cmd->use_sg, cmd->sc_data_direction); cmd->__data_mapped = 2; cmd->__data_mapping = use_sg; return use_sg; } #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd) #define map_scsi_single_data(np, cmd) __map_scsi_single_data(np->dev, cmd) #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd) /*========================================================== ** ** Driver setup. ** ** This structure is initialized from linux config ** options. It can be overridden at boot-up by the boot ** command line. ** **========================================================== */ static struct ncr_driver_setup driver_setup = SCSI_NCR_DRIVER_SETUP; #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT static struct ncr_driver_setup driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP; #endif #define initverbose (driver_setup.verbose) #define bootverbose (np->verbose) /*=================================================================== ** ** Driver setup from the boot command line ** **=================================================================== */ #ifdef MODULE #define ARG_SEP ' ' #else #define ARG_SEP ',' #endif #define OPT_TAGS 1 #define OPT_MASTER_PARITY 2 #define OPT_SCSI_PARITY 3 #define OPT_DISCONNECTION 4 #define OPT_SPECIAL_FEATURES 5 #define OPT_UNUSED_1 6 #define OPT_FORCE_SYNC_NEGO 7 #define OPT_REVERSE_PROBE 8 #define OPT_DEFAULT_SYNC 9 #define OPT_VERBOSE 10 #define OPT_DEBUG 11 #define OPT_BURST_MAX 12 #define OPT_LED_PIN 13 #define OPT_MAX_WIDE 14 #define OPT_SETTLE_DELAY 15 #define OPT_DIFF_SUPPORT 16 #define OPT_IRQM 17 #define OPT_PCI_FIX_UP 18 #define OPT_BUS_CHECK 19 #define OPT_OPTIMIZE 20 #define OPT_RECOVERY 21 #define OPT_SAFE_SETUP 22 #define OPT_USE_NVRAM 23 #define OPT_EXCLUDE 24 #define OPT_HOST_ID 25 #ifdef SCSI_NCR_IARB_SUPPORT #define OPT_IARB 26 #endif static char setup_token[] __initdata = "tags:" "mpar:" "spar:" "disc:" "specf:" "ultra:" "fsn:" "revprob:" "sync:" "verb:" "debug:" "burst:" "led:" "wide:" "settle:" "diff:" "irqm:" "pcifix:" "buschk:" "optim:" "recovery:" "safe:" "nvram:" "excl:" "hostid:" #ifdef SCSI_NCR_IARB_SUPPORT "iarb:" #endif ; /* DONNOT REMOVE THIS ';' */ #ifdef MODULE #define ARG_SEP ' ' #else #define ARG_SEP ',' #endif static int __init get_setup_token(char *p) { char *cur = setup_token; char *pc; int i = 0; while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { ++pc; ++i; if (!strncmp(p, cur, pc - cur)) return i; cur = pc; } return 0; } static int __init sym53c8xx__setup(char *str) { #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT char *cur = str; char *pc, *pv; int i, val, c; int xi = 0; while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { char *pe; val = 0; pv = pc; c = *++pv; if (c == 'n') val = 0; else if (c == 'y') val = 1; else val = (int) simple_strtoul(pv, &pe, 0); switch (get_setup_token(cur)) { case OPT_TAGS: driver_setup.default_tags = val; if (pe && *pe == '/') { i = 0; while (*pe && *pe != ARG_SEP && i < sizeof(driver_setup.tag_ctrl)-1) { driver_setup.tag_ctrl[i++] = *pe++; } driver_setup.tag_ctrl[i] = '\0'; } break; case OPT_MASTER_PARITY: driver_setup.master_parity = val; break; case OPT_SCSI_PARITY: driver_setup.scsi_parity = val; break; case OPT_DISCONNECTION: driver_setup.disconnection = val; break; case OPT_SPECIAL_FEATURES: driver_setup.special_features = val; break; case OPT_FORCE_SYNC_NEGO: driver_setup.force_sync_nego = val; break; case OPT_REVERSE_PROBE: driver_setup.reverse_probe = val; break; case OPT_DEFAULT_SYNC: driver_setup.default_sync = val; break; case OPT_VERBOSE: driver_setup.verbose = val; break; case OPT_DEBUG: driver_setup.debug = val; break; case OPT_BURST_MAX: driver_setup.burst_max = val; break; case OPT_LED_PIN: driver_setup.led_pin = val; break; case OPT_MAX_WIDE: driver_setup.max_wide = val? 1:0; break; case OPT_SETTLE_DELAY: driver_setup.settle_delay = val; break; case OPT_DIFF_SUPPORT: driver_setup.diff_support = val; break; case OPT_IRQM: driver_setup.irqm = val; break; case OPT_PCI_FIX_UP: driver_setup.pci_fix_up = val; break; case OPT_BUS_CHECK: driver_setup.bus_check = val; break; case OPT_OPTIMIZE: driver_setup.optimize = val; break; case OPT_RECOVERY: driver_setup.recovery = val; break; case OPT_USE_NVRAM: driver_setup.use_nvram = val; break; case OPT_SAFE_SETUP: memcpy(&driver_setup, &driver_safe_setup, sizeof(driver_setup)); break; case OPT_EXCLUDE: if (xi < SCSI_NCR_MAX_EXCLUDES) driver_setup.excludes[xi++] = val; break; case OPT_HOST_ID: driver_setup.host_id = val; break; #ifdef SCSI_NCR_IARB_SUPPORT case OPT_IARB: driver_setup.iarb = val; break; #endif default: printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); break; } if ((cur = strchr(cur, ARG_SEP)) != NULL) ++cur; } #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */ return 1; } /*=================================================================== ** ** Get device queue depth from boot command line. ** **=================================================================== */ #define DEF_DEPTH (driver_setup.default_tags) #define ALL_TARGETS -2 #define NO_TARGET -1 #define ALL_LUNS -2 #define NO_LUN -1 static int device_queue_depth(int unit, int target, int lun) { int c, h, t, u, v; char *p = driver_setup.tag_ctrl; char *ep; h = -1; t = NO_TARGET; u = NO_LUN; while ((c = *p++) != 0) { v = simple_strtoul(p, &ep, 0); switch(c) { case '/': ++h; t = ALL_TARGETS; u = ALL_LUNS; break; case 't': if (t != target) t = (target == v) ? v : NO_TARGET; u = ALL_LUNS; break; case 'u': if (u != lun) u = (lun == v) ? v : NO_LUN; break; case 'q': if (h == unit && (t == ALL_TARGETS || t == target) && (u == ALL_LUNS || u == lun)) return v; break; case '-': t = ALL_TARGETS; u = ALL_LUNS; break; default: break; } p = ep; } return DEF_DEPTH; } /*========================================================== ** ** The CCB done queue uses an array of CCB virtual ** addresses. Empty entries are flagged using the bogus ** virtual address 0xffffffff. ** ** Since PCI ensures that only aligned DWORDs are accessed ** atomically, 64 bit little-endian architecture requires ** to test the high order DWORD of the entry to determine ** if it is empty or valid. ** ** BTW, I will make things differently as soon as I will ** have a better idea, but this is simple and should work. ** **========================================================== */ #define SCSI_NCR_CCB_DONE_SUPPORT #ifdef SCSI_NCR_CCB_DONE_SUPPORT #define MAX_DONE 24 #define CCB_DONE_EMPTY 0xffffffffUL /* All 32 bit architectures */ #if BITS_PER_LONG == 32 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY) /* All > 32 bit (64 bit) architectures regardless endian-ness */ #else #define CCB_DONE_VALID(cp) \ ((((u_long) cp) & 0xffffffff00000000ul) && \ (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY) #endif #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ /*========================================================== ** ** Configuration and Debugging ** **========================================================== */ /* ** SCSI address of this device. ** The boot routines should have set it. ** If not, use this. */ #ifndef SCSI_NCR_MYADDR #define SCSI_NCR_MYADDR (7) #endif /* ** The maximum number of tags per logic unit. ** Used only for disk devices that support tags. */ #ifndef SCSI_NCR_MAX_TAGS #define SCSI_NCR_MAX_TAGS (8) #endif /* ** TAGS are actually limited to 64 tags/lun. ** We need to deal with power of 2, for alignment constraints. */ #if SCSI_NCR_MAX_TAGS > 64 #define MAX_TAGS (64) #else #define MAX_TAGS SCSI_NCR_MAX_TAGS #endif #define NO_TAG (255) /* ** Choose appropriate type for tag bitmap. */ #if MAX_TAGS > 32 typedef u64 tagmap_t; #else typedef u32 tagmap_t; #endif /* ** Number of targets supported by the driver. ** n permits target numbers 0..n-1. ** Default is 16, meaning targets #0..#15. ** #7 .. is myself. */ #ifdef SCSI_NCR_MAX_TARGET #define MAX_TARGET (SCSI_NCR_MAX_TARGET) #else #define MAX_TARGET (16) #endif /* ** Number of logic units supported by the driver. ** n enables logic unit numbers 0..n-1. ** The common SCSI devices require only ** one lun, so take 1 as the default. */ #ifdef SCSI_NCR_MAX_LUN #define MAX_LUN SCSI_NCR_MAX_LUN #else #define MAX_LUN (1) #endif /* ** Asynchronous pre-scaler (ns). Shall be 40 */ #ifndef SCSI_NCR_MIN_ASYNC #define SCSI_NCR_MIN_ASYNC (40) #endif /* ** The maximum number of jobs scheduled for starting. ** There should be one slot per target, and one slot ** for each tag of each target in use. ** The calculation below is actually quite silly ... */ #ifdef SCSI_NCR_CAN_QUEUE #define MAX_START (SCSI_NCR_CAN_QUEUE + 4) #else #define MAX_START (MAX_TARGET + 7 * MAX_TAGS) #endif /* ** We limit the max number of pending IO to 250. ** since we donnot want to allocate more than 1 ** PAGE for 'scripth'. */ #if MAX_START > 250 #undef MAX_START #define MAX_START 250 #endif /* ** The maximum number of segments a transfer is split into. ** We support up to 127 segments for both read and write. ** The data scripts are broken into 2 sub-scripts. ** 80 (MAX_SCATTERL) segments are moved from a sub-script ** in on-chip RAM. This makes data transfers shorter than ** 80k (assuming 1k fs) as fast as possible. */ #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER) #if (MAX_SCATTER > 80) #define MAX_SCATTERL 80 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL) #else #define MAX_SCATTERL (MAX_SCATTER-1) #define MAX_SCATTERH 1 #endif /* ** other */ #define NCR_SNOOP_TIMEOUT (1000000) /* ** Other definitions */ #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f)) #define initverbose (driver_setup.verbose) #define bootverbose (np->verbose) /*========================================================== ** ** Command control block states. ** **========================================================== */ #define HS_IDLE (0) #define HS_BUSY (1) #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ #define HS_DISCONNECT (3) /* Disconnected by target */ #define HS_DONEMASK (0x80) #define HS_COMPLETE (4|HS_DONEMASK) #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */ #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */ #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */ #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */ #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */ /* ** Invalid host status values used by the SCRIPTS processor ** when the nexus is not fully identified. ** Shall never appear in a CCB. */ #define HS_INVALMASK (0x40) #define HS_SELECTING (0|HS_INVALMASK) #define HS_IN_RESELECT (1|HS_INVALMASK) #define HS_STARTING (2|HS_INVALMASK) /* ** Flags set by the SCRIPT processor for commands ** that have been skipped. */ #define HS_SKIPMASK (0x20) /*========================================================== ** ** Software Interrupt Codes ** **========================================================== */ #define SIR_BAD_STATUS (1) #define SIR_XXXXXXXXXX (2) #define SIR_NEGO_SYNC (3) #define SIR_NEGO_WIDE (4) #define SIR_NEGO_FAILED (5) #define SIR_NEGO_PROTO (6) #define SIR_REJECT_RECEIVED (7) #define SIR_REJECT_SENT (8) #define SIR_IGN_RESIDUE (9) #define SIR_MISSING_SAVE (10) #define SIR_RESEL_NO_MSG_IN (11) #define SIR_RESEL_NO_IDENTIFY (12) #define SIR_RESEL_BAD_LUN (13) #define SIR_RESEL_BAD_TARGET (14) #define SIR_RESEL_BAD_I_T_L (15) #define SIR_RESEL_BAD_I_T_L_Q (16) #define SIR_DONE_OVERFLOW (17) #define SIR_INTFLY (18) #define SIR_MAX (18) /*========================================================== ** ** Extended error codes. ** xerr_status field of struct ccb. ** **========================================================== */ #define XE_OK (0) #define XE_EXTRA_DATA (1) /* unexpected data phase */ #define XE_BAD_PHASE (2) /* illegal phase (4/5) */ /*========================================================== ** ** Negotiation status. ** nego_status field of struct ccb. ** **========================================================== */ #define NS_NOCHANGE (0) #define NS_SYNC (1) #define NS_WIDE (2) #define NS_PPR (4) /*========================================================== ** ** Misc. ** **========================================================== */ #define CCB_MAGIC (0xf2691ad2) /*========================================================== ** ** Declaration of structs. ** **========================================================== */ static struct scsi_transport_template *ncr53c8xx_transport_template = NULL; struct tcb; struct lcb; struct ccb; struct ncb; struct script; struct link { ncrcmd l_cmd; ncrcmd l_paddr; }; struct usrcmd { u_long target; u_long lun; u_long data; u_long cmd; }; #define UC_SETSYNC 10 #define UC_SETTAGS 11 #define UC_SETDEBUG 12 #define UC_SETORDER 13 #define UC_SETWIDE 14 #define UC_SETFLAG 15 #define UC_SETVERBOSE 17 #define UF_TRACE (0x01) #define UF_NODISC (0x02) #define UF_NOSCAN (0x04) /*======================================================================== ** ** Declaration of structs: target control block ** **======================================================================== */ struct tcb { /*---------------------------------------------------------------- ** During reselection the ncr jumps to this point with SFBR ** set to the encoded target number with bit 7 set. ** if it's not this target, jump to the next. ** ** JUMP IF (SFBR != #target#), @(next tcb) **---------------------------------------------------------------- */ struct link jump_tcb; /*---------------------------------------------------------------- ** Load the actual values for the sxfer and the scntl3 ** register (sync/wide mode). ** ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register) ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register) **---------------------------------------------------------------- */ ncrcmd getscr[6]; /*---------------------------------------------------------------- ** Get the IDENTIFY message and load the LUN to SFBR. ** ** CALL, **---------------------------------------------------------------- */ struct link call_lun; /*---------------------------------------------------------------- ** Now look for the right lun. ** ** For i = 0 to 3 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i) ** ** Recent chips will prefetch the 4 JUMPS using only 1 burst. ** It is kind of hashcoding. **---------------------------------------------------------------- */ struct link jump_lcb[4]; /* JUMPs for reselection */ struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */ /*---------------------------------------------------------------- ** Pointer to the ccb used for negotiation. ** Prevent from starting a negotiation for all queued commands ** when tagged command queuing is enabled. **---------------------------------------------------------------- */ struct ccb * nego_cp; /*---------------------------------------------------------------- ** statistical data **---------------------------------------------------------------- */ u_long transfers; u_long bytes; /*---------------------------------------------------------------- ** negotiation of wide and synch transfer and device quirks. **---------------------------------------------------------------- */ #ifdef SCSI_NCR_BIG_ENDIAN /*0*/ u16 period; /*2*/ u_char sval; /*3*/ u_char minsync; /*0*/ u_char wval; /*1*/ u_char widedone; /*2*/ u_char quirks; /*3*/ u_char maxoffs; #else /*0*/ u_char minsync; /*1*/ u_char sval; /*2*/ u16 period; /*0*/ u_char maxoffs; /*1*/ u_char quirks; /*2*/ u_char widedone; /*3*/ u_char wval; #endif /* User settable limits and options. */ u_char usrsync; u_char usrwide; u_char usrtags; u_char usrflag; struct scsi_target *starget; }; /*======================================================================== ** ** Declaration of structs: lun control block ** **======================================================================== */ struct lcb { /*---------------------------------------------------------------- ** During reselection the ncr jumps to this point ** with SFBR set to the "Identify" message. ** if it's not this lun, jump to the next. ** ** JUMP IF (SFBR != #lun#), @(next lcb of this target) ** ** It is this lun. Load TEMP with the nexus jumps table ** address and jump to RESEL_TAG (or RESEL_NOTAG). ** ** SCR_COPY (4), p_jump_ccb, TEMP, ** SCR_JUMP, **---------------------------------------------------------------- */ struct link jump_lcb; ncrcmd load_jump_ccb[3]; struct link jump_tag; ncrcmd p_jump_ccb; /* Jump table bus address */ /*---------------------------------------------------------------- ** Jump table used by the script processor to directly jump ** to the CCB corresponding to the reselected nexus. ** Address is allocated on 256 bytes boundary in order to ** allow 8 bit calculation of the tag jump entry for up to ** 64 possible tags. **---------------------------------------------------------------- */ u32 jump_ccb_0; /* Default table if no tags */ u32 *jump_ccb; /* Virtual address */ /*---------------------------------------------------------------- ** CCB queue management. **---------------------------------------------------------------- */ struct list_head free_ccbq; /* Queue of available CCBs */ struct list_head busy_ccbq; /* Queue of busy CCBs */ struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */ struct list_head skip_ccbq; /* Queue of skipped CCBs */ u_char actccbs; /* Number of allocated CCBs */ u_char busyccbs; /* CCBs busy for this lun */ u_char queuedccbs; /* CCBs queued to the controller*/ u_char queuedepth; /* Queue depth for this lun */ u_char scdev_depth; /* SCSI device queue depth */ u_char maxnxs; /* Max possible nexuses */ /*---------------------------------------------------------------- ** Control of tagged command queuing. ** Tags allocation is performed using a circular buffer. ** This avoids using a loop for tag allocation. **---------------------------------------------------------------- */ u_char ia_tag; /* Allocation index */ u_char if_tag; /* Freeing index */ u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */ u_char usetags; /* Command queuing is active */ u_char maxtags; /* Max nr of tags asked by user */ u_char numtags; /* Current number of tags */ /*---------------------------------------------------------------- ** QUEUE FULL control and ORDERED tag control. **---------------------------------------------------------------- */ /*---------------------------------------------------------------- ** QUEUE FULL and ORDERED tag control. **---------------------------------------------------------------- */ u16 num_good; /* Nr of GOOD since QUEUE FULL */ tagmap_t tags_umap; /* Used tags bitmap */ tagmap_t tags_smap; /* Tags in use at 'tag_stime' */ u_long tags_stime; /* Last time we set smap=umap */ struct ccb * held_ccb; /* CCB held for QUEUE FULL */ }; /*======================================================================== ** ** Declaration of structs: the launch script. ** **======================================================================== ** ** It is part of the CCB and is called by the scripts processor to ** start or restart the data structure (nexus). ** This 6 DWORDs mini script makes use of prefetching. ** **------------------------------------------------------------------------ */ struct launch { /*---------------------------------------------------------------- ** SCR_COPY(4), @(p_phys), @(dsa register) ** SCR_JUMP, @(scheduler_point) **---------------------------------------------------------------- */ ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */ struct link schedule; /* Jump to scheduler point */ ncrcmd p_phys; /* 'phys' header bus address */ }; /*======================================================================== ** ** Declaration of structs: global HEADER. ** **======================================================================== ** ** This substructure is copied from the ccb to a global address after ** selection (or reselection) and copied back before disconnect. ** ** These fields are accessible to the script processor. ** **------------------------------------------------------------------------ */ struct head { /*---------------------------------------------------------------- ** Saved data pointer. ** Points to the position in the script responsible for the ** actual transfer transfer of data. ** It's written after reception of a SAVE_DATA_POINTER message. ** The goalpointer points after the last transfer command. **---------------------------------------------------------------- */ u32 savep; u32 lastp; u32 goalp; /*---------------------------------------------------------------- ** Alternate data pointer. ** They are copied back to savep/lastp/goalp by the SCRIPTS ** when the direction is unknown and the device claims data out. **---------------------------------------------------------------- */ u32 wlastp; u32 wgoalp; /*---------------------------------------------------------------- ** The virtual address of the ccb containing this header. **---------------------------------------------------------------- */ struct ccb * cp; /*---------------------------------------------------------------- ** Status fields. **---------------------------------------------------------------- */ u_char scr_st[4]; /* script status */ u_char status[4]; /* host status. must be the */ /* last DWORD of the header. */ }; /* ** The status bytes are used by the host and the script processor. ** ** The byte corresponding to the host_status must be stored in the ** last DWORD of the CCB header since it is used for command ** completion (ncr_wakeup()). Doing so, we are sure that the header ** has been entirely copied back to the CCB when the host_status is ** seen complete by the CPU. ** ** The last four bytes (status[4]) are copied to the scratchb register ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect, ** and copied back just after disconnecting. ** Inside the script the XX_REG are used. ** ** The first four bytes (scr_st[4]) are used inside the script by ** "COPY" commands. ** Because source and destination must have the same alignment ** in a DWORD, the fields HAVE to be at the choosen offsets. ** xerr_st 0 (0x34) scratcha ** sync_st 1 (0x05) sxfer ** wide_st 3 (0x03) scntl3 */ /* ** Last four bytes (script) */ #define QU_REG scr0 #define HS_REG scr1 #define HS_PRT nc_scr1 #define SS_REG scr2 #define SS_PRT nc_scr2 #define PS_REG scr3 /* ** Last four bytes (host) */ #ifdef SCSI_NCR_BIG_ENDIAN #define actualquirks phys.header.status[3] #define host_status phys.header.status[2] #define scsi_status phys.header.status[1] #define parity_status phys.header.status[0] #else #define actualquirks phys.header.status[0] #define host_status phys.header.status[1] #define scsi_status phys.header.status[2] #define parity_status phys.header.status[3] #endif /* ** First four bytes (script) */ #define xerr_st header.scr_st[0] #define sync_st header.scr_st[1] #define nego_st header.scr_st[2] #define wide_st header.scr_st[3] /* ** First four bytes (host) */ #define xerr_status phys.xerr_st #define nego_status phys.nego_st #if 0 #define sync_status phys.sync_st #define wide_status phys.wide_st #endif /*========================================================== ** ** Declaration of structs: Data structure block ** **========================================================== ** ** During execution of a ccb by the script processor, ** the DSA (data structure address) register points ** to this substructure of the ccb. ** This substructure contains the header with ** the script-processor-changable data and ** data blocks for the indirect move commands. ** **---------------------------------------------------------- */ struct dsb { /* ** Header. */ struct head header; /* ** Table data for Script */ struct scr_tblsel select; struct scr_tblmove smsg ; struct scr_tblmove cmd ; struct scr_tblmove sense ; struct scr_tblmove data[MAX_SCATTER]; }; /*======================================================================== ** ** Declaration of structs: Command control block. ** **======================================================================== */ struct ccb { /*---------------------------------------------------------------- ** This is the data structure which is pointed by the DSA ** register when it is executed by the script processor. ** It must be the first entry because it contains the header ** as first entry that must be cache line aligned. **---------------------------------------------------------------- */ struct dsb phys; /*---------------------------------------------------------------- ** Mini-script used at CCB execution start-up. ** Load the DSA with the data structure address (phys) and ** jump to SELECT. Jump to CANCEL if CCB is to be canceled. **---------------------------------------------------------------- */ struct launch start; /*---------------------------------------------------------------- ** Mini-script used at CCB relection to restart the nexus. ** Load the DSA with the data structure address (phys) and ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted. **---------------------------------------------------------------- */ struct launch restart; /*---------------------------------------------------------------- ** If a data transfer phase is terminated too early ** (after reception of a message (i.e. DISCONNECT)), ** we have to prepare a mini script to transfer ** the rest of the data. **---------------------------------------------------------------- */ ncrcmd patch[8]; /*---------------------------------------------------------------- ** The general SCSI driver provides a ** pointer to a control block. **---------------------------------------------------------------- */ struct scsi_cmnd *cmd; /* SCSI command */ u_char cdb_buf[16]; /* Copy of CDB */ u_char sense_buf[64]; int data_len; /* Total data length */ /*---------------------------------------------------------------- ** Message areas. ** We prepare a message to be sent after selection. ** We may use a second one if the command is rescheduled ** due to GETCC or QFULL. ** Contents are IDENTIFY and SIMPLE_TAG. ** While negotiating sync or wide transfer, ** a SDTR or WDTR message is appended. **---------------------------------------------------------------- */ u_char scsi_smsg [8]; u_char scsi_smsg2[8]; /*---------------------------------------------------------------- ** Other fields. **---------------------------------------------------------------- */ u_long p_ccb; /* BUS address of this CCB */ u_char sensecmd[6]; /* Sense command */ u_char tag; /* Tag for this transfer */ /* 255 means no tag */ u_char target; u_char lun; u_char queued; u_char auto_sense; struct ccb * link_ccb; /* Host adapter CCB chain */ struct list_head link_ccbq; /* Link to unit CCB queue */ u32 startp; /* Initial data pointer */ u_long magic; /* Free / busy CCB flag */ }; #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl)) /*======================================================================== ** ** Declaration of structs: NCR device descriptor ** **======================================================================== */ struct ncb { /*---------------------------------------------------------------- ** The global header. ** It is accessible to both the host and the script processor. ** Must be cache line size aligned (32 for x86) in order to ** allow cache line bursting when it is copied to/from CCB. **---------------------------------------------------------------- */ struct head header; /*---------------------------------------------------------------- ** CCBs management queues. **---------------------------------------------------------------- */ struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */ /* when lcb is not allocated. */ struct scsi_cmnd *done_list; /* Commands waiting for done() */ /* callback to be invoked. */ spinlock_t smp_lock; /* Lock for SMP threading */ /*---------------------------------------------------------------- ** Chip and controller indentification. **---------------------------------------------------------------- */ int unit; /* Unit number */ char inst_name[16]; /* ncb instance name */ /*---------------------------------------------------------------- ** Initial value of some IO register bits. ** These values are assumed to have been set by BIOS, and may ** be used for probing adapter implementation differences. **---------------------------------------------------------------- */ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3, sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4; /*---------------------------------------------------------------- ** Actual initial value of IO register bits used by the ** driver. They are loaded at initialisation according to ** features that are to be enabled. **---------------------------------------------------------------- */ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3, rv_ctest4, rv_ctest5, rv_stest2; /*---------------------------------------------------------------- ** Targets management. ** During reselection the ncr jumps to jump_tcb. ** The SFBR register is loaded with the encoded target id. ** For i = 0 to 3 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i) ** ** Recent chips will prefetch the 4 JUMPS using only 1 burst. ** It is kind of hashcoding. **---------------------------------------------------------------- */ struct link jump_tcb[4]; /* JUMPs for reselection */ struct tcb target[MAX_TARGET]; /* Target data */ /*---------------------------------------------------------------- ** Virtual and physical bus addresses of the chip. **---------------------------------------------------------------- */ void __iomem *vaddr; /* Virtual and bus address of */ unsigned long paddr; /* chip's IO registers. */ unsigned long paddr2; /* On-chip RAM bus address. */ volatile /* Pointer to volatile for */ struct ncr_reg __iomem *reg; /* memory mapped IO. */ /*---------------------------------------------------------------- ** SCRIPTS virtual and physical bus addresses. ** 'script' is loaded in the on-chip RAM if present. ** 'scripth' stays in main memory. **---------------------------------------------------------------- */ struct script *script0; /* Copies of script and scripth */ struct scripth *scripth0; /* relocated for this ncb. */ struct scripth *scripth; /* Actual scripth virt. address */ u_long p_script; /* Actual script and scripth */ u_long p_scripth; /* bus addresses. */ /*---------------------------------------------------------------- ** General controller parameters and configuration. **---------------------------------------------------------------- */ struct device *dev; u_char revision_id; /* PCI device revision id */ u32 irq; /* IRQ level */ u32 features; /* Chip features map */ u_char myaddr; /* SCSI id of the adapter */ u_char maxburst; /* log base 2 of dwords burst */ u_char maxwide; /* Maximum transfer width */ u_char minsync; /* Minimum sync period factor */ u_char maxsync; /* Maximum sync period factor */ u_char maxoffs; /* Max scsi offset */ u_char multiplier; /* Clock multiplier (1,2,4) */ u_char clock_divn; /* Number of clock divisors */ u_long clock_khz; /* SCSI clock frequency in KHz */ /*---------------------------------------------------------------- ** Start queue management. ** It is filled up by the host processor and accessed by the ** SCRIPTS processor in order to start SCSI commands. **---------------------------------------------------------------- */ u16 squeueput; /* Next free slot of the queue */ u16 actccbs; /* Number of allocated CCBs */ u16 queuedccbs; /* Number of CCBs in start queue*/ u16 queuedepth; /* Start queue depth */ /*---------------------------------------------------------------- ** Timeout handler. **---------------------------------------------------------------- */ struct timer_list timer; /* Timer handler link header */ u_long lasttime; u_long settle_time; /* Resetting the SCSI BUS */ /*---------------------------------------------------------------- ** Debugging and profiling. **---------------------------------------------------------------- */ struct ncr_reg regdump; /* Register dump */ u_long regtime; /* Time it has been done */ /*---------------------------------------------------------------- ** Miscellaneous buffers accessed by the scripts-processor. ** They shall be DWORD aligned, because they may be read or ** written with a SCR_COPY script command. **---------------------------------------------------------------- */ u_char msgout[8]; /* Buffer for MESSAGE OUT */ u_char msgin [8]; /* Buffer for MESSAGE IN */ u32 lastmsg; /* Last SCSI message sent */ u_char scratch; /* Scratch for SCSI receive */ /*---------------------------------------------------------------- ** Miscellaneous configuration and status parameters. **---------------------------------------------------------------- */ u_char disc; /* Diconnection allowed */ u_char scsi_mode; /* Current SCSI BUS mode */ u_char order; /* Tag order to use */ u_char verbose; /* Verbosity for this controller*/ int ncr_cache; /* Used for cache test at init. */ u_long p_ncb; /* BUS address of this NCB */ /*---------------------------------------------------------------- ** Command completion handling. **---------------------------------------------------------------- */ #ifdef SCSI_NCR_CCB_DONE_SUPPORT struct ccb *(ccb_done[MAX_DONE]); int ccb_done_ic; #endif /*---------------------------------------------------------------- ** Fields that should be removed or changed. **---------------------------------------------------------------- */ struct ccb *ccb; /* Global CCB */ struct usrcmd user; /* Command from user */ volatile u_char release_stage; /* Synchronisation stage on release */ }; #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl)) #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl)) /*========================================================== ** ** ** Script for NCR-Processor. ** ** Use ncr_script_fill() to create the variable parts. ** Use ncr_script_copy_and_bind() to make a copy and ** bind to physical addresses. ** ** **========================================================== ** ** We have to know the offsets of all labels before ** we reach them (for forward jumps). ** Therefore we declare a struct here. ** If you make changes inside the script, ** DONT FORGET TO CHANGE THE LENGTHS HERE! ** **---------------------------------------------------------- */ /* ** For HP Zalon/53c720 systems, the Zalon interface ** between CPU and 53c720 does prefetches, which causes ** problems with self modifying scripts. The problem ** is overcome by calling a dummy subroutine after each ** modification, to force a refetch of the script on ** return from the subroutine. */ #ifdef CONFIG_NCR53C8XX_PREFETCH #define PREFETCH_FLUSH_CNT 2 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma), #else #define PREFETCH_FLUSH_CNT 0 #define PREFETCH_FLUSH #endif /* ** Script fragments which are loaded into the on-chip RAM ** of 825A, 875 and 895 chips. */ struct script { ncrcmd start [ 5]; ncrcmd startpos [ 1]; ncrcmd select [ 6]; ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT]; ncrcmd loadpos [ 4]; ncrcmd send_ident [ 9]; ncrcmd prepare [ 6]; ncrcmd prepare2 [ 7]; ncrcmd command [ 6]; ncrcmd dispatch [ 32]; ncrcmd clrack [ 4]; ncrcmd no_data [ 17]; ncrcmd status [ 8]; ncrcmd msg_in [ 2]; ncrcmd msg_in2 [ 16]; ncrcmd msg_bad [ 4]; ncrcmd setmsg [ 7]; ncrcmd cleanup [ 6]; ncrcmd complete [ 9]; ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT]; ncrcmd cleanup0 [ 1]; #ifndef SCSI_NCR_CCB_DONE_SUPPORT ncrcmd signal [ 12]; #else ncrcmd signal [ 9]; ncrcmd done_pos [ 1]; ncrcmd done_plug [ 2]; ncrcmd done_end [ 7]; #endif ncrcmd save_dp [ 7]; ncrcmd restore_dp [ 5]; ncrcmd disconnect [ 10]; ncrcmd msg_out [ 9]; ncrcmd msg_out_done [ 7]; ncrcmd idle [ 2]; ncrcmd reselect [ 8]; ncrcmd reselected [ 8]; ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT]; ncrcmd loadpos1 [ 4]; ncrcmd resel_lun [ 6]; ncrcmd resel_tag [ 6]; ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT]; ncrcmd nexus_indirect [ 4]; ncrcmd resel_notag [ 4]; ncrcmd data_in [MAX_SCATTERL * 4]; ncrcmd data_in2 [ 4]; ncrcmd data_out [MAX_SCATTERL * 4]; ncrcmd data_out2 [ 4]; }; /* ** Script fragments which stay in main memory for all chips. */ struct scripth { ncrcmd tryloop [MAX_START*2]; ncrcmd tryloop2 [ 2]; #ifdef SCSI_NCR_CCB_DONE_SUPPORT ncrcmd done_queue [MAX_DONE*5]; ncrcmd done_queue2 [ 2]; #endif ncrcmd select_no_atn [ 8]; ncrcmd cancel [ 4]; ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT]; ncrcmd skip2 [ 19]; ncrcmd par_err_data_in [ 6]; ncrcmd par_err_other [ 4]; ncrcmd msg_reject [ 8]; ncrcmd msg_ign_residue [ 24]; ncrcmd msg_extended [ 10]; ncrcmd msg_ext_2 [ 10]; ncrcmd msg_wdtr [ 14]; ncrcmd send_wdtr [ 7]; ncrcmd msg_ext_3 [ 10]; ncrcmd msg_sdtr [ 14]; ncrcmd send_sdtr [ 7]; ncrcmd nego_bad_phase [ 4]; ncrcmd msg_out_abort [ 10]; ncrcmd hdata_in [MAX_SCATTERH * 4]; ncrcmd hdata_in2 [ 2]; ncrcmd hdata_out [MAX_SCATTERH * 4]; ncrcmd hdata_out2 [ 2]; ncrcmd reset [ 4]; ncrcmd aborttag [ 4]; ncrcmd abort [ 2]; ncrcmd abort_resel [ 20]; ncrcmd resend_ident [ 4]; ncrcmd clratn_go_on [ 3]; ncrcmd nxtdsp_go_on [ 1]; ncrcmd sdata_in [ 8]; ncrcmd data_io [ 18]; ncrcmd bad_identify [ 12]; ncrcmd bad_i_t_l [ 4]; ncrcmd bad_i_t_l_q [ 4]; ncrcmd bad_target [ 8]; ncrcmd bad_status [ 8]; ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT]; ncrcmd start_ram0 [ 4]; ncrcmd sto_restart [ 5]; ncrcmd wait_dma [ 2]; ncrcmd snooptest [ 9]; ncrcmd snoopend [ 2]; }; /*========================================================== ** ** ** Function headers. ** ** **========================================================== */ static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln); static void ncr_complete (struct ncb *np, struct ccb *cp); static void ncr_exception (struct ncb *np); static void ncr_free_ccb (struct ncb *np, struct ccb *cp); static void ncr_init_ccb (struct ncb *np, struct ccb *cp); static void ncr_init_tcb (struct ncb *np, u_char tn); static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln); static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev); static void ncr_getclock (struct ncb *np, int mult); static void ncr_selectclock (struct ncb *np, u_char scntl3); static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd); static void ncr_chip_reset (struct ncb *np, int delay); static void ncr_init (struct ncb *np, int reset, char * msg, u_long code); static int ncr_int_sbmc (struct ncb *np); static int ncr_int_par (struct ncb *np); static void ncr_int_ma (struct ncb *np); static void ncr_int_sir (struct ncb *np); static void ncr_int_sto (struct ncb *np); static void ncr_negotiate (struct ncb* np, struct tcb* tp); static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr); static void ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len); static void ncr_script_fill (struct script * scr, struct scripth * scripth); static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd); static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p); static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer); static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev); static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack); static int ncr_snooptest (struct ncb *np); static void ncr_timeout (struct ncb *np); static void ncr_wakeup (struct ncb *np, u_long code); static void ncr_wakeup_done (struct ncb *np); static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn); static void ncr_put_start_queue(struct ncb *np, struct ccb *cp); static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd); static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd); static void process_waiting_list(struct ncb *np, int sts); #define remove_from_waiting_list(np, cmd) \ retrieve_from_waiting_list(1, (np), (cmd)) #define requeue_waiting_list(np) process_waiting_list((np), DID_OK) #define reset_waiting_list(np) process_waiting_list((np), DID_RESET) static inline char *ncr_name (struct ncb *np) { return np->inst_name; } /*========================================================== ** ** ** Scripts for NCR-Processor. ** ** Use ncr_script_bind for binding to physical addresses. ** ** **========================================================== ** ** NADDR generates a reference to a field of the controller data. ** PADDR generates a reference to another part of the script. ** RADDR generates a reference to a script processor register. ** FADDR generates a reference to a script processor register ** with offset. ** **---------------------------------------------------------- */ #define RELOC_SOFTC 0x40000000 #define RELOC_LABEL 0x50000000 #define RELOC_REGISTER 0x60000000 #if 0 #define RELOC_KVAR 0x70000000 #endif #define RELOC_LABELH 0x80000000 #define RELOC_MASK 0xf0000000 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label)) #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label)) #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label)) #define RADDR(label) (RELOC_REGISTER | REG(label)) #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) #if 0 #define KVAR(which) (RELOC_KVAR | (which)) #endif #if 0 #define SCRIPT_KVAR_JIFFIES (0) #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES /* * Kernel variables referenced in the scripts. * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. */ static void *script_kvars[] __initdata = { (void *)&jiffies }; #endif static struct script script0 __initdata = { /*--------------------------< START >-----------------------*/ { /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** Clear SIGP. */ SCR_FROM_REG (ctest2), 0, /* ** Then jump to a certain point in tryloop. ** Due to the lack of indirect addressing the code ** is self modifying here. */ SCR_JUMP, }/*-------------------------< STARTPOS >--------------------*/,{ PADDRH(tryloop), }/*-------------------------< SELECT >----------------------*/,{ /* ** DSA contains the address of a scheduled ** data structure. ** ** SCRATCHA contains the address of the script, ** which starts the next entry. ** ** Set Initiator mode. ** ** (Target mode is left as an exercise for the reader) */ SCR_CLR (SCR_TRG), 0, SCR_LOAD_REG (HS_REG, HS_SELECTING), 0, /* ** And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), PADDR (reselect), }/*-------------------------< SELECT2 >----------------------*/,{ /* ** Now there are 4 possibilities: ** ** (1) The ncr loses arbitration. ** This is ok, because it will try again, ** when the bus becomes idle. ** (But beware of the timeout function!) ** ** (2) The ncr is reselected. ** Then the script processor takes the jump ** to the RESELECT label. ** ** (3) The ncr wins arbitration. ** Then it will execute SCRIPTS instruction until ** the next instruction that checks SCSI phase. ** Then will stop and wait for selection to be ** complete or selection time-out to occur. ** As a result the SCRIPTS instructions until ** LOADPOS + 2 should be executed in parallel with ** the SCSI core performing selection. */ /* ** The MESSAGE_REJECT problem seems to be due to a selection ** timing problem. ** Wait immediately for the selection to complete. ** (2.5x behaves so) */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), 0, /* ** Next time use the next slot. */ SCR_COPY (4), RADDR (temp), PADDR (startpos), /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can access it. ** ** We patch the address part of a ** COPY command with the DSA-register. */ SCR_COPY_F (4), RADDR (dsa), PADDR (loadpos), /* ** Flush script prefetch if required */ PREFETCH_FLUSH /* ** then we do the actual copy. */ SCR_COPY (sizeof (struct head)), /* ** continued after the next label ... */ }/*-------------------------< LOADPOS >---------------------*/,{ 0, NADDR (header), /* ** Wait for the next phase or the selection ** to complete or time-out. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDR (prepare), }/*-------------------------< SEND_IDENT >----------------------*/,{ /* ** Selection complete. ** Send the IDENTIFY and SIMPLE_TAG messages ** (and the EXTENDED_SDTR message) */ SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct dsb, smsg), SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDRH (resend_ident), SCR_LOAD_REG (scratcha, 0x80), 0, SCR_COPY (1), RADDR (scratcha), NADDR (lastmsg), }/*-------------------------< PREPARE >----------------------*/,{ /* ** load the savep (saved pointer) into ** the TEMP register (actual pointer) */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), /* ** Initialize the status registers */ SCR_COPY (4), NADDR (header.status), RADDR (scr0), }/*-------------------------< PREPARE2 >---------------------*/,{ /* ** Initialize the msgout buffer with a NOOP message. */ SCR_LOAD_REG (scratcha, NOP), 0, SCR_COPY (1), RADDR (scratcha), NADDR (msgout), #if 0 SCR_COPY (1), RADDR (scratcha), NADDR (msgin), #endif /* ** Anticipate the COMMAND phase. ** This is the normal case for initial selection. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), PADDR (dispatch), }/*-------------------------< COMMAND >--------------------*/,{ /* ** ... and send the command */ SCR_MOVE_TBL ^ SCR_COMMAND, offsetof (struct dsb, cmd), /* ** If status is still HS_NEGOTIATE, negotiation failed. ** We check this here, since we want to do that ** only once. */ SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, }/*-----------------------< DISPATCH >----------------------*/,{ /* ** MSG_IN is the only phase that shall be ** entered at least once for each (re)selection. ** So we test it first. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)), 0, /* ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4. ** Possible data corruption during Memory Write and Invalidate. ** This work-around resets the addressing logic prior to the ** start of the first MOVE of a DATA IN phase. ** (See Documentation/scsi/ncr53c8xx.txt for more information) */ SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 20, SCR_COPY (4), RADDR (scratcha), RADDR (scratcha), SCR_RETURN, 0, SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), PADDR (status), SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), PADDR (command), SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), PADDR (msg_out), /* ** Discard one illegal phase byte, if required. */ SCR_LOAD_REG (scratcha, XE_BAD_PHASE), 0, SCR_COPY (1), RADDR (scratcha), NADDR (xerr_st), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_IN, NADDR (scratch), SCR_JUMP, PADDR (dispatch), }/*-------------------------< CLRACK >----------------------*/,{ /* ** Terminate possible pending message phase. */ SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< NO_DATA >--------------------*/,{ /* ** The target wants to tranfer too much data ** or in the wrong direction. ** Remember that in extended error. */ SCR_LOAD_REG (scratcha, XE_EXTRA_DATA), 0, SCR_COPY (1), RADDR (scratcha), NADDR (xerr_st), /* ** Discard one data byte, if required. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_IN, NADDR (scratch), /* ** .. and repeat as required. */ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*-------------------------< STATUS >--------------------*/,{ /* ** get the status */ SCR_MOVE_ABS (1) ^ SCR_STATUS, NADDR (scratch), /* ** save status to scsi_status. ** mark as complete. */ SCR_TO_REG (SS_REG), 0, SCR_LOAD_REG (HS_REG, HS_COMPLETE), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_IN >--------------------*/,{ /* ** Get the first byte of the message ** and save it to SCRATCHA. ** ** The script processor doesn't negate the ** ACK signal after this transfer. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[0]), }/*-------------------------< MSG_IN2 >--------------------*/,{ /* ** Handle this message. */ SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)), PADDR (complete), SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)), PADDR (disconnect), SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)), PADDR (save_dp), SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)), PADDR (restore_dp), SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)), PADDRH (msg_extended), SCR_JUMP ^ IFTRUE (DATA (NOP)), PADDR (clrack), SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)), PADDRH (msg_reject), SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)), PADDRH (msg_ign_residue), /* ** Rest of the messages left as ** an exercise ... ** ** Unimplemented messages: ** fall through to MSG_BAD. */ }/*-------------------------< MSG_BAD >------------------*/,{ /* ** unimplemented message - reject it. */ SCR_INT, SIR_REJECT_SENT, SCR_LOAD_REG (scratcha, MESSAGE_REJECT), 0, }/*-------------------------< SETMSG >----------------------*/,{ SCR_COPY (1), RADDR (scratcha), NADDR (msgout), SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR (clrack), }/*-------------------------< CLEANUP >-------------------*/,{ /* ** dsa: Pointer to ccb ** or xxxxxxFF (no ccb) ** ** HS_REG: Host-Status (<>0!) */ SCR_FROM_REG (dsa), 0, SCR_JUMP ^ IFTRUE (DATA (0xff)), PADDR (start), /* ** dsa is valid. ** complete the cleanup. */ SCR_JUMP, PADDR (cleanup_ok), }/*-------------------------< COMPLETE >-----------------*/,{ /* ** Complete message. ** ** Copy TEMP register to LASTP in header. */ SCR_COPY (4), RADDR (temp), NADDR (header.lastp), /* ** When we terminate the cycle by clearing ACK, ** the target may disconnect immediately. ** ** We don't want to be told of an ** "unexpected disconnect", ** so we disable this feature. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, /* ** Terminate cycle ... */ SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** ... and wait for the disconnect. */ SCR_WAIT_DISC, 0, }/*-------------------------< CLEANUP_OK >----------------*/,{ /* ** Save host status to header. */ SCR_COPY (4), RADDR (scr0), NADDR (header.status), /* ** and copy back the header to the ccb. */ SCR_COPY_F (4), RADDR (dsa), PADDR (cleanup0), /* ** Flush script prefetch if required */ PREFETCH_FLUSH SCR_COPY (sizeof (struct head)), NADDR (header), }/*-------------------------< CLEANUP0 >--------------------*/,{ 0, }/*-------------------------< SIGNAL >----------------------*/,{ /* ** if job not completed ... */ SCR_FROM_REG (HS_REG), 0, /* ** ... start the next command. */ SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))), PADDR(start), /* ** If command resulted in not GOOD status, ** call the C code if needed. */ SCR_FROM_REG (SS_REG), 0, SCR_CALL ^ IFFALSE (DATA (S_GOOD)), PADDRH (bad_status), #ifndef SCSI_NCR_CCB_DONE_SUPPORT /* ** ... signal completion to the host */ SCR_INT, SIR_INTFLY, /* ** Auf zu neuen Schandtaten! */ SCR_JUMP, PADDR(start), #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */ /* ** ... signal completion to the host */ SCR_JUMP, }/*------------------------< DONE_POS >---------------------*/,{ PADDRH (done_queue), }/*------------------------< DONE_PLUG >--------------------*/,{ SCR_INT, SIR_DONE_OVERFLOW, }/*------------------------< DONE_END >---------------------*/,{ SCR_INT, SIR_INTFLY, SCR_COPY (4), RADDR (temp), PADDR (done_pos), SCR_JUMP, PADDR (start), #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ }/*-------------------------< SAVE_DP >------------------*/,{ /* ** SAVE_DP message: ** Copy TEMP register to SAVEP in header. */ SCR_COPY (4), RADDR (temp), NADDR (header.savep), SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< RESTORE_DP >---------------*/,{ /* ** RESTORE_DP message: ** Copy SAVEP in header to TEMP register. */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), SCR_JUMP, PADDR (clrack), }/*-------------------------< DISCONNECT >---------------*/,{ /* ** DISCONNECTing ... ** ** disable the "unexpected disconnect" feature, ** and remove the ACK signal. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** Wait for the disconnect. */ SCR_WAIT_DISC, 0, /* ** Status is: DISCONNECTED. */ SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 0, SCR_JUMP, PADDR (cleanup_ok), }/*-------------------------< MSG_OUT >-------------------*/,{ /* ** The target requests a message. */ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), /* ** If it was no ABORT message ... */ SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)), PADDRH (msg_out_abort), /* ** ... wait for the next phase ** if it's a message out, send it again, ... */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDR (msg_out), }/*-------------------------< MSG_OUT_DONE >--------------*/,{ /* ** ... else clear the message ... */ SCR_LOAD_REG (scratcha, NOP), 0, SCR_COPY (4), RADDR (scratcha), NADDR (msgout), /* ** ... and process the next phase */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< IDLE >------------------------*/,{ /* ** Nothing to do? ** Wait for reselect. ** This NOP will be patched with LED OFF ** SCR_REG_REG (gpreg, SCR_OR, 0x01) */ SCR_NO_OP, 0, }/*-------------------------< RESELECT >--------------------*/,{ /* ** make the DSA invalid. */ SCR_LOAD_REG (dsa, 0xff), 0, SCR_CLR (SCR_TRG), 0, SCR_LOAD_REG (HS_REG, HS_IN_RESELECT), 0, /* ** Sleep waiting for a reselection. ** If SIGP is set, special treatment. ** ** Zu allem bereit .. */ SCR_WAIT_RESEL, PADDR(start), }/*-------------------------< RESELECTED >------------------*/,{ /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** ... zu nichts zu gebrauchen ? ** ** load the target id into the SFBR ** and jump to the control block. ** ** Look at the declarations of ** - struct ncb ** - struct tcb ** - struct lcb ** - struct ccb ** to understand what's going on. */ SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 0, SCR_TO_REG (sdid), 0, SCR_JUMP, NADDR (jump_tcb), }/*-------------------------< RESEL_DSA >-------------------*/,{ /* ** Ack the IDENTIFY or TAG previously received. */ SCR_CLR (SCR_ACK), 0, /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can access it. ** ** We patch the address part of a ** COPY command with the DSA-register. */ SCR_COPY_F (4), RADDR (dsa), PADDR (loadpos1), /* ** Flush script prefetch if required */ PREFETCH_FLUSH /* ** then we do the actual copy. */ SCR_COPY (sizeof (struct head)), /* ** continued after the next label ... */ }/*-------------------------< LOADPOS1 >-------------------*/,{ 0, NADDR (header), /* ** The DSA contains the data structure address. */ SCR_JUMP, PADDR (prepare), }/*-------------------------< RESEL_LUN >-------------------*/,{ /* ** come back to this point ** to get an IDENTIFY message ** Wait for a msg_in phase. */ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), SIR_RESEL_NO_MSG_IN, /* ** message phase. ** Read the data directly from the BUS DATA lines. ** This helps to support very old SCSI devices that ** may reselect without sending an IDENTIFY. */ SCR_FROM_REG (sbdl), 0, /* ** It should be an Identify message. */ SCR_RETURN, 0, }/*-------------------------< RESEL_TAG >-------------------*/,{ /* ** Read IDENTIFY + SIMPLE + TAG using a single MOVE. ** Agressive optimization, is'nt it? ** No need to test the SIMPLE TAG message, since the ** driver only supports conformant devices for tags. ;-) */ SCR_MOVE_ABS (3) ^ SCR_MSG_IN, NADDR (msgin), /* ** Read the TAG from the SIDL. ** Still an aggressive optimization. ;-) ** Compute the CCB indirect jump address which ** is (#TAG*2 & 0xfc) due to tag numbering using ** 1,3,5..MAXTAGS*2+1 actual values. */ SCR_REG_SFBR (sidl, SCR_SHL, 0), 0, SCR_SFBR_REG (temp, SCR_AND, 0xfc), 0, }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{ SCR_COPY_F (4), RADDR (temp), PADDR (nexus_indirect), /* ** Flush script prefetch if required */ PREFETCH_FLUSH SCR_COPY (4), }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{ 0, RADDR (temp), SCR_RETURN, 0, }/*-------------------------< RESEL_NOTAG >-------------------*/,{ /* ** No tag expected. ** Read an throw away the IDENTIFY. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_JUMP, PADDR (jump_to_nexus), }/*-------------------------< DATA_IN >--------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERL parameter, ** it is filled in at runtime. ** ** ##===========< i=0; i========= ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_IN, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< DATA_IN2 >-------------------*/,{ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*-------------------------< DATA_OUT >--------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERL parameter, ** it is filled in at runtime. ** ** ##===========< i=0; i========= ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< DATA_OUT2 >-------------------*/,{ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*--------------------------------------------------------*/ }; static struct scripth scripth0 __initdata = { /*-------------------------< TRYLOOP >---------------------*/{ /* ** Start the next entry. ** Called addresses point to the launch script in the CCB. ** They are patched by the main processor. ** ** Because the size depends on the ** #define MAX_START parameter, it is filled ** in at runtime. ** **----------------------------------------------------------- ** ** ##===========< I=0; i=========== ** || SCR_CALL, ** || PADDR (idle), ** ##========================================== ** **----------------------------------------------------------- */ 0 }/*------------------------< TRYLOOP2 >---------------------*/,{ SCR_JUMP, PADDRH(tryloop), #ifdef SCSI_NCR_CCB_DONE_SUPPORT }/*------------------------< DONE_QUEUE >-------------------*/,{ /* ** Copy the CCB address to the next done entry. ** Because the size depends on the ** #define MAX_DONE parameter, it is filled ** in at runtime. ** **----------------------------------------------------------- ** ** ##===========< I=0; i=========== ** || SCR_COPY (sizeof(struct ccb *), ** || NADDR (header.cp), ** || NADDR (ccb_done[i]), ** || SCR_CALL, ** || PADDR (done_end), ** ##========================================== ** **----------------------------------------------------------- */ 0 }/*------------------------< DONE_QUEUE2 >------------------*/,{ SCR_JUMP, PADDRH (done_queue), #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ }/*------------------------< SELECT_NO_ATN >-----------------*/,{ /* ** Set Initiator mode. ** And try to select this target without ATN. */ SCR_CLR (SCR_TRG), 0, SCR_LOAD_REG (HS_REG, HS_SELECTING), 0, SCR_SEL_TBL ^ offsetof (struct dsb, select), PADDR (reselect), SCR_JUMP, PADDR (select2), }/*-------------------------< CANCEL >------------------------*/,{ SCR_LOAD_REG (scratcha, HS_ABORTED), 0, SCR_JUMPR, 8, }/*-------------------------< SKIP >------------------------*/,{ SCR_LOAD_REG (scratcha, 0), 0, /* ** This entry has been canceled. ** Next time use the next slot. */ SCR_COPY (4), RADDR (temp), PADDR (startpos), /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can access it. ** ** We patch the address part of a ** COPY command with the DSA-register. */ SCR_COPY_F (4), RADDR (dsa), PADDRH (skip2), /* ** Flush script prefetch if required */ PREFETCH_FLUSH /* ** then we do the actual copy. */ SCR_COPY (sizeof (struct head)), /* ** continued after the next label ... */ }/*-------------------------< SKIP2 >---------------------*/,{ 0, NADDR (header), /* ** Initialize the status registers */ SCR_COPY (4), NADDR (header.status), RADDR (scr0), /* ** Force host status. */ SCR_FROM_REG (scratcha), 0, SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)), 16, SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK), 0, SCR_JUMPR, 8, SCR_TO_REG (HS_REG), 0, SCR_LOAD_REG (SS_REG, S_GOOD), 0, SCR_JUMP, PADDR (cleanup_ok), },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{ /* ** Ignore all data in byte, until next phase */ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), PADDRH (par_err_other), SCR_MOVE_ABS (1) ^ SCR_DATA_IN, NADDR (scratch), SCR_JUMPR, -24, },/*-------------------------< PAR_ERR_OTHER >------------------*/{ /* ** count it. */ SCR_REG_REG (PS_REG, SCR_ADD, 0x01), 0, /* ** jump to dispatcher. */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_REJECT >---------------*/,{ /* ** If a negotiation was in progress, ** negotiation failed. ** Otherwise, let the C code print ** some message. */ SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)), SIR_REJECT_RECEIVED, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{ /* ** Terminate cycle */ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get residue size. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* ** Size is 0 .. ignore message. */ SCR_JUMP ^ IFTRUE (DATA (0)), PADDR (clrack), /* ** Size is not 1 .. have to interrupt. */ SCR_JUMPR ^ IFFALSE (DATA (1)), 40, /* ** Check for residue byte in swide register */ SCR_FROM_REG (scntl2), 0, SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), 16, /* ** There IS data in the swide register. ** Discard it. */ SCR_REG_REG (scntl2, SCR_OR, WSR), 0, SCR_JUMP, PADDR (clrack), /* ** Load again the size to the sfbr register. */ SCR_FROM_REG (scratcha), 0, SCR_INT, SIR_IGN_RESIDUE, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_EXTENDED >-------------*/,{ /* ** Terminate cycle */ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get length. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* */ SCR_JUMP ^ IFTRUE (DATA (3)), PADDRH (msg_ext_3), SCR_JUMP ^ IFFALSE (DATA (2)), PADDR (msg_bad), }/*-------------------------< MSG_EXT_2 >----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get extended message code. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[2]), SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)), PADDRH (msg_wdtr), /* ** unknown extended message */ SCR_JUMP, PADDR (msg_bad) }/*-------------------------< MSG_WDTR >-----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get data bus width */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[3]), /* ** let the host do the real work. */ SCR_INT, SIR_NEGO_WIDE, /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_WDTR >----------------*/,{ /* ** Send the EXTENDED_WDTR */ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), SCR_JUMP, PADDR (msg_out_done), }/*-------------------------< MSG_EXT_3 >----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get extended message code. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[2]), SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)), PADDRH (msg_sdtr), /* ** unknown extended message */ SCR_JUMP, PADDR (msg_bad) }/*-------------------------< MSG_SDTR >-----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get period and offset */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, NADDR (msgin[3]), /* ** let the host do the real work. */ SCR_INT, SIR_NEGO_SYNC, /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_SDTR >-------------*/,{ /* ** Send the EXTENDED_SDTR */ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), SCR_JUMP, PADDR (msg_out_done), }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ SCR_INT, SIR_NEGO_PROTO, SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_OUT_ABORT >-------------*/,{ /* ** After ABORT message, ** ** expect an immediate disconnect, ... */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, /* ** ... and set the status to "ABORTED" */ SCR_LOAD_REG (HS_REG, HS_ABORTED), 0, SCR_JUMP, PADDR (cleanup), }/*-------------------------< HDATA_IN >-------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERH parameter, ** it is filled in at runtime. ** ** ##==< i=MAX_SCATTERL; i== ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_IN, ** || offsetof (struct dsb, data[ i]), ** ##=================================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< HDATA_IN2 >------------------*/,{ SCR_JUMP, PADDR (data_in), }/*-------------------------< HDATA_OUT >-------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERH parameter, ** it is filled in at runtime. ** ** ##==< i=MAX_SCATTERL; i== ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, ** || offsetof (struct dsb, data[ i]), ** ##=================================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< HDATA_OUT2 >------------------*/,{ SCR_JUMP, PADDR (data_out), }/*-------------------------< RESET >----------------------*/,{ /* ** Send a TARGET_RESET message if bad IDENTIFY ** received on reselection. */ SCR_LOAD_REG (scratcha, ABORT_TASK), 0, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< ABORTTAG >-------------------*/,{ /* ** Abort a wrong tag received on reselection. */ SCR_LOAD_REG (scratcha, ABORT_TASK), 0, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< ABORT >----------------------*/,{ /* ** Abort a reselection when no active CCB. */ SCR_LOAD_REG (scratcha, ABORT_TASK_SET), 0, }/*-------------------------< ABORT_RESEL >----------------*/,{ SCR_COPY (1), RADDR (scratcha), NADDR (msgout), SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, /* ** and send it. ** we expect an immediate disconnect */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, SCR_JUMP, PADDR (start), }/*-------------------------< RESEND_IDENT >-------------------*/,{ /* ** The target stays in MSG OUT phase after having acked ** Identify [+ Tag [+ Extended message ]]. Targets shall ** behave this way on parity error. ** We must send it again all the messages. */ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */ SCR_JUMP, PADDR (send_ident), }/*-------------------------< CLRATN_GO_ON >-------------------*/,{ SCR_CLR (SCR_ATN), 0, SCR_JUMP, }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{ 0, }/*-------------------------< SDATA_IN >-------------------*/,{ SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), PADDR (dispatch), SCR_MOVE_TBL ^ SCR_DATA_IN, offsetof (struct dsb, sense), SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*-------------------------< DATA_IO >--------------------*/,{ /* ** We jump here if the data direction was unknown at the ** time we had to queue the command to the scripts processor. ** Pointers had been set as follow in this situation: ** savep --> DATA_IO ** lastp --> start pointer when DATA_IN ** goalp --> goal pointer when DATA_IN ** wlastp --> start pointer when DATA_OUT ** wgoalp --> goal pointer when DATA_OUT ** This script sets savep/lastp/goalp according to the ** direction chosen by the target. */ SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)), 32, /* ** Direction is DATA IN. ** Warning: we jump here, even when phase is DATA OUT. */ SCR_COPY (4), NADDR (header.lastp), NADDR (header.savep), /* ** Jump to the SCRIPTS according to actual direction. */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), SCR_RETURN, 0, /* ** Direction is DATA OUT. */ SCR_COPY (4), NADDR (header.wlastp), NADDR (header.lastp), SCR_COPY (4), NADDR (header.wgoalp), NADDR (header.goalp), SCR_JUMPR, -64, }/*-------------------------< BAD_IDENTIFY >---------------*/,{ /* ** If message phase but not an IDENTIFY, ** get some help from the C code. ** Old SCSI device may behave so. */ SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)), 16, SCR_INT, SIR_RESEL_NO_IDENTIFY, SCR_JUMP, PADDRH (reset), /* ** Message is an IDENTIFY, but lun is unknown. ** Read the message, since we got it directly ** from the SCSI BUS data lines. ** Signal problem to C code for logging the event. ** Send an ABORT_TASK_SET to clear all pending tasks. */ SCR_INT, SIR_RESEL_BAD_LUN, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_JUMP, PADDRH (abort), }/*-------------------------< BAD_I_T_L >------------------*/,{ /* ** We donnot have a task for that I_T_L. ** Signal problem to C code for logging the event. ** Send an ABORT_TASK_SET message. */ SCR_INT, SIR_RESEL_BAD_I_T_L, SCR_JUMP, PADDRH (abort), }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ /* ** We donnot have a task that matches the tag. ** Signal problem to C code for logging the event. ** Send an ABORT_TASK message. */ SCR_INT, SIR_RESEL_BAD_I_T_L_Q, SCR_JUMP, PADDRH (aborttag), }/*-------------------------< BAD_TARGET >-----------------*/,{ /* ** We donnot know the target that reselected us. ** Grab the first message if any (IDENTIFY). ** Signal problem to C code for logging the event. ** TARGET_RESET message. */ SCR_INT, SIR_RESEL_BAD_TARGET, SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_JUMP, PADDRH (reset), }/*-------------------------< BAD_STATUS >-----------------*/,{ /* ** If command resulted in either QUEUE FULL, ** CHECK CONDITION or COMMAND TERMINATED, ** call the C code. */ SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)), SIR_BAD_STATUS, SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)), SIR_BAD_STATUS, SCR_INT ^ IFTRUE (DATA (S_TERMINATED)), SIR_BAD_STATUS, SCR_RETURN, 0, }/*-------------------------< START_RAM >-------------------*/,{ /* ** Load the script into on-chip RAM, ** and jump to start point. */ SCR_COPY_F (4), RADDR (scratcha), PADDRH (start_ram0), /* ** Flush script prefetch if required */ PREFETCH_FLUSH SCR_COPY (sizeof (struct script)), }/*-------------------------< START_RAM0 >--------------------*/,{ 0, PADDR (start), SCR_JUMP, PADDR (start), }/*-------------------------< STO_RESTART >-------------------*/,{ /* ** ** Repair start queue (e.g. next time use the next slot) ** and jump to start point. */ SCR_COPY (4), RADDR (temp), PADDR (startpos), SCR_JUMP, PADDR (start), }/*-------------------------< WAIT_DMA >-------------------*/,{ /* ** For HP Zalon/53c720 systems, the Zalon interface ** between CPU and 53c720 does prefetches, which causes ** problems with self modifying scripts. The problem ** is overcome by calling a dummy subroutine after each ** modification, to force a refetch of the script on ** return from the subroutine. */ SCR_RETURN, 0, }/*-------------------------< SNOOPTEST >-------------------*/,{ /* ** Read the variable. */ SCR_COPY (4), NADDR(ncr_cache), RADDR (scratcha), /* ** Write the variable. */ SCR_COPY (4), RADDR (temp), NADDR(ncr_cache), /* ** Read back the variable. */ SCR_COPY (4), NADDR(ncr_cache), RADDR (temp), }/*-------------------------< SNOOPEND >-------------------*/,{ /* ** And stop. */ SCR_INT, 99, }/*--------------------------------------------------------*/ }; /*========================================================== ** ** ** Fill in #define dependent parts of the script ** ** **========================================================== */ void __init ncr_script_fill (struct script * scr, struct scripth * scrh) { int i; ncrcmd *p; p = scrh->tryloop; for (i=0; itryloop + sizeof (scrh->tryloop)); #ifdef SCSI_NCR_CCB_DONE_SUPPORT p = scrh->done_queue; for (i = 0; idone_queue+sizeof(scrh->done_queue)); #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ p = scrh->hdata_in; for (i=0; ihdata_in + sizeof (scrh->hdata_in)); p = scr->data_in; for (i=MAX_SCATTERH; idata_in + sizeof (scr->data_in)); p = scrh->hdata_out; for (i=0; ihdata_out + sizeof (scrh->hdata_out)); p = scr->data_out; for (i=MAX_SCATTERH; idata_out + sizeof (scr->data_out)); } /*========================================================== ** ** ** Copy and rebind a script. ** ** **========================================================== */ static void __init ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len) { ncrcmd opcode, new, old, tmp1, tmp2; ncrcmd *start, *end; int relocs; int opchanged = 0; start = src; end = src + len/4; while (src < end) { opcode = *src++; *dst++ = cpu_to_scr(opcode); /* ** If we forget to change the length ** in struct script, a field will be ** padded with 0. This is an illegal ** command. */ if (opcode == 0) { printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n", ncr_name(np), (int) (src-start-1)); mdelay(1000); } if (DEBUG_FLAGS & DEBUG_SCRIPT) printk (KERN_DEBUG "%p: <%x>\n", (src-1), (unsigned)opcode); /* ** We don't have to decode ALL commands */ switch (opcode >> 28) { case 0xc: /* ** COPY has TWO arguments. */ relocs = 2; tmp1 = src[0]; #ifdef RELOC_KVAR if ((tmp1 & RELOC_MASK) == RELOC_KVAR) tmp1 = 0; #endif tmp2 = src[1]; #ifdef RELOC_KVAR if ((tmp2 & RELOC_MASK) == RELOC_KVAR) tmp2 = 0; #endif if ((tmp1 ^ tmp2) & 3) { printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n", ncr_name(np), (int) (src-start-1)); mdelay(1000); } /* ** If PREFETCH feature not enabled, remove ** the NO FLUSH bit if present. */ if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); ++opchanged; } break; case 0x0: /* ** MOVE (absolute address) */ relocs = 1; break; case 0x8: /* ** JUMP / CALL ** don't relocate if relative :-) */ if (opcode & 0x00800000) relocs = 0; else relocs = 1; break; case 0x4: case 0x5: case 0x6: case 0x7: relocs = 1; break; default: relocs = 0; break; } if (relocs) { while (relocs--) { old = *src++; switch (old & RELOC_MASK) { case RELOC_REGISTER: new = (old & ~RELOC_MASK) + np->paddr; break; case RELOC_LABEL: new = (old & ~RELOC_MASK) + np->p_script; break; case RELOC_LABELH: new = (old & ~RELOC_MASK) + np->p_scripth; break; case RELOC_SOFTC: new = (old & ~RELOC_MASK) + np->p_ncb; break; #ifdef RELOC_KVAR case RELOC_KVAR: if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) || ((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST)) panic("ncr KVAR out of range"); new = vtophys(script_kvars[old & ~RELOC_MASK]); break; #endif case 0: /* Don't relocate a 0 address. */ if (old == 0) { new = old; break; } /* fall through */ default: panic("ncr_script_copy_and_bind: weird relocation %x\n", old); break; } *dst++ = cpu_to_scr(new); } } else *dst++ = cpu_to_scr(*src++); } } /* ** Linux host data structure */ struct host_data { struct ncb *ncb; }; #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg) static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg) { PRINT_ADDR(cp->cmd, "%s: ", label); spi_print_msg(msg); printk("\n"); } /*========================================================== ** ** NCR chip clock divisor table. ** Divisors are multiplied by 10,000,000 in order to make ** calculations more simple. ** **========================================================== */ #define _5M 5000000 static u_long div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; /*=============================================================== ** ** Prepare io register values used by ncr_init() according ** to selected and supported features. ** ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128 ** transfers. 32,64,128 are only supported by 875 and 895 chips. ** We use log base 2 (burst length) as internal code, with ** value 0 meaning "burst disabled". ** **=============================================================== */ /* * Burst length from burst code. */ #define burst_length(bc) (!(bc))? 0 : 1 << (bc) /* * Burst code from io register bits. Burst enable is ctest0 for c720 */ #define burst_code(dmode, ctest0) \ (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1 /* * Set initial io register bits from burst code. */ static inline void ncr_init_burst(struct ncb *np, u_char bc) { u_char *be = &np->rv_ctest0; *be &= ~0x80; np->rv_dmode &= ~(0x3 << 6); np->rv_ctest5 &= ~0x4; if (!bc) { *be |= 0x80; } else { --bc; np->rv_dmode |= ((bc & 0x3) << 6); np->rv_ctest5 |= (bc & 0x4); } } static void __init ncr_prepare_setting(struct ncb *np) { u_char burst_max; u_long period; int i; /* ** Save assumed BIOS setting */ np->sv_scntl0 = INB(nc_scntl0) & 0x0a; np->sv_scntl3 = INB(nc_scntl3) & 0x07; np->sv_dmode = INB(nc_dmode) & 0xce; np->sv_dcntl = INB(nc_dcntl) & 0xa8; np->sv_ctest0 = INB(nc_ctest0) & 0x84; np->sv_ctest3 = INB(nc_ctest3) & 0x01; np->sv_ctest4 = INB(nc_ctest4) & 0x80; np->sv_ctest5 = INB(nc_ctest5) & 0x24; np->sv_gpcntl = INB(nc_gpcntl); np->sv_stest2 = INB(nc_stest2) & 0x20; np->sv_stest4 = INB(nc_stest4); /* ** Wide ? */ np->maxwide = (np->features & FE_WIDE)? 1 : 0; /* * Guess the frequency of the chip's clock. */ if (np->features & FE_ULTRA) np->clock_khz = 80000; else np->clock_khz = 40000; /* * Get the clock multiplier factor. */ if (np->features & FE_QUAD) np->multiplier = 4; else if (np->features & FE_DBLR) np->multiplier = 2; else np->multiplier = 1; /* * Measure SCSI clock frequency for chips * it may vary from assumed one. */ if (np->features & FE_VARCLK) ncr_getclock(np, np->multiplier); /* * Divisor to be used for async (timer pre-scaler). */ i = np->clock_divn - 1; while (--i >= 0) { if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) { ++i; break; } } np->rv_scntl3 = i+1; /* * Minimum synchronous period factor supported by the chip. * Btw, 'period' is in tenths of nanoseconds. */ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; if (period <= 250) np->minsync = 10; else if (period <= 303) np->minsync = 11; else if (period <= 500) np->minsync = 12; else np->minsync = (period + 40 - 1) / 40; /* * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). */ if (np->minsync < 25 && !(np->features & FE_ULTRA)) np->minsync = 25; /* * Maximum synchronous period factor supported by the chip. */ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); np->maxsync = period > 2540 ? 254 : period / 10; /* ** Prepare initial value of other IO registers */ #if defined SCSI_NCR_TRUST_BIOS_SETTING np->rv_scntl0 = np->sv_scntl0; np->rv_dmode = np->sv_dmode; np->rv_dcntl = np->sv_dcntl; np->rv_ctest0 = np->sv_ctest0; np->rv_ctest3 = np->sv_ctest3; np->rv_ctest4 = np->sv_ctest4; np->rv_ctest5 = np->sv_ctest5; burst_max = burst_code(np->sv_dmode, np->sv_ctest0); #else /* ** Select burst length (dwords) */ burst_max = driver_setup.burst_max; if (burst_max == 255) burst_max = burst_code(np->sv_dmode, np->sv_ctest0); if (burst_max > 7) burst_max = 7; if (burst_max > np->maxburst) burst_max = np->maxburst; /* ** Select all supported special features */ if (np->features & FE_ERL) np->rv_dmode |= ERL; /* Enable Read Line */ if (np->features & FE_BOF) np->rv_dmode |= BOF; /* Burst Opcode Fetch */ if (np->features & FE_ERMP) np->rv_dmode |= ERMP; /* Enable Read Multiple */ if (np->features & FE_PFEN) np->rv_dcntl |= PFEN; /* Prefetch Enable */ if (np->features & FE_CLSE) np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ if (np->features & FE_WRIE) np->rv_ctest3 |= WRIE; /* Write and Invalidate */ if (np->features & FE_DFS) np->rv_ctest5 |= DFS; /* Dma Fifo Size */ if (np->features & FE_MUX) np->rv_ctest4 |= MUX; /* Host bus multiplex mode */ if (np->features & FE_EA) np->rv_dcntl |= EA; /* Enable ACK */ if (np->features & FE_EHP) np->rv_ctest0 |= EHP; /* Even host parity */ /* ** Select some other */ if (driver_setup.master_parity) np->rv_ctest4 |= MPEE; /* Master parity checking */ if (driver_setup.scsi_parity) np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ /* ** Get SCSI addr of host adapter (set by bios?). */ if (np->myaddr == 255) { np->myaddr = INB(nc_scid) & 0x07; if (!np->myaddr) np->myaddr = SCSI_NCR_MYADDR; } #endif /* SCSI_NCR_TRUST_BIOS_SETTING */ /* * Prepare initial io register bits for burst length */ ncr_init_burst(np, burst_max); /* ** Set SCSI BUS mode. ** ** - ULTRA2 chips (895/895A/896) report the current ** BUS mode through the STEST4 IO register. ** - For previous generation chips (825/825A/875), ** user has to tell us how to check against HVD, ** since a 100% safe algorithm is not possible. */ np->scsi_mode = SMODE_SE; if (np->features & FE_DIFF) { switch(driver_setup.diff_support) { case 4: /* Trust previous settings if present, then GPIO3 */ if (np->sv_scntl3) { if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; break; } case 3: /* SYMBIOS controllers report HVD through GPIO3 */ if (INB(nc_gpreg) & 0x08) break; case 2: /* Set HVD unconditionally */ np->scsi_mode = SMODE_HVD; case 1: /* Trust previous settings for HVD */ if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; break; default:/* Don't care about HVD */ break; } } if (np->scsi_mode == SMODE_HVD) np->rv_stest2 |= 0x20; /* ** Set LED support from SCRIPTS. ** Ignore this feature for boards known to use a ** specific GPIO wiring and for the 895A or 896 ** that drive the LED directly. ** Also probe initial setting of GPIO0 as output. */ if ((driver_setup.led_pin) && !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) np->features |= FE_LED0; /* ** Set irq mode. */ switch(driver_setup.irqm & 3) { case 2: np->rv_dcntl |= IRQM; break; case 1: np->rv_dcntl |= (np->sv_dcntl & IRQM); break; default: break; } /* ** Configure targets according to driver setup. ** Allow to override sync, wide and NOSCAN from ** boot command line. */ for (i = 0 ; i < MAX_TARGET ; i++) { struct tcb *tp = &np->target[i]; tp->usrsync = driver_setup.default_sync; tp->usrwide = driver_setup.max_wide; tp->usrtags = MAX_TAGS; tp->period = 0xffff; if (!driver_setup.disconnection) np->target[i].usrflag = UF_NODISC; } /* ** Announce all that stuff to user. */ printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np), np->myaddr, np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10), (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity", (np->rv_stest2 & 0x20) ? ", Differential" : ""); if (bootverbose > 1) { printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } if (bootverbose && np->paddr2) printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n", ncr_name(np), np->paddr2); } /*========================================================== ** ** ** Done SCSI commands list management. ** ** We donnot enter the scsi_done() callback immediately ** after a command has been seen as completed but we ** insert it into a list which is flushed outside any kind ** of driver critical section. ** This allows to do minimal stuff under interrupt and ** inside critical sections and to also avoid locking up ** on recursive calls to driver entry points under SMP. ** In fact, the only kernel point which is entered by the ** driver with a driver lock set is kmalloc(GFP_ATOMIC) ** that shall not reenter the driver under any circumstances, ** AFAIK. ** **========================================================== */ static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd) { unmap_scsi_data(np, cmd); cmd->host_scribble = (char *) np->done_list; np->done_list = cmd; } static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd) { struct scsi_cmnd *cmd; while (lcmd) { cmd = lcmd; lcmd = (struct scsi_cmnd *) cmd->host_scribble; cmd->scsi_done(cmd); } } /*========================================================== ** ** ** Prepare the next negotiation message if needed. ** ** Fill in the part of message buffer that contains the ** negotiation and the nego_status field of the CCB. ** Returns the size of the message in bytes. ** ** **========================================================== */ static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr) { struct tcb *tp = &np->target[cp->target]; int msglen = 0; int nego = 0; struct scsi_target *starget = tp->starget; /* negotiate wide transfers ? */ if (!tp->widedone) { if (spi_support_wide(starget)) { nego = NS_WIDE; } else tp->widedone=1; } /* negotiate synchronous transfers? */ if (!nego && !tp->period) { if (spi_support_sync(starget)) { nego = NS_SYNC; } else { tp->period =0xffff; dev_info(&starget->dev, "target did not report SYNC.\n"); } } switch (nego) { case NS_SYNC: msgptr[msglen++] = EXTENDED_MESSAGE; msgptr[msglen++] = 3; msgptr[msglen++] = EXTENDED_SDTR; msgptr[msglen++] = tp->maxoffs ? tp->minsync : 0; msgptr[msglen++] = tp->maxoffs; break; case NS_WIDE: msgptr[msglen++] = EXTENDED_MESSAGE; msgptr[msglen++] = 2; msgptr[msglen++] = EXTENDED_WDTR; msgptr[msglen++] = tp->usrwide; break; } cp->nego_status = nego; if (nego) { tp->nego_cp = cp; if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, nego == NS_WIDE ? "wide msgout":"sync_msgout", msgptr); } } return msglen; } /*========================================================== ** ** ** Start execution of a SCSI command. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd) { struct scsi_device *sdev = cmd->device; struct tcb *tp = &np->target[sdev->id]; struct lcb *lp = tp->lp[sdev->lun]; struct ccb *cp; int segments; u_char idmsg, *msgptr; u32 msglen; int direction; u32 lastp, goalp; /*--------------------------------------------- ** ** Some shortcuts ... ** **--------------------------------------------- */ if ((sdev->id == np->myaddr ) || (sdev->id >= MAX_TARGET) || (sdev->lun >= MAX_LUN )) { return(DID_BAD_TARGET); } /*--------------------------------------------- ** ** Complete the 1st TEST UNIT READY command ** with error condition if the device is ** flagged NOSCAN, in order to speed up ** the boot. ** **--------------------------------------------- */ if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) && (tp->usrflag & UF_NOSCAN)) { tp->usrflag &= ~UF_NOSCAN; return DID_BAD_TARGET; } if (DEBUG_FLAGS & DEBUG_TINY) { PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]); } /*--------------------------------------------------- ** ** Assign a ccb / bind cmd. ** If resetting, shorten settle_time if necessary ** in order to avoid spurious timeouts. ** If resetting or no free ccb, ** insert cmd into the waiting list. ** **---------------------------------------------------- */ if (np->settle_time && cmd->timeout_per_command >= HZ) { u_long tlimit = jiffies + cmd->timeout_per_command - HZ; if (time_after(np->settle_time, tlimit)) np->settle_time = tlimit; } if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) { insert_into_waiting_list(np, cmd); return(DID_OK); } cp->cmd = cmd; /*---------------------------------------------------- ** ** Build the identify / tag / sdtr message ** **---------------------------------------------------- */ idmsg = IDENTIFY(0, sdev->lun); if (cp ->tag != NO_TAG || (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC))) idmsg |= 0x40; msgptr = cp->scsi_smsg; msglen = 0; msgptr[msglen++] = idmsg; if (cp->tag != NO_TAG) { char order = np->order; /* ** Force ordered tag if necessary to avoid timeouts ** and to preserve interactivity. */ if (lp && time_after(jiffies, lp->tags_stime)) { if (lp->tags_smap) { order = ORDERED_QUEUE_TAG; if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){ PRINT_ADDR(cmd, "ordered tag forced.\n"); } } lp->tags_stime = jiffies + 3*HZ; lp->tags_smap = lp->tags_umap; } if (order == 0) { /* ** Ordered write ops, unordered read ops. */ switch (cmd->cmnd[0]) { case 0x08: /* READ_SMALL (6) */ case 0x28: /* READ_BIG (10) */ case 0xa8: /* READ_HUGE (12) */ order = SIMPLE_QUEUE_TAG; break; default: order = ORDERED_QUEUE_TAG; } } msgptr[msglen++] = order; /* ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1, ** since we may have to deal with devices that have ** problems with #TAG 0 or too great #TAG numbers. */ msgptr[msglen++] = (cp->tag << 1) + 1; } /*---------------------------------------------------- ** ** Build the data descriptors ** **---------------------------------------------------- */ direction = cmd->sc_data_direction; if (direction != DMA_NONE) { segments = ncr_scatter(np, cp, cp->cmd); if (segments < 0) { ncr_free_ccb(np, cp); return(DID_ERROR); } } else { cp->data_len = 0; segments = 0; } /*--------------------------------------------------- ** ** negotiation required? ** ** (nego_status is filled by ncr_prepare_nego()) ** **--------------------------------------------------- */ cp->nego_status = 0; if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) { msglen += ncr_prepare_nego (np, cp, msgptr + msglen); } /*---------------------------------------------------- ** ** Determine xfer direction. ** **---------------------------------------------------- */ if (!cp->data_len) direction = DMA_NONE; /* ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE ** but prepare alternate pointers for TO_DEVICE in case ** of our speculation will be just wrong. ** SCRIPTS will swap values if needed. */ switch(direction) { case DMA_BIDIRECTIONAL: case DMA_TO_DEVICE: goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8; if (segments <= MAX_SCATTERL) lastp = goalp - 8 - (segments * 16); else { lastp = NCB_SCRIPTH_PHYS (np, hdata_out2); lastp -= (segments - MAX_SCATTERL) * 16; } if (direction != DMA_BIDIRECTIONAL) break; cp->phys.header.wgoalp = cpu_to_scr(goalp); cp->phys.header.wlastp = cpu_to_scr(lastp); /* fall through */ case DMA_FROM_DEVICE: goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8; if (segments <= MAX_SCATTERL) lastp = goalp - 8 - (segments * 16); else { lastp = NCB_SCRIPTH_PHYS (np, hdata_in2); lastp -= (segments - MAX_SCATTERL) * 16; } break; default: case DMA_NONE: lastp = goalp = NCB_SCRIPT_PHYS (np, no_data); break; } /* ** Set all pointers values needed by SCRIPTS. ** If direction is unknown, start at data_io. */ cp->phys.header.lastp = cpu_to_scr(lastp); cp->phys.header.goalp = cpu_to_scr(goalp); if (direction == DMA_BIDIRECTIONAL) cp->phys.header.savep = cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io)); else cp->phys.header.savep= cpu_to_scr(lastp); /* ** Save the initial data pointer in order to be able ** to redo the command. */ cp->startp = cp->phys.header.savep; /*---------------------------------------------------- ** ** fill in ccb ** **---------------------------------------------------- ** ** ** physical -> virtual backlink ** Generic SCSI command */ /* ** Startqueue */ cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa)); /* ** select */ cp->phys.select.sel_id = sdev_id(sdev); cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; /* ** message */ cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); cp->phys.smsg.size = cpu_to_scr(msglen); /* ** command */ memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf))); cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0])); cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); /* ** status */ cp->actualquirks = 0; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->parity_status = 0; cp->xerr_status = XE_OK; #if 0 cp->sync_status = tp->sval; cp->wide_status = tp->wval; #endif /*---------------------------------------------------- ** ** Critical region: start this job. ** **---------------------------------------------------- */ /* activate this job. */ cp->magic = CCB_MAGIC; /* ** insert next CCBs into start queue. ** 2 max at a time is enough to flush the CCB wait queue. */ cp->auto_sense = 0; if (lp) ncr_start_next_ccb(np, lp, 2); else ncr_put_start_queue(np, cp); /* Command is successfully queued. */ return DID_OK; } /*========================================================== ** ** ** Insert a CCB into the start queue and wake up the ** SCRIPTS processor. ** ** **========================================================== */ static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn) { struct list_head *qp; struct ccb *cp; if (lp->held_ccb) return; while (maxn-- && lp->queuedccbs < lp->queuedepth) { qp = ncr_list_pop(&lp->wait_ccbq); if (!qp) break; ++lp->queuedccbs; cp = list_entry(qp, struct ccb, link_ccbq); list_add_tail(qp, &lp->busy_ccbq); lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] = cpu_to_scr(CCB_PHYS (cp, restart)); ncr_put_start_queue(np, cp); } } static void ncr_put_start_queue(struct ncb *np, struct ccb *cp) { u16 qidx; /* ** insert into start queue. */ if (!np->squeueput) np->squeueput = 1; qidx = np->squeueput + 2; if (qidx >= MAX_START + MAX_START) qidx = 1; np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); MEMORY_BARRIER(); np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start)); np->squeueput = qidx; ++np->queuedccbs; cp->queued = 1; if (DEBUG_FLAGS & DEBUG_QUEUE) printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput); /* ** Script processor may be waiting for reselect. ** Wake it up. */ MEMORY_BARRIER(); OUTB (nc_istat, SIGP); } static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay) { u32 term; int retv = 0; np->settle_time = jiffies + settle_delay * HZ; if (bootverbose > 1) printk("%s: resetting, " "command processing suspended for %d seconds\n", ncr_name(np), settle_delay); ncr_chip_reset(np, 100); udelay(2000); /* The 895 needs time for the bus mode to settle */ if (enab_int) OUTW (nc_sien, RST); /* ** Enable Tolerant, reset IRQD if present and ** properly set IRQ mode, prior to resetting the bus. */ OUTB (nc_stest3, TE); OUTB (nc_scntl1, CRST); udelay(200); if (!driver_setup.bus_check) goto out; /* ** Check for no terminators or SCSI bus shorts to ground. ** Read SCSI data bus, data parity bits and control signals. ** We are expecting RESET to be TRUE and other signals to be ** FALSE. */ term = INB(nc_sstat0); term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ if (!(np->features & FE_WIDE)) term &= 0x3ffff; if (term != (2<<7)) { printk("%s: suspicious SCSI data while resetting the BUS.\n", ncr_name(np)); printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " "0x%lx, expecting 0x%lx\n", ncr_name(np), (np->features & FE_WIDE) ? "dp1,d15-8," : "", (u_long)term, (u_long)(2<<7)); if (driver_setup.bus_check == 1) retv = 1; } out: OUTB (nc_scntl1, 0); return retv; } /* * Start reset process. * If reset in progress do nothing. * The interrupt handler will reinitialize the chip. * The timeout handler will wait for settle_time before * clearing it and so resuming command processing. */ static void ncr_start_reset(struct ncb *np) { if (!np->settle_time) { ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay); } } /*========================================================== ** ** ** Reset the SCSI BUS. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset) { /* struct scsi_device *device = cmd->device; */ struct ccb *cp; int found; /* * Return immediately if reset is in progress. */ if (np->settle_time) { return FAILED; } /* * Start the reset process. * The script processor is then assumed to be stopped. * Commands will now be queued in the waiting list until a settle * delay of 2 seconds will be completed. */ ncr_start_reset(np); /* * First, look in the wakeup list */ for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { /* ** look for the ccb of this command. */ if (cp->host_status == HS_IDLE) continue; if (cp->cmd == cmd) { found = 1; break; } } /* * Then, look in the waiting list */ if (!found && retrieve_from_waiting_list(0, np, cmd)) found = 1; /* * Wake-up all awaiting commands with DID_RESET. */ reset_waiting_list(np); /* * Wake-up all pending commands with HS_RESET -> DID_RESET. */ ncr_wakeup(np, HS_RESET); /* * If the involved command was not in a driver queue, and the * scsi driver told us reset is synchronous, and the command is not * currently in the waiting list, complete it with DID_RESET status, * in order to keep it alive. */ if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) { cmd->result = ScsiResult(DID_RESET, 0); ncr_queue_done_cmd(np, cmd); } return SUCCESS; } #if 0 /* unused and broken.. */ /*========================================================== ** ** ** Abort an SCSI command. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd) { /* struct scsi_device *device = cmd->device; */ struct ccb *cp; int found; int retv; /* * First, look for the scsi command in the waiting list */ if (remove_from_waiting_list(np, cmd)) { cmd->result = ScsiResult(DID_ABORT, 0); ncr_queue_done_cmd(np, cmd); return SCSI_ABORT_SUCCESS; } /* * Then, look in the wakeup list */ for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { /* ** look for the ccb of this command. */ if (cp->host_status == HS_IDLE) continue; if (cp->cmd == cmd) { found = 1; break; } } if (!found) { return SCSI_ABORT_NOT_RUNNING; } if (np->settle_time) { return SCSI_ABORT_SNOOZE; } /* ** If the CCB is active, patch schedule jumps for the ** script to abort the command. */ switch(cp->host_status) { case HS_BUSY: case HS_NEGOTIATE: printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp); cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel)); retv = SCSI_ABORT_PENDING; break; case HS_DISCONNECT: cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); retv = SCSI_ABORT_PENDING; break; default: retv = SCSI_ABORT_NOT_RUNNING; break; } /* ** If there are no requests, the script ** processor will sleep on SEL_WAIT_RESEL. ** Let's wake it up, since it may have to work. */ OUTB (nc_istat, SIGP); return retv; } #endif static void ncr_detach(struct ncb *np) { struct ccb *cp; struct tcb *tp; struct lcb *lp; int target, lun; int i; char inst_name[16]; /* Local copy so we don't access np after freeing it! */ strlcpy(inst_name, ncr_name(np), sizeof(inst_name)); printk("%s: releasing host resources\n", ncr_name(np)); /* ** Stop the ncr_timeout process ** Set release_stage to 1 and wait that ncr_timeout() set it to 2. */ #ifdef DEBUG_NCR53C8XX printk("%s: stopping the timer\n", ncr_name(np)); #endif np->release_stage = 1; for (i = 50 ; i && np->release_stage != 2 ; i--) mdelay(100); if (np->release_stage != 2) printk("%s: the timer seems to be already stopped\n", ncr_name(np)); else np->release_stage = 2; /* ** Disable chip interrupts */ #ifdef DEBUG_NCR53C8XX printk("%s: disabling chip interrupts\n", ncr_name(np)); #endif OUTW (nc_sien , 0); OUTB (nc_dien , 0); /* ** Reset NCR chip ** Restore bios setting for automatic clock detection. */ printk("%s: resetting chip\n", ncr_name(np)); ncr_chip_reset(np, 100); OUTB(nc_dmode, np->sv_dmode); OUTB(nc_dcntl, np->sv_dcntl); OUTB(nc_ctest0, np->sv_ctest0); OUTB(nc_ctest3, np->sv_ctest3); OUTB(nc_ctest4, np->sv_ctest4); OUTB(nc_ctest5, np->sv_ctest5); OUTB(nc_gpcntl, np->sv_gpcntl); OUTB(nc_stest2, np->sv_stest2); ncr_selectclock(np, np->sv_scntl3); /* ** Free allocated ccb(s) */ while ((cp=np->ccb->link_ccb) != NULL) { np->ccb->link_ccb = cp->link_ccb; if (cp->host_status) { printk("%s: shall free an active ccb (host_status=%d)\n", ncr_name(np), cp->host_status); } #ifdef DEBUG_NCR53C8XX printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp); #endif m_free_dma(cp, sizeof(*cp), "CCB"); } /* Free allocated tp(s) */ for (target = 0; target < MAX_TARGET ; target++) { tp=&np->target[target]; for (lun = 0 ; lun < MAX_LUN ; lun++) { lp = tp->lp[lun]; if (lp) { #ifdef DEBUG_NCR53C8XX printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp); #endif if (lp->jump_ccb != &lp->jump_ccb_0) m_free_dma(lp->jump_ccb,256,"JUMP_CCB"); m_free_dma(lp, sizeof(*lp), "LCB"); } } } if (np->scripth0) m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); if (np->script0) m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); if (np->ccb) m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); m_free_dma(np, sizeof(struct ncb), "NCB"); printk("%s: host resources successfully released\n", inst_name); } /*========================================================== ** ** ** Complete execution of a SCSI command. ** Signal completion to the generic SCSI driver. ** ** **========================================================== */ void ncr_complete (struct ncb *np, struct ccb *cp) { struct scsi_cmnd *cmd; struct tcb *tp; struct lcb *lp; /* ** Sanity check */ if (!cp || cp->magic != CCB_MAGIC || !cp->cmd) return; /* ** Print minimal debug information. */ if (DEBUG_FLAGS & DEBUG_TINY) printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp, cp->host_status,cp->scsi_status); /* ** Get command, target and lun pointers. */ cmd = cp->cmd; cp->cmd = NULL; tp = &np->target[cmd->device->id]; lp = tp->lp[cmd->device->lun]; /* ** We donnot queue more than 1 ccb per target ** with negotiation at any time. If this ccb was ** used for negotiation, clear this info in the tcb. */ if (cp == tp->nego_cp) tp->nego_cp = NULL; /* ** If auto-sense performed, change scsi status. */ if (cp->auto_sense) { cp->scsi_status = cp->auto_sense; } /* ** If we were recovering from queue full or performing ** auto-sense, requeue skipped CCBs to the wait queue. */ if (lp && lp->held_ccb) { if (cp == lp->held_ccb) { list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq); lp->held_ccb = NULL; } } /* ** Check for parity errors. */ if (cp->parity_status > 1) { PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status); } /* ** Check for extended errors. */ if (cp->xerr_status != XE_OK) { switch (cp->xerr_status) { case XE_EXTRA_DATA: PRINT_ADDR(cmd, "extraneous data discarded.\n"); break; case XE_BAD_PHASE: PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n"); break; default: PRINT_ADDR(cmd, "extended error %d.\n", cp->xerr_status); break; } if (cp->host_status==HS_COMPLETE) cp->host_status = HS_FAIL; } /* ** Print out any error for debugging purpose. */ if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) { PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x " "scsi_status=%x\n", cmd->cmnd[0], cp->host_status, cp->scsi_status); } } /* ** Check the status. */ if ( (cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_GOOD || cp->scsi_status == S_COND_MET)) { /* * All went well (GOOD status). * CONDITION MET status is returned on * `Pre-Fetch' or `Search data' success. */ cmd->result = ScsiResult(DID_OK, cp->scsi_status); /* ** @RESID@ ** Could dig out the correct value for resid, ** but it would be quite complicated. */ /* if (cp->phys.header.lastp != cp->phys.header.goalp) */ /* ** Allocate the lcb if not yet. */ if (!lp) ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun); tp->bytes += cp->data_len; tp->transfers ++; /* ** If tags was reduced due to queue full, ** increase tags if 1000 good status received. */ if (lp && lp->usetags && lp->numtags < lp->maxtags) { ++lp->num_good; if (lp->num_good >= 1000) { lp->num_good = 0; ++lp->numtags; ncr_setup_tags (np, cmd->device); } } } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_CHECK_COND)) { /* ** Check condition code */ cmd->result = ScsiResult(DID_OK, S_CHECK_COND); /* ** Copy back sense data to caller's buffer. */ memcpy(cmd->sense_buffer, cp->sense_buf, min(sizeof(cmd->sense_buffer), sizeof(cp->sense_buf))); if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { u_char * p = (u_char*) & cmd->sense_buffer; int i; PRINT_ADDR(cmd, "sense data:"); for (i=0; i<14; i++) printk (" %x", *p++); printk (".\n"); } } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_CONFLICT)) { /* ** Reservation Conflict condition code */ cmd->result = ScsiResult(DID_OK, S_CONFLICT); } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_BUSY || cp->scsi_status == S_QUEUE_FULL)) { /* ** Target is busy. */ cmd->result = ScsiResult(DID_OK, cp->scsi_status); } else if ((cp->host_status == HS_SEL_TIMEOUT) || (cp->host_status == HS_TIMEOUT)) { /* ** No response */ cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status); } else if (cp->host_status == HS_RESET) { /* ** SCSI bus reset */ cmd->result = ScsiResult(DID_RESET, cp->scsi_status); } else if (cp->host_status == HS_ABORTED) { /* ** Transfer aborted */ cmd->result = ScsiResult(DID_ABORT, cp->scsi_status); } else { /* ** Other protocol messes */ PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n", cp->host_status, cp->scsi_status, cp); cmd->result = ScsiResult(DID_ERROR, cp->scsi_status); } /* ** trace output */ if (tp->usrflag & UF_TRACE) { u_char * p; int i; PRINT_ADDR(cmd, " CMD:"); p = (u_char*) &cmd->cmnd[0]; for (i=0; icmd_len; i++) printk (" %x", *p++); if (cp->host_status==HS_COMPLETE) { switch (cp->scsi_status) { case S_GOOD: printk (" GOOD"); break; case S_CHECK_COND: printk (" SENSE:"); p = (u_char*) &cmd->sense_buffer; for (i=0; i<14; i++) printk (" %x", *p++); break; default: printk (" STAT: %x\n", cp->scsi_status); break; } } else printk (" HOSTERROR: %x", cp->host_status); printk ("\n"); } /* ** Free this ccb */ ncr_free_ccb (np, cp); /* ** requeue awaiting scsi commands for this lun. */ if (lp && lp->queuedccbs < lp->queuedepth && !list_empty(&lp->wait_ccbq)) ncr_start_next_ccb(np, lp, 2); /* ** requeue awaiting scsi commands for this controller. */ if (np->waiting_list) requeue_waiting_list(np); /* ** signal completion to generic driver. */ ncr_queue_done_cmd(np, cmd); } /*========================================================== ** ** ** Signal all (or one) control block done. ** ** **========================================================== */ /* ** This CCB has been skipped by the NCR. ** Queue it in the correponding unit queue. */ static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp) { struct tcb *tp = &np->target[cp->target]; struct lcb *lp = tp->lp[cp->lun]; if (lp && cp != np->ccb) { cp->host_status &= ~HS_SKIPMASK; cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); list_del(&cp->link_ccbq); list_add_tail(&cp->link_ccbq, &lp->skip_ccbq); if (cp->queued) { --lp->queuedccbs; } } if (cp->queued) { --np->queuedccbs; cp->queued = 0; } } /* ** The NCR has completed CCBs. ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs */ void ncr_wakeup_done (struct ncb *np) { struct ccb *cp; #ifdef SCSI_NCR_CCB_DONE_SUPPORT int i, j; i = np->ccb_done_ic; while (1) { j = i+1; if (j >= MAX_DONE) j = 0; cp = np->ccb_done[j]; if (!CCB_DONE_VALID(cp)) break; np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY; np->scripth->done_queue[5*j + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); MEMORY_BARRIER(); np->scripth->done_queue[5*i + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); if (cp->host_status & HS_DONEMASK) ncr_complete (np, cp); else if (cp->host_status & HS_SKIPMASK) ncr_ccb_skipped (np, cp); i = j; } np->ccb_done_ic = i; #else cp = np->ccb; while (cp) { if (cp->host_status & HS_DONEMASK) ncr_complete (np, cp); else if (cp->host_status & HS_SKIPMASK) ncr_ccb_skipped (np, cp); cp = cp->link_ccb; } #endif } /* ** Complete all active CCBs. */ void ncr_wakeup (struct ncb *np, u_long code) { struct ccb *cp = np->ccb; while (cp) { if (cp->host_status != HS_IDLE) { cp->host_status = code; ncr_complete (np, cp); } cp = cp->link_ccb; } } /* ** Reset ncr chip. */ /* Some initialisation must be done immediately following reset, for 53c720, * at least. EA (dcntl bit 5) isn't set here as it is set once only in * the _detect function. */ static void ncr_chip_reset(struct ncb *np, int delay) { OUTB (nc_istat, SRST); udelay(delay); OUTB (nc_istat, 0 ); if (np->features & FE_EHP) OUTB (nc_ctest0, EHP); if (np->features & FE_MUX) OUTB (nc_ctest4, MUX); } /*========================================================== ** ** ** Start NCR chip. ** ** **========================================================== */ void ncr_init (struct ncb *np, int reset, char * msg, u_long code) { int i; /* ** Reset chip if asked, otherwise just clear fifos. */ if (reset) { OUTB (nc_istat, SRST); udelay(100); } else { OUTB (nc_stest3, TE|CSF); OUTONB (nc_ctest3, CLF); } /* ** Message. */ if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg); /* ** Clear Start Queue */ np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */ for (i = 1; i < MAX_START + MAX_START; i += 2) np->scripth0->tryloop[i] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); /* ** Start at first entry. */ np->squeueput = 0; np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop)); #ifdef SCSI_NCR_CCB_DONE_SUPPORT /* ** Clear Done Queue */ for (i = 0; i < MAX_DONE; i++) { np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY; np->scripth0->done_queue[5*i + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); } #endif /* ** Start at first entry. */ np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue)); np->ccb_done_ic = MAX_DONE-1; np->scripth0->done_queue[5*(MAX_DONE-1) + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); /* ** Wakeup all pending jobs. */ ncr_wakeup (np, code); /* ** Init chip. */ /* ** Remove reset; big delay because the 895 needs time for the ** bus mode to settle */ ncr_chip_reset(np, 2000); OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); /* full arb., ena parity, par->ATN */ OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ OUTW (nc_respid, 1ul<myaddr); /* Id to respond to */ OUTB (nc_istat , SIGP ); /* Signal Process */ OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */ OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */ OUTB (nc_stest3, TE); /* TolerANT enable */ OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */ /* ** Disable disconnects. */ np->disc = 0; /* ** Enable GPIO0 pin for writing if LED support. */ if (np->features & FE_LED0) { OUTOFFB (nc_gpcntl, 0x01); } /* ** enable ints */ OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID); /* ** Fill in target structure. ** Reinitialize usrsync. ** Reinitialize usrwide. ** Prepare sync negotiation according to actual SCSI bus mode. */ for (i=0;itarget[i]; tp->sval = 0; tp->wval = np->rv_scntl3; if (tp->usrsync != 255) { if (tp->usrsync <= np->maxsync) { if (tp->usrsync < np->minsync) { tp->usrsync = np->minsync; } } else tp->usrsync = 255; } if (tp->usrwide > np->maxwide) tp->usrwide = np->maxwide; } /* ** Start script processor. */ if (np->paddr2) { if (bootverbose) printk ("%s: Downloading SCSI SCRIPTS.\n", ncr_name(np)); OUTL (nc_scratcha, vtobus(np->script0)); OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram)); } else OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); } /*========================================================== ** ** Prepare the negotiation values for wide and ** synchronous transfers. ** **========================================================== */ static void ncr_negotiate (struct ncb* np, struct tcb* tp) { /* ** minsync unit is 4ns ! */ u_long minsync = tp->usrsync; /* ** SCSI bus mode limit */ if (np->scsi_mode && np->scsi_mode == SMODE_SE) { if (minsync < 12) minsync = 12; } /* ** our limit .. */ if (minsync < np->minsync) minsync = np->minsync; /* ** divider limit */ if (minsync > np->maxsync) minsync = 255; if (tp->maxoffs > np->maxoffs) tp->maxoffs = np->maxoffs; tp->minsync = minsync; tp->maxoffs = (minsync<255 ? tp->maxoffs : 0); /* ** period=0: has to negotiate sync transfer */ tp->period=0; /* ** widedone=0: has to negotiate wide transfer */ tp->widedone=0; } /*========================================================== ** ** Get clock factor and sync divisor for a given ** synchronous factor period. ** Returns the clock factor (in sxfer) and scntl3 ** synchronous divisor field. ** **========================================================== */ static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p) { u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */ int div = np->clock_divn; /* Number of divisors supported */ u_long fak; /* Sync factor in sxfer */ u_long per; /* Period in tenths of ns */ u_long kpc; /* (per * clk) */ /* ** Compute the synchronous period in tenths of nano-seconds */ if (sfac <= 10) per = 250; else if (sfac == 11) per = 303; else if (sfac == 12) per = 500; else per = 40 * sfac; /* ** Look for the greatest clock divisor that allows an ** input speed faster than the period. */ kpc = per * clk; while (--div >= 0) if (kpc >= (div_10M[div] << 2)) break; /* ** Calculate the lowest clock factor that allows an output ** speed not faster than the period. */ fak = (kpc - 1) / div_10M[div] + 1; #if 0 /* This optimization does not seem very useful */ per = (fak * div_10M[div]) / clk; /* ** Why not to try the immediate lower divisor and to choose ** the one that allows the fastest output speed ? ** We don't want input speed too much greater than output speed. */ if (div >= 1 && fak < 8) { u_long fak2, per2; fak2 = (kpc - 1) / div_10M[div-1] + 1; per2 = (fak2 * div_10M[div-1]) / clk; if (per2 < per && fak2 <= 8) { fak = fak2; per = per2; --div; } } #endif if (fak < 4) fak = 4; /* Should never happen, too bad ... */ /* ** Compute and return sync parameters for the ncr */ *fakp = fak - 4; *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); } /*========================================================== ** ** Set actual values, sync status and patch all ccbs of ** a target according to new sync/wide agreement. ** **========================================================== */ static void ncr_set_sync_wide_status (struct ncb *np, u_char target) { struct ccb *cp; struct tcb *tp = &np->target[target]; /* ** set actual value and sync_status */ OUTB (nc_sxfer, tp->sval); np->sync_st = tp->sval; OUTB (nc_scntl3, tp->wval); np->wide_st = tp->wval; /* ** patch ALL ccbs of this target. */ for (cp = np->ccb; cp; cp = cp->link_ccb) { if (!cp->cmd) continue; if (scmd_id(cp->cmd) != target) continue; #if 0 cp->sync_status = tp->sval; cp->wide_status = tp->wval; #endif cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; } } /*========================================================== ** ** Switch sync mode for current job and it's target ** **========================================================== */ static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer) { struct scsi_cmnd *cmd = cp->cmd; struct tcb *tp; u_char target = INB (nc_sdid) & 0x0f; u_char idiv; BUG_ON(target != (scmd_id(cmd) & 0xf)); tp = &np->target[target]; if (!scntl3 || !(sxfer & 0x1f)) scntl3 = np->rv_scntl3; scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07); /* ** Deduce the value of controller sync period from scntl3. ** period is in tenths of nano-seconds. */ idiv = ((scntl3 >> 4) & 0x7); if ((sxfer & 0x1f) && idiv) tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; else tp->period = 0xffff; /* Stop there if sync parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; if (sxfer & 0x01f) { /* Disable extended Sreq/Sack filtering */ if (tp->period <= 2000) OUTOFFB(nc_stest2, EXT); } spi_display_xfer_agreement(tp->starget); /* ** set actual value and sync_status ** patch ALL ccbs of this target. */ ncr_set_sync_wide_status(np, target); } /*========================================================== ** ** Switch wide mode for current job and it's target ** SCSI specs say: a SCSI device that accepts a WDTR ** message shall reset the synchronous agreement to ** asynchronous mode. ** **========================================================== */ static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack) { struct scsi_cmnd *cmd = cp->cmd; u16 target = INB (nc_sdid) & 0x0f; struct tcb *tp; u_char scntl3; u_char sxfer; BUG_ON(target != (scmd_id(cmd) & 0xf)); tp = &np->target[target]; tp->widedone = wide+1; scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0); sxfer = ack ? 0 : tp->sval; /* ** Stop there if sync/wide parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; /* ** Bells and whistles ;-) */ if (bootverbose >= 2) { dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n", (scntl3 & EWS) ? "en" : "dis"); } /* ** set actual value and sync_status ** patch ALL ccbs of this target. */ ncr_set_sync_wide_status(np, target); } /*========================================================== ** ** Switch tagged mode for a target. ** **========================================================== */ static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev) { unsigned char tn = sdev->id, ln = sdev->lun; struct tcb *tp = &np->target[tn]; struct lcb *lp = tp->lp[ln]; u_char reqtags, maxdepth; /* ** Just in case ... */ if ((!tp) || (!lp) || !sdev) return; /* ** If SCSI device queue depth is not yet set, leave here. */ if (!lp->scdev_depth) return; /* ** Donnot allow more tags than the SCSI driver can queue ** for this device. ** Donnot allow more tags than we can handle. */ maxdepth = lp->scdev_depth; if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs; if (lp->maxtags > maxdepth) lp->maxtags = maxdepth; if (lp->numtags > maxdepth) lp->numtags = maxdepth; /* ** only devices conformant to ANSI Version >= 2 ** only devices capable of tagged commands ** only if enabled by user .. */ if (sdev->tagged_supported && lp->numtags > 1) { reqtags = lp->numtags; } else { reqtags = 1; } /* ** Update max number of tags */ lp->numtags = reqtags; if (lp->numtags > lp->maxtags) lp->maxtags = lp->numtags; /* ** If we want to switch tag mode, we must wait ** for no CCB to be active. */ if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */ if (lp->queuedepth == reqtags) /* Already announced */ return; lp->queuedepth = reqtags; } else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */ lp->queuedepth = reqtags; return; } else { /* Want to switch tag mode */ if (lp->busyccbs) /* If not yet safe, return */ return; lp->queuedepth = reqtags; lp->usetags = reqtags > 1 ? 1 : 0; } /* ** Patch the lun mini-script, according to tag mode. */ lp->jump_tag.l_paddr = lp->usetags? cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) : cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag)); /* ** Announce change to user. */ if (bootverbose) { if (lp->usetags) { dev_info(&sdev->sdev_gendev, "tagged command queue depth set to %d\n", reqtags); } else { dev_info(&sdev->sdev_gendev, "tagged command queueing disabled\n"); } } } /*========================================================== ** ** ** ncr timeout handler. ** ** **========================================================== ** ** Misused to keep the driver running when ** interrupts are not configured correctly. ** **---------------------------------------------------------- */ static void ncr_timeout (struct ncb *np) { u_long thistime = jiffies; /* ** If release process in progress, let's go ** Set the release stage from 1 to 2 to synchronize ** with the release process. */ if (np->release_stage) { if (np->release_stage == 1) np->release_stage = 2; return; } np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL; add_timer(&np->timer); /* ** If we are resetting the ncr, wait for settle_time before ** clearing it. Then command processing will be resumed. */ if (np->settle_time) { if (np->settle_time <= thistime) { if (bootverbose > 1) printk("%s: command processing resumed\n", ncr_name(np)); np->settle_time = 0; np->disc = 1; requeue_waiting_list(np); } return; } /* ** Since the generic scsi driver only allows us 0.5 second ** to perform abort of a command, we must look at ccbs about ** every 0.25 second. */ if (np->lasttime + 4*HZ < thistime) { /* ** block ncr interrupts */ np->lasttime = thistime; } #ifdef SCSI_NCR_BROKEN_INTR if (INB(nc_istat) & (INTF|SIP|DIP)) { /* ** Process pending interrupts. */ if (DEBUG_FLAGS & DEBUG_TINY) printk ("{"); ncr_exception (np); if (DEBUG_FLAGS & DEBUG_TINY) printk ("}"); } #endif /* SCSI_NCR_BROKEN_INTR */ } /*========================================================== ** ** log message for real hard errors ** ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." ** ** exception register: ** ds: dstat ** si: sist ** ** SCSI bus lines: ** so: control lines as driver by NCR. ** si: control lines as seen by NCR. ** sd: scsi data lines as seen by NCR. ** ** wide/fastmode: ** sxfer: (see the manual) ** scntl3: (see the manual) ** ** current script command: ** dsp: script address (relative to start of script). ** dbc: first word of script command. ** ** First 16 register of the chip: ** r0..rf ** **========================================================== */ static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat) { u32 dsp; int script_ofs; int script_size; char *script_name; u_char *script_base; int i; dsp = INL (nc_dsp); if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { script_ofs = dsp - np->p_script; script_size = sizeof(struct script); script_base = (u_char *) np->script0; script_name = "script"; } else if (np->p_scripth < dsp && dsp <= np->p_scripth + sizeof(struct scripth)) { script_ofs = dsp - np->p_scripth; script_size = sizeof(struct scripth); script_base = (u_char *) np->scripth0; script_name = "scripth"; } else { script_ofs = dsp; script_size = 0; script_base = NULL; script_name = "mem"; } printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs, (unsigned)INL (nc_dbc)); if (((script_ofs & 3) == 0) && (unsigned)script_ofs < script_size) { printk ("%s: script cmd = %08x\n", ncr_name(np), scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs))); } printk ("%s: regdump:", ncr_name(np)); for (i=0; i<16;i++) printk (" %02x", (unsigned)INB_OFF(i)); printk (".\n"); } /*============================================================ ** ** ncr chip exception handler. ** **============================================================ ** ** In normal cases, interrupt conditions occur one at a ** time. The ncr is able to stack in some extra registers ** other interrupts that will occurs after the first one. ** But severall interrupts may occur at the same time. ** ** We probably should only try to deal with the normal ** case, but it seems that multiple interrupts occur in ** some cases that are not abnormal at all. ** ** The most frequent interrupt condition is Phase Mismatch. ** We should want to service this interrupt quickly. ** A SCSI parity error may be delivered at the same time. ** The SIR interrupt is not very frequent in this driver, ** since the INTFLY is likely used for command completion ** signaling. ** The Selection Timeout interrupt may be triggered with ** IID and/or UDC. ** The SBMC interrupt (SCSI Bus Mode Change) may probably ** occur at any time. ** ** This handler try to deal as cleverly as possible with all ** the above. ** **============================================================ */ void ncr_exception (struct ncb *np) { u_char istat, dstat; u16 sist; int i; /* ** interrupt on the fly ? ** Since the global header may be copied back to a CCB ** using a posted PCI memory write, the last operation on ** the istat register is a READ in order to flush posted ** PCI write commands. */ istat = INB (nc_istat); if (istat & INTF) { OUTB (nc_istat, (istat & SIGP) | INTF); istat = INB (nc_istat); if (DEBUG_FLAGS & DEBUG_TINY) printk ("F "); ncr_wakeup_done (np); } if (!(istat & (SIP|DIP))) return; if (istat & CABRT) OUTB (nc_istat, CABRT); /* ** Steinbach's Guideline for Systems Programming: ** Never test for an error condition you don't know how to handle. */ sist = (istat & SIP) ? INW (nc_sist) : 0; dstat = (istat & DIP) ? INB (nc_dstat) : 0; if (DEBUG_FLAGS & DEBUG_TINY) printk ("<%d|%x:%x|%x:%x>", (int)INB(nc_scr0), dstat,sist, (unsigned)INL(nc_dsp), (unsigned)INL(nc_dbc)); /*======================================================== ** First, interrupts we want to service cleanly. ** ** Phase mismatch is the most frequent interrupt, and ** so we have to service it as quickly and as cleanly ** as possible. ** Programmed interrupts are rarely used in this driver, ** but we must handle them cleanly anyway. ** We try to deal with PAR and SBMC combined with ** some other interrupt(s). **========================================================= */ if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) && !(dstat & (MDPE|BF|ABRT|IID))) { if ((sist & SBMC) && ncr_int_sbmc (np)) return; if ((sist & PAR) && ncr_int_par (np)) return; if (sist & MA) { ncr_int_ma (np); return; } if (dstat & SIR) { ncr_int_sir (np); return; } /* ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2. */ if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) { printk( "%s: unknown interrupt(s) ignored, " "ISTAT=%x DSTAT=%x SIST=%x\n", ncr_name(np), istat, dstat, sist); return; } OUTONB_STD (); return; } /*======================================================== ** Now, interrupts that need some fixing up. ** Order and multiple interrupts is so less important. ** ** If SRST has been asserted, we just reset the chip. ** ** Selection is intirely handled by the chip. If the ** chip says STO, we trust it. Seems some other ** interrupts may occur at the same time (UDC, IID), so ** we ignore them. In any case we do enough fix-up ** in the service routine. ** We just exclude some fatal dma errors. **========================================================= */ if (sist & RST) { ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET); return; } if ((sist & STO) && !(dstat & (MDPE|BF|ABRT))) { /* ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1. */ OUTONB (nc_ctest3, CLF); ncr_int_sto (np); return; } /*========================================================= ** Now, interrupts we are not able to recover cleanly. ** (At least for the moment). ** ** Do the register dump. ** Log message for real hard errors. ** Clear all fifos. ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the ** BUS and the chip. ** We are more soft for UDC. **========================================================= */ if (time_after(jiffies, np->regtime)) { np->regtime = jiffies + 10*HZ; for (i = 0; iregdump); i++) ((char*)&np->regdump)[i] = INB_OFF(i); np->regdump.nc_dstat = dstat; np->regdump.nc_sist = sist; } ncr_log_hard_error(np, sist, dstat); printk ("%s: have to clear fifos.\n", ncr_name (np)); OUTB (nc_stest3, TE|CSF); OUTONB (nc_ctest3, CLF); if ((sist & (SGE)) || (dstat & (MDPE|BF|ABRT|IID))) { ncr_start_reset(np); return; } if (sist & HTH) { printk ("%s: handshake timeout\n", ncr_name(np)); ncr_start_reset(np); return; } if (sist & UDC) { printk ("%s: unexpected disconnect\n", ncr_name(np)); OUTB (HS_PRT, HS_UNEXPECTED); OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup)); return; } /*========================================================= ** We just miss the cause of the interrupt. :( ** Print a message. The timeout will do the real work. **========================================================= */ printk ("%s: unknown interrupt\n", ncr_name(np)); } /*========================================================== ** ** ncr chip exception handler for selection timeout ** **========================================================== ** ** There seems to be a bug in the 53c810. ** Although a STO-Interrupt is pending, ** it continues executing script commands. ** But it will fail and interrupt (IID) on ** the next instruction where it's looking ** for a valid phase. ** **---------------------------------------------------------- */ void ncr_int_sto (struct ncb *np) { u_long dsa; struct ccb *cp; if (DEBUG_FLAGS & DEBUG_TINY) printk ("T"); /* ** look for ccb and set the status. */ dsa = INL (nc_dsa); cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; if (cp) { cp-> host_status = HS_SEL_TIMEOUT; ncr_complete (np, cp); } /* ** repair start queue and jump to start point. */ OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart)); return; } /*========================================================== ** ** ncr chip exception handler for SCSI bus mode change ** **========================================================== ** ** spi2-r12 11.2.3 says a transceiver mode change must ** generate a reset event and a device that detects a reset ** event shall initiate a hard reset. It says also that a ** device that detects a mode change shall set data transfer ** mode to eight bit asynchronous, etc... ** So, just resetting should be enough. ** ** **---------------------------------------------------------- */ static int ncr_int_sbmc (struct ncb *np) { u_char scsi_mode = INB (nc_stest4) & SMODE; if (scsi_mode != np->scsi_mode) { printk("%s: SCSI bus mode change from %x to %x.\n", ncr_name(np), np->scsi_mode, scsi_mode); np->scsi_mode = scsi_mode; /* ** Suspend command processing for 1 second and ** reinitialize all except the chip. */ np->settle_time = jiffies + HZ; ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET); return 1; } return 0; } /*========================================================== ** ** ncr chip exception handler for SCSI parity error. ** **========================================================== ** ** **---------------------------------------------------------- */ static int ncr_int_par (struct ncb *np) { u_char hsts = INB (HS_PRT); u32 dbc = INL (nc_dbc); u_char sstat1 = INB (nc_sstat1); int phase = -1; int msg = -1; u32 jmp; printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n", ncr_name(np), hsts, dbc, sstat1); /* * Ignore the interrupt if the NCR is not connected * to the SCSI bus, since the right work should have * been done on unexpected disconnection handling. */ if (!(INB (nc_scntl1) & ISCON)) return 0; /* * If the nexus is not clearly identified, reset the bus. * We will try to do better later. */ if (hsts & HS_INVALMASK) goto reset_all; /* * If the SCSI parity error occurs in MSG IN phase, prepare a * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED * ERROR message and let the device decide to retry the command * or to terminate with check condition. If we were in MSG IN * phase waiting for the response of a negotiation, we will * get SIR_NEGO_FAILED at dispatch. */ if (!(dbc & 0xc0000000)) phase = (dbc >> 24) & 7; if (phase == 7) msg = MSG_PARITY_ERROR; else msg = INITIATOR_ERROR; /* * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a * script that will ignore all data in bytes until phase * change, since we are not sure the chip will wait the phase * change prior to delivering the interrupt. */ if (phase == 1) jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in); else jmp = NCB_SCRIPTH_PHYS (np, par_err_other); OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ np->msgout[0] = msg; OUTL_DSP (jmp); return 1; reset_all: ncr_start_reset(np); return 1; } /*========================================================== ** ** ** ncr chip exception handler for phase errors. ** ** **========================================================== ** ** We have to construct a new transfer descriptor, ** to transfer the rest of the current block. ** **---------------------------------------------------------- */ static void ncr_int_ma (struct ncb *np) { u32 dbc; u32 rest; u32 dsp; u32 dsa; u32 nxtdsp; u32 newtmp; u32 *vdsp; u32 oadr, olen; u32 *tblp; ncrcmd *newcmd; u_char cmd, sbcl; struct ccb *cp; dsp = INL (nc_dsp); dbc = INL (nc_dbc); sbcl = INB (nc_sbcl); cmd = dbc >> 24; rest = dbc & 0xffffff; /* ** Take into account dma fifo and various buffers and latches, ** only if the interrupted phase is an OUTPUT phase. */ if ((cmd & 1) == 0) { u_char ctest5, ss0, ss2; u16 delta; ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0; if (ctest5 & DFS) delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff; else delta=(INB (nc_dfifo) - rest) & 0x7f; /* ** The data in the dma fifo has not been transferred to ** the target -> add the amount to the rest ** and clear the data. ** Check the sstat2 register in case of wide transfer. */ rest += delta; ss0 = INB (nc_sstat0); if (ss0 & OLF) rest++; if (ss0 & ORF) rest++; if (INB(nc_scntl3) & EWS) { ss2 = INB (nc_sstat2); if (ss2 & OLF1) rest++; if (ss2 & ORF1) rest++; } if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7, (unsigned) rest, (unsigned) delta, ss0); } else { if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest); } /* ** Clear fifos. */ OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ /* ** locate matching cp. ** if the interrupted phase is DATA IN or DATA OUT, ** trust the global header. */ dsa = INL (nc_dsa); if (!(cmd & 6)) { cp = np->header.cp; if (CCB_PHYS(cp, phys) != dsa) cp = NULL; } else { cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; } /* ** try to find the interrupted script command, ** and the address at which to continue. */ vdsp = NULL; nxtdsp = 0; if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8)); nxtdsp = dsp; } else if (dsp > np->p_scripth && dsp <= np->p_scripth + sizeof(struct scripth)) { vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8)); nxtdsp = dsp; } else if (cp) { if (dsp == CCB_PHYS (cp, patch[2])) { vdsp = &cp->patch[0]; nxtdsp = scr_to_cpu(vdsp[3]); } else if (dsp == CCB_PHYS (cp, patch[6])) { vdsp = &cp->patch[4]; nxtdsp = scr_to_cpu(vdsp[3]); } } /* ** log the information */ if (DEBUG_FLAGS & DEBUG_PHASE) { printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", cp, np->header.cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); } /* ** cp=0 means that the DSA does not point to a valid control ** block. This should not happen since we donnot use multi-byte ** move while we are being reselected ot after command complete. ** We are not able to recover from such a phase error. */ if (!cp) { printk ("%s: SCSI phase error fixup: " "CCB already dequeued (0x%08lx)\n", ncr_name (np), (u_long) np->header.cp); goto reset_all; } /* ** get old startaddress and old length. */ oadr = scr_to_cpu(vdsp[1]); if (cmd & 0x10) { /* Table indirect */ tblp = (u32 *) ((char*) &cp->phys + oadr); olen = scr_to_cpu(tblp[0]); oadr = scr_to_cpu(tblp[1]); } else { tblp = (u32 *) 0; olen = scr_to_cpu(vdsp[0]) & 0xffffff; } if (DEBUG_FLAGS & DEBUG_PHASE) { printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", (unsigned) (scr_to_cpu(vdsp[0]) >> 24), tblp, (unsigned) olen, (unsigned) oadr); } /* ** check cmd against assumed interrupted script command. */ if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] " ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24); goto reset_all; } /* ** cp != np->header.cp means that the header of the CCB ** currently being processed has not yet been copied to ** the global header area. That may happen if the device did ** not accept all our messages after having been selected. */ if (cp != np->header.cp) { printk ("%s: SCSI phase error fixup: " "CCB address mismatch (0x%08lx != 0x%08lx)\n", ncr_name (np), (u_long) cp, (u_long) np->header.cp); } /* ** if old phase not dataphase, leave here. */ if (cmd & 0x06) { PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n", cmd&7, sbcl&7, (unsigned)olen, (unsigned)oadr, (unsigned)rest); goto unexpected_phase; } /* ** choose the correct patch area. ** if savep points to one, choose the other. */ newcmd = cp->patch; newtmp = CCB_PHYS (cp, patch); if (newtmp == scr_to_cpu(cp->phys.header.savep)) { newcmd = &cp->patch[4]; newtmp = CCB_PHYS (cp, patch[4]); } /* ** fillin the commands */ newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest); newcmd[1] = cpu_to_scr(oadr + olen - rest); newcmd[2] = cpu_to_scr(SCR_JUMP); newcmd[3] = cpu_to_scr(nxtdsp); if (DEBUG_FLAGS & DEBUG_PHASE) { PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n", (int) (newcmd - cp->patch), (unsigned)scr_to_cpu(newcmd[0]), (unsigned)scr_to_cpu(newcmd[1]), (unsigned)scr_to_cpu(newcmd[2]), (unsigned)scr_to_cpu(newcmd[3])); } /* ** fake the return address (to the patch). ** and restart script processor at dispatcher. */ OUTL (nc_temp, newtmp); OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch)); return; /* ** Unexpected phase changes that occurs when the current phase ** is not a DATA IN or DATA OUT phase are due to error conditions. ** Such event may only happen when the SCRIPTS is using a ** multibyte SCSI MOVE. ** ** Phase change Some possible cause ** ** COMMAND --> MSG IN SCSI parity error detected by target. ** COMMAND --> STATUS Bad command or refused by target. ** MSG OUT --> MSG IN Message rejected by target. ** MSG OUT --> COMMAND Bogus target that discards extended ** negotiation messages. ** ** The code below does not care of the new phase and so ** trusts the target. Why to annoy it ? ** If the interrupted phase is COMMAND phase, we restart at ** dispatcher. ** If a target does not get all the messages after selection, ** the code assumes blindly that the target discards extended ** messages and clears the negotiation status. ** If the target does not want all our response to negotiation, ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids ** bloat for such a should_not_happen situation). ** In all other situation, we reset the BUS. ** Are these assumptions reasonnable ? (Wait and see ...) */ unexpected_phase: dsp -= 8; nxtdsp = 0; switch (cmd & 7) { case 2: /* COMMAND phase */ nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); break; #if 0 case 3: /* STATUS phase */ nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); break; #endif case 6: /* MSG OUT phase */ np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8); if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) { cp->host_status = HS_BUSY; nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on); } else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) || dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) { nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase); } break; #if 0 case 7: /* MSG IN phase */ nxtdsp = NCB_SCRIPT_PHYS (np, clrack); break; #endif } if (nxtdsp) { OUTL_DSP (nxtdsp); return; } reset_all: ncr_start_reset(np); } static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp) { struct scsi_cmnd *cmd = cp->cmd; struct tcb *tp = &np->target[cmd->device->id]; struct lcb *lp = tp->lp[cmd->device->lun]; struct list_head *qp; struct ccb * cp2; int disc_cnt = 0; int busy_cnt = 0; u32 startp; u_char s_status = INB (SS_PRT); /* ** Let the SCRIPTS processor skip all not yet started CCBs, ** and count disconnected CCBs. Since the busy queue is in ** the same order as the chip start queue, disconnected CCBs ** are before cp and busy ones after. */ if (lp) { qp = lp->busy_ccbq.prev; while (qp != &lp->busy_ccbq) { cp2 = list_entry(qp, struct ccb, link_ccbq); qp = qp->prev; ++busy_cnt; if (cp2 == cp) break; cp2->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip)); } lp->held_ccb = cp; /* Requeue when this one completes */ disc_cnt = lp->queuedccbs - busy_cnt; } switch(s_status) { default: /* Just for safety, should never happen */ case S_QUEUE_FULL: /* ** Decrease number of tags to the number of ** disconnected commands. */ if (!lp) goto out; if (bootverbose >= 1) { PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected " "CCBs\n", busy_cnt, disc_cnt); } if (disc_cnt < lp->numtags) { lp->numtags = disc_cnt > 2 ? disc_cnt : 2; lp->num_good = 0; ncr_setup_tags (np, cmd->device); } /* ** Requeue the command to the start queue. ** If any disconnected commands, ** Clear SIGP. ** Jump to reselect. */ cp->phys.header.savep = cp->startp; cp->host_status = HS_BUSY; cp->scsi_status = S_ILLEGAL; ncr_put_start_queue(np, cp); if (disc_cnt) INB (nc_ctest2); /* Clear SIGP */ OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect)); return; case S_TERMINATED: case S_CHECK_COND: /* ** If we were requesting sense, give up. */ if (cp->auto_sense) goto out; /* ** Device returned CHECK CONDITION status. ** Prepare all needed data strutures for getting ** sense data. ** ** identify message */ cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun); cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); cp->phys.smsg.size = cpu_to_scr(1); /* ** sense command */ cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); cp->phys.cmd.size = cpu_to_scr(6); /* ** patch requested size into sense command */ cp->sensecmd[0] = 0x03; cp->sensecmd[1] = cmd->device->lun << 5; cp->sensecmd[4] = sizeof(cp->sense_buf); /* ** sense data */ memset(cp->sense_buf, 0, sizeof(cp->sense_buf)); cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0])); cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf)); /* ** requeue the command. */ startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in)); cp->phys.header.savep = startp; cp->phys.header.goalp = startp + 24; cp->phys.header.lastp = startp; cp->phys.header.wgoalp = startp + 24; cp->phys.header.wlastp = startp; cp->host_status = HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->auto_sense = s_status; cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); /* ** Select without ATN for quirky devices. */ if (cmd->device->select_no_atn) cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn)); ncr_put_start_queue(np, cp); OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); return; } out: OUTONB_STD (); return; } /*========================================================== ** ** ** ncr chip exception handler for programmed interrupts. ** ** **========================================================== */ void ncr_int_sir (struct ncb *np) { u_char scntl3; u_char chg, ofs, per, fak, wide; u_char num = INB (nc_dsps); struct ccb *cp=NULL; u_long dsa = INL (nc_dsa); u_char target = INB (nc_sdid) & 0x0f; struct tcb *tp = &np->target[target]; struct scsi_target *starget = tp->starget; if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num); switch (num) { case SIR_INTFLY: /* ** This is used for HP Zalon/53c720 where INTFLY ** operation is currently broken. */ ncr_wakeup_done(np); #ifdef SCSI_NCR_CCB_DONE_SUPPORT OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8); #else OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start)); #endif return; case SIR_RESEL_NO_MSG_IN: case SIR_RESEL_NO_IDENTIFY: /* ** If devices reselecting without sending an IDENTIFY ** message still exist, this should help. ** We just assume lun=0, 1 CCB, no tag. */ if (tp->lp[0]) { OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0])); return; } case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */ case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */ case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */ case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */ printk ("%s:%d: SIR %d, " "incorrect nexus identification on reselection\n", ncr_name (np), target, num); goto out; case SIR_DONE_OVERFLOW: printk ("%s:%d: SIR %d, " "CCB done queue overflow\n", ncr_name (np), target, num); goto out; case SIR_BAD_STATUS: cp = np->header.cp; if (!cp || CCB_PHYS (cp, phys) != dsa) goto out; ncr_sir_to_redo(np, num, cp); return; default: /* ** lookup the ccb */ cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; BUG_ON(!cp); BUG_ON(cp != np->header.cp); if (!cp || cp != np->header.cp) goto out; } switch (num) { /*----------------------------------------------------------------------------- ** ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... ** ("Everything you've always wanted to know about transfer mode ** negotiation") ** ** We try to negotiate sync and wide transfer only after ** a successful inquire command. We look at byte 7 of the ** inquire data to determine the capabilities of the target. ** ** When we try to negotiate, we append the negotiation message ** to the identify and (maybe) simple tag message. ** The host status field is set to HS_NEGOTIATE to mark this ** situation. ** ** If the target doesn't answer this message immidiately ** (as required by the standard), the SIR_NEGO_FAIL interrupt ** will be raised eventually. ** The handler removes the HS_NEGOTIATE status, and sets the ** negotiated value to the default (async / nowide). ** ** If we receive a matching answer immediately, we check it ** for validity, and set the values. ** ** If we receive a Reject message immediately, we assume the ** negotiation has failed, and fall back to standard values. ** ** If we receive a negotiation message while not in HS_NEGOTIATE ** state, it's a target initiated negotiation. We prepare a ** (hopefully) valid answer, set our parameters, and send back ** this answer to the target. ** ** If the target doesn't fetch the answer (no message out phase), ** we assume the negotiation has failed, and fall back to default ** settings. ** ** When we set the values, we adjust them in all ccbs belonging ** to this target, in the controller's register, and in the "phys" ** field of the controller's struct ncb. ** ** Possible cases: hs sir msg_in value send goto ** We try to negotiate: ** -> target doesn't msgin NEG FAIL noop defa. - dispatch ** -> target rejected our msg NEG FAIL reject defa. - dispatch ** -> target answered (ok) NEG SYNC sdtr set - clrack ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad ** -> target answered (ok) NEG WIDE wdtr set - clrack ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad ** -> any other msgin NEG FAIL noop defa. - dispatch ** ** Target tries to negotiate: ** -> incoming message --- SYNC sdtr set SDTR - ** -> incoming message --- WIDE wdtr set WDTR - ** We sent our answer: ** -> target doesn't msgout --- PROTO ? defa. - dispatch ** **----------------------------------------------------------------------------- */ case SIR_NEGO_FAILED: /*------------------------------------------------------- ** ** Negotiation failed. ** Target doesn't send an answer message, ** or target rejected our message. ** ** Remove negotiation request. ** **------------------------------------------------------- */ OUTB (HS_PRT, HS_BUSY); /* fall through */ case SIR_NEGO_PROTO: /*------------------------------------------------------- ** ** Negotiation failed. ** Target doesn't fetch the answer message. ** **------------------------------------------------------- */ if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd, "negotiation failed sir=%x " "status=%x.\n", num, cp->nego_status); } /* ** any error in negotiation: ** fall back to default mode. */ switch (cp->nego_status) { case NS_SYNC: spi_period(starget) = 0; spi_offset(starget) = 0; ncr_setsync (np, cp, 0, 0xe0); break; case NS_WIDE: spi_width(starget) = 0; ncr_setwide (np, cp, 0, 0); break; } np->msgin [0] = NOP; np->msgout[0] = NOP; cp->nego_status = 0; break; case SIR_NEGO_SYNC: if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "sync msgin", np->msgin); } chg = 0; per = np->msgin[3]; ofs = np->msgin[4]; if (ofs==0) per=255; /* ** if target sends SDTR message, ** it CAN transfer synch. */ if (ofs && starget) spi_support_sync(starget) = 1; /* ** check values against driver limits. */ if (per < np->minsync) {chg = 1; per = np->minsync;} if (per < tp->minsync) {chg = 1; per = tp->minsync;} if (ofs > tp->maxoffs) {chg = 1; ofs = tp->maxoffs;} /* ** Check against controller limits. */ fak = 7; scntl3 = 0; if (ofs != 0) { ncr_getsync(np, per, &fak, &scntl3); if (fak > 7) { chg = 1; ofs = 0; } } if (ofs == 0) { fak = 7; per = 0; scntl3 = 0; tp->minsync = 0; } if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d " "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_SYNC: /* This was an answer message */ if (chg) { /* Answer wasn't acceptable. */ spi_period(starget) = 0; spi_offset(starget) = 0; ncr_setsync(np, cp, 0, 0xe0); OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad)); } else { /* Answer is ok. */ spi_period(starget) = per; spi_offset(starget) = ofs; ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack)); } return; case NS_WIDE: spi_width(starget) = 0; ncr_setwide(np, cp, 0, 0); break; } } /* ** It was a request. Set value and ** prepare an answer message */ spi_period(starget) = per; spi_offset(starget) = ofs; ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); np->msgout[0] = EXTENDED_MESSAGE; np->msgout[1] = 3; np->msgout[2] = EXTENDED_SDTR; np->msgout[3] = per; np->msgout[4] = ofs; cp->nego_status = NS_SYNC; if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "sync msgout", np->msgout); } if (!ofs) { OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); return; } np->msgin [0] = NOP; break; case SIR_NEGO_WIDE: /* ** Wide request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "wide msgin", np->msgin); } /* ** get requested values. */ chg = 0; wide = np->msgin[3]; /* ** if target sends WDTR message, ** it CAN transfer wide. */ if (wide && starget) spi_support_wide(starget) = 1; /* ** check values against driver limits. */ if (wide > tp->usrwide) {chg = 1; wide = tp->usrwide;} if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_WIDE: /* ** This was an answer message */ if (chg) { /* Answer wasn't acceptable. */ spi_width(starget) = 0; ncr_setwide(np, cp, 0, 1); OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); } else { /* Answer is ok. */ spi_width(starget) = wide; ncr_setwide(np, cp, wide, 1); OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack)); } return; case NS_SYNC: spi_period(starget) = 0; spi_offset(starget) = 0; ncr_setsync(np, cp, 0, 0xe0); break; } } /* ** It was a request, set value and ** prepare an answer message */ spi_width(starget) = wide; ncr_setwide(np, cp, wide, 1); np->msgout[0] = EXTENDED_MESSAGE; np->msgout[1] = 2; np->msgout[2] = EXTENDED_WDTR; np->msgout[3] = wide; np->msgin [0] = NOP; cp->nego_status = NS_WIDE; if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "wide msgout", np->msgin); } break; /*-------------------------------------------------------------------- ** ** Processing of special messages ** **-------------------------------------------------------------------- */ case SIR_REJECT_RECEIVED: /*----------------------------------------------- ** ** We received a MESSAGE_REJECT. ** **----------------------------------------------- */ PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n", (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]); break; case SIR_REJECT_SENT: /*----------------------------------------------- ** ** We received an unknown message ** **----------------------------------------------- */ ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin); break; /*-------------------------------------------------------------------- ** ** Processing of special messages ** **-------------------------------------------------------------------- */ case SIR_IGN_RESIDUE: /*----------------------------------------------- ** ** We received an IGNORE RESIDUE message, ** which couldn't be handled by the script. ** **----------------------------------------------- */ PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet " "implemented.\n"); break; #if 0 case SIR_MISSING_SAVE: /*----------------------------------------------- ** ** We received an DISCONNECT message, ** but the datapointer wasn't saved before. ** **----------------------------------------------- */ PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer " "not saved: data=%x save=%x goal=%x.\n", (unsigned) INL (nc_temp), (unsigned) scr_to_cpu(np->header.savep), (unsigned) scr_to_cpu(np->header.goalp)); break; #endif } out: OUTONB_STD (); } /*========================================================== ** ** ** Acquire a control block ** ** **========================================================== */ static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd) { u_char tn = cmd->device->id; u_char ln = cmd->device->lun; struct tcb *tp = &np->target[tn]; struct lcb *lp = tp->lp[ln]; u_char tag = NO_TAG; struct ccb *cp = NULL; /* ** Lun structure available ? */ if (lp) { struct list_head *qp; /* ** Keep from using more tags than we can handle. */ if (lp->usetags && lp->busyccbs >= lp->maxnxs) return NULL; /* ** Allocate a new CCB if needed. */ if (list_empty(&lp->free_ccbq)) ncr_alloc_ccb(np, tn, ln); /* ** Look for free CCB */ qp = ncr_list_pop(&lp->free_ccbq); if (qp) { cp = list_entry(qp, struct ccb, link_ccbq); if (cp->magic) { PRINT_ADDR(cmd, "ccb free list corrupted " "(@%p)\n", cp); cp = NULL; } else { list_add_tail(qp, &lp->wait_ccbq); ++lp->busyccbs; } } /* ** If a CCB is available, ** Get a tag for this nexus if required. */ if (cp) { if (lp->usetags) tag = lp->cb_tags[lp->ia_tag]; } else if (lp->actccbs > 0) return NULL; } /* ** if nothing available, take the default. */ if (!cp) cp = np->ccb; /* ** Wait until available. */ #if 0 while (cp->magic) { if (flags & SCSI_NOSLEEP) break; if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0)) break; } #endif if (cp->magic) return NULL; cp->magic = 1; /* ** Move to next available tag if tag used. */ if (lp) { if (tag != NO_TAG) { ++lp->ia_tag; if (lp->ia_tag == MAX_TAGS) lp->ia_tag = 0; lp->tags_umap |= (((tagmap_t) 1) << tag); } } /* ** Remember all informations needed to free this CCB. */ cp->tag = tag; cp->target = tn; cp->lun = ln; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag); } return cp; } /*========================================================== ** ** ** Release one control block ** ** **========================================================== */ static void ncr_free_ccb (struct ncb *np, struct ccb *cp) { struct tcb *tp = &np->target[cp->target]; struct lcb *lp = tp->lp[cp->lun]; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag); } /* ** If lun control block available, ** decrement active commands and increment credit, ** free the tag if any and remove the JUMP for reselect. */ if (lp) { if (cp->tag != NO_TAG) { lp->cb_tags[lp->if_tag++] = cp->tag; if (lp->if_tag == MAX_TAGS) lp->if_tag = 0; lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag); lp->tags_smap &= lp->tags_umap; lp->jump_ccb[cp->tag] = cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q)); } else { lp->jump_ccb[0] = cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l)); } } /* ** Make this CCB available. */ if (lp) { if (cp != np->ccb) list_move(&cp->link_ccbq, &lp->free_ccbq); --lp->busyccbs; if (cp->queued) { --lp->queuedccbs; } } cp -> host_status = HS_IDLE; cp -> magic = 0; if (cp->queued) { --np->queuedccbs; cp->queued = 0; } #if 0 if (cp == np->ccb) wakeup ((caddr_t) cp); #endif } #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r)) /*------------------------------------------------------------------------ ** Initialize the fixed part of a CCB structure. **------------------------------------------------------------------------ **------------------------------------------------------------------------ */ static void ncr_init_ccb(struct ncb *np, struct ccb *cp) { ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); /* ** Remember virtual and bus address of this ccb. */ cp->p_ccb = vtobus(cp); cp->phys.header.cp = cp; /* ** This allows list_del to work for the default ccb. */ INIT_LIST_HEAD(&cp->link_ccbq); /* ** Initialyze the start and restart launch script. ** ** COPY(4) @(...p_phys), @(dsa) ** JUMP @(sched_point) */ cp->start.setup_dsa[0] = cpu_to_scr(copy_4); cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys)); cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa)); cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP); cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys)); memcpy(&cp->restart, &cp->start, sizeof(cp->restart)); cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); } /*------------------------------------------------------------------------ ** Allocate a CCB and initialize its fixed part. **------------------------------------------------------------------------ **------------------------------------------------------------------------ */ static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln) { struct tcb *tp = &np->target[tn]; struct lcb *lp = tp->lp[ln]; struct ccb *cp = NULL; /* ** Allocate memory for this CCB. */ cp = m_calloc_dma(sizeof(struct ccb), "CCB"); if (!cp) return; /* ** Count it and initialyze it. */ lp->actccbs++; np->actccbs++; memset(cp, 0, sizeof (*cp)); ncr_init_ccb(np, cp); /* ** Chain into wakeup list and free ccb queue and take it ** into account for tagged commands. */ cp->link_ccb = np->ccb->link_ccb; np->ccb->link_ccb = cp; list_add(&cp->link_ccbq, &lp->free_ccbq); } /*========================================================== ** ** ** Allocation of resources for Targets/Luns/Tags. ** ** **========================================================== */ /*------------------------------------------------------------------------ ** Target control block initialisation. **------------------------------------------------------------------------ ** This data structure is fully initialized after a SCSI command ** has been successfully completed for this target. ** It contains a SCRIPT that is called on target reselection. **------------------------------------------------------------------------ */ static void ncr_init_tcb (struct ncb *np, u_char tn) { struct tcb *tp = &np->target[tn]; ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1); int th = tn & 3; int i; /* ** Jump to next tcb if SFBR does not match this target. ** JUMP IF (SFBR != #target#), @(next tcb) */ tp->jump_tcb.l_cmd = cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn)))); tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr; /* ** Load the synchronous transfer register. ** COPY @(tp->sval), @(sxfer) */ tp->getscr[0] = cpu_to_scr(copy_1); tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval)); #ifdef SCSI_NCR_BIG_ENDIAN tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3); #else tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer)); #endif /* ** Load the timing register. ** COPY @(tp->wval), @(scntl3) */ tp->getscr[3] = cpu_to_scr(copy_1); tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval)); #ifdef SCSI_NCR_BIG_ENDIAN tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3); #else tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3)); #endif /* ** Get the IDENTIFY message and the lun. ** CALL @script(resel_lun) */ tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL); tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun)); /* ** Look for the lun control block of this nexus. ** For i = 0 to 3 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) */ for (i = 0 ; i < 4 ; i++) { tp->jump_lcb[i].l_cmd = cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); tp->jump_lcb[i].l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify)); } /* ** Link this target control block to the JUMP chain. */ np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb)); /* ** These assert's should be moved at driver initialisations. */ #ifdef SCSI_NCR_BIG_ENDIAN BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ offsetof(struct tcb , sval )) &3) != 3); BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ offsetof(struct tcb , wval )) &3) != 3); #else BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ offsetof(struct tcb , sval )) &3) != 0); BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ offsetof(struct tcb , wval )) &3) != 0); #endif } /*------------------------------------------------------------------------ ** Lun control block allocation and initialization. **------------------------------------------------------------------------ ** This data structure is allocated and initialized after a SCSI ** command has been successfully completed for this target/lun. **------------------------------------------------------------------------ */ static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln) { struct tcb *tp = &np->target[tn]; struct lcb *lp = tp->lp[ln]; ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); int lh = ln & 3; /* ** Already done, return. */ if (lp) return lp; /* ** Allocate the lcb. */ lp = m_calloc_dma(sizeof(struct lcb), "LCB"); if (!lp) goto fail; memset(lp, 0, sizeof(*lp)); tp->lp[ln] = lp; /* ** Initialize the target control block if not yet. */ if (!tp->jump_tcb.l_cmd) ncr_init_tcb(np, tn); /* ** Initialize the CCB queue headers. */ INIT_LIST_HEAD(&lp->free_ccbq); INIT_LIST_HEAD(&lp->busy_ccbq); INIT_LIST_HEAD(&lp->wait_ccbq); INIT_LIST_HEAD(&lp->skip_ccbq); /* ** Set max CCBs to 1 and use the default 1 entry ** jump table by default. */ lp->maxnxs = 1; lp->jump_ccb = &lp->jump_ccb_0; lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); /* ** Initilialyze the reselect script: ** ** Jump to next lcb if SFBR does not match this lun. ** Load TEMP with the CCB direct jump table bus address. ** Get the SIMPLE TAG message and the tag. ** ** JUMP IF (SFBR != #lun#), @(next lcb) ** COPY @(lp->p_jump_ccb), @(temp) ** JUMP @script(resel_notag) */ lp->jump_lcb.l_cmd = cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff)))); lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr; lp->load_jump_ccb[0] = cpu_to_scr(copy_4); lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb)); lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp)); lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP); lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag)); /* ** Link this lun control block to the JUMP chain. */ tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb)); /* ** Initialize command queuing control. */ lp->busyccbs = 1; lp->queuedccbs = 1; lp->queuedepth = 1; fail: return lp; } /*------------------------------------------------------------------------ ** Lun control block setup on INQUIRY data received. **------------------------------------------------------------------------ ** We only support WIDE, SYNC for targets and CMDQ for logical units. ** This setup is done on each INQUIRY since we are expecting user ** will play with CHANGE DEFINITION commands. :-) **------------------------------------------------------------------------ */ static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev) { unsigned char tn = sdev->id, ln = sdev->lun; struct tcb *tp = &np->target[tn]; struct lcb *lp = tp->lp[ln]; /* If no lcb, try to allocate it. */ if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln))) goto fail; /* ** If unit supports tagged commands, allocate the ** CCB JUMP table if not yet. */ if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) { int i; lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB"); if (!lp->jump_ccb) { lp->jump_ccb = &lp->jump_ccb_0; goto fail; } lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); for (i = 0 ; i < 64 ; i++) lp->jump_ccb[i] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q)); for (i = 0 ; i < MAX_TAGS ; i++) lp->cb_tags[i] = i; lp->maxnxs = MAX_TAGS; lp->tags_stime = jiffies + 3*HZ; ncr_setup_tags (np, sdev); } fail: return lp; } /*========================================================== ** ** ** Build Scatter Gather Block ** ** **========================================================== ** ** The transfer area may be scattered among ** several non adjacent physical pages. ** ** We may use MAX_SCATTER blocks. ** **---------------------------------------------------------- */ /* ** We try to reduce the number of interrupts caused ** by unexpected phase changes due to disconnects. ** A typical harddisk may disconnect before ANY block. ** If we wanted to avoid unexpected phase changes at all ** we had to use a break point every 512 bytes. ** Of course the number of scatter/gather blocks is ** limited. ** Under Linux, the scatter/gatter blocks are provided by ** the generic driver. We just have to copy addresses and ** sizes to the data segment array. */ static int ncr_scatter_no_sglist(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd) { struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER - 1]; int segment; cp->data_len = cmd->request_bufflen; if (cmd->request_bufflen) { dma_addr_t baddr = map_scsi_single_data(np, cmd); if (baddr) { ncr_build_sge(np, data, baddr, cmd->request_bufflen); segment = 1; } else { segment = -2; } } else { segment = 0; } return segment; } static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd) { int segment = 0; int use_sg = (int) cmd->use_sg; cp->data_len = 0; if (!use_sg) segment = ncr_scatter_no_sglist(np, cp, cmd); else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) { struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; struct scr_tblmove *data; if (use_sg > MAX_SCATTER) { unmap_scsi_data(np, cmd); return -1; } data = &cp->phys.data[MAX_SCATTER - use_sg]; for (segment = 0; segment < use_sg; segment++) { dma_addr_t baddr = sg_dma_address(&scatter[segment]); unsigned int len = sg_dma_len(&scatter[segment]); ncr_build_sge(np, &data[segment], baddr, len); cp->data_len += len; } } else { segment = -2; } return segment; } /*========================================================== ** ** ** Test the bus snoop logic :-( ** ** Has to be called with interrupts disabled. ** ** **========================================================== */ static int __init ncr_regtest (struct ncb* np) { register volatile u32 data; /* ** ncr registers may NOT be cached. ** write 0xffffffff to a read only register area, ** and try to read it back. */ data = 0xffffffff; OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data); data = INL_OFF(offsetof(struct ncr_reg, nc_dstat)); #if 1 if (data == 0xffffffff) { #else if ((data & 0xe2f0fffd) != 0x02000080) { #endif printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", (unsigned) data); return (0x10); } return (0); } static int __init ncr_snooptest (struct ncb* np) { u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; int i, err=0; if (np->reg) { err |= ncr_regtest (np); if (err) return (err); } /* init */ pc = NCB_SCRIPTH_PHYS (np, snooptest); host_wr = 1; ncr_wr = 2; /* ** Set memory and register. */ np->ncr_cache = cpu_to_scr(host_wr); OUTL (nc_temp, ncr_wr); /* ** Start script (exchange values) */ OUTL_DSP (pc); /* ** Wait 'til done (with timeout) */ for (i=0; incr_cache); ncr_rd = INL (nc_scratcha); ncr_bk = INL (nc_temp); /* ** Reset ncr chip */ ncr_chip_reset(np, 100); /* ** check for timeout */ if (i>=NCR_SNOOP_TIMEOUT) { printk ("CACHE TEST FAILED: timeout.\n"); return (0x20); } /* ** Check termination position. */ if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) { printk ("CACHE TEST FAILED: script execution failed.\n"); printk ("start=%08lx, pc=%08lx, end=%08lx\n", (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc, (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8); return (0x40); } /* ** Show results. */ if (host_wr != ncr_rd) { printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", (int) host_wr, (int) ncr_rd); err |= 1; } if (host_rd != ncr_wr) { printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", (int) ncr_wr, (int) host_rd); err |= 2; } if (ncr_bk != ncr_wr) { printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", (int) ncr_wr, (int) ncr_bk); err |= 4; } return (err); } /*========================================================== ** ** Determine the ncr's clock frequency. ** This is essential for the negotiation ** of the synchronous transfer rate. ** **========================================================== ** ** Note: we have to return the correct value. ** THERE IS NO SAFE DEFAULT VALUE. ** ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. ** 53C860 and 53C875 rev. 1 support fast20 transfers but ** do not have a clock doubler and so are provided with a ** 80 MHz clock. All other fast20 boards incorporate a doubler ** and so should be delivered with a 40 MHz clock. ** The future fast40 chips (895/895) use a 40 Mhz base clock ** and provide a clock quadrupler (160 Mhz). The code below ** tries to deal as cleverly as possible with all this stuff. ** **---------------------------------------------------------- */ /* * Select NCR SCSI clock frequency */ static void ncr_selectclock(struct ncb *np, u_char scntl3) { if (np->multiplier < 2) { OUTB(nc_scntl3, scntl3); return; } if (bootverbose >= 2) printk ("%s: enabling clock multiplier\n", ncr_name(np)); OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */ int i = 20; while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) udelay(20); if (!i) printk("%s: the chip cannot lock the frequency\n", ncr_name(np)); } else /* Wait 20 micro-seconds for doubler */ udelay(20); OUTB(nc_stest3, HSC); /* Halt the scsi clock */ OUTB(nc_scntl3, scntl3); OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ OUTB(nc_stest3, 0x00); /* Restart scsi clock */ } /* * calculate NCR SCSI clock frequency (in KHz) */ static unsigned __init ncrgetfreq (struct ncb *np, int gen) { unsigned ms = 0; char count = 0; /* * Measure GEN timer delay in order * to calculate SCSI clock frequency * * This code will never execute too * many loop iterations (if DELAY is * reasonably correct). It could get * too low a delay (too high a freq.) * if the CPU is slow executing the * loop for some reason (an NMI, for * example). For this reason we will * if multiple measurements are to be * performed trust the higher delay * (lower frequency returned). */ OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */ OUTW (nc_sien , 0); /* mask all scsi interrupts */ (void) INW (nc_sist); /* clear pending scsi interrupt */ OUTB (nc_dien , 0); /* mask all dma interrupts */ (void) INW (nc_sist); /* another one, just to be sure :) */ OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ OUTB (nc_stime1, 0); /* disable general purpose timer */ OUTB (nc_stime1, gen); /* set to nominal delay of 1<= 2) printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms); /* * adjust for prescaler, and convert into KHz */ return ms ? ((1 << gen) * 4340) / ms : 0; } /* * Get/probe NCR SCSI clock frequency */ static void __init ncr_getclock (struct ncb *np, int mult) { unsigned char scntl3 = INB(nc_scntl3); unsigned char stest1 = INB(nc_stest1); unsigned f1; np->multiplier = 1; f1 = 40000; /* ** True with 875 or 895 with clock multiplier selected */ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { if (bootverbose >= 2) printk ("%s: clock multiplier found\n", ncr_name(np)); np->multiplier = mult; } /* ** If multiplier not found or scntl3 not 7,5,3, ** reset chip and get frequency from general purpose timer. ** Otherwise trust scntl3 BIOS setting. */ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { unsigned f2; ncr_chip_reset(np, 5); (void) ncrgetfreq (np, 11); /* throw away first result */ f1 = ncrgetfreq (np, 11); f2 = ncrgetfreq (np, 11); if(bootverbose) printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2); if (f1 > f2) f1 = f2; /* trust lower result */ if (f1 < 45000) f1 = 40000; else if (f1 < 55000) f1 = 50000; else f1 = 80000; if (f1 < 80000 && mult > 1) { if (bootverbose >= 2) printk ("%s: clock multiplier assumed\n", ncr_name(np)); np->multiplier = mult; } } else { if ((scntl3 & 7) == 3) f1 = 40000; else if ((scntl3 & 7) == 5) f1 = 80000; else f1 = 160000; f1 /= np->multiplier; } /* ** Compute controller synchronous parameters. */ f1 *= np->multiplier; np->clock_khz = f1; } /*===================== LINUX ENTRY POINTS SECTION ==========================*/ static int ncr53c8xx_slave_alloc(struct scsi_device *device) { struct Scsi_Host *host = device->host; struct ncb *np = ((struct host_data *) host->hostdata)->ncb; struct tcb *tp = &np->target[device->id]; tp->starget = device->sdev_target; return 0; } static int ncr53c8xx_slave_configure(struct scsi_device *device) { struct Scsi_Host *host = device->host; struct ncb *np = ((struct host_data *) host->hostdata)->ncb; struct tcb *tp = &np->target[device->id]; struct lcb *lp = tp->lp[device->lun]; int numtags, depth_to_use; ncr_setup_lcb(np, device); /* ** Select queue depth from driver setup. ** Donnot use more than configured by user. ** Use at least 2. ** Donnot use more than our maximum. */ numtags = device_queue_depth(np->unit, device->id, device->lun); if (numtags > tp->usrtags) numtags = tp->usrtags; if (!device->tagged_supported) numtags = 1; depth_to_use = numtags; if (depth_to_use < 2) depth_to_use = 2; if (depth_to_use > MAX_TAGS) depth_to_use = MAX_TAGS; scsi_adjust_queue_depth(device, (device->tagged_supported ? MSG_SIMPLE_TAG : 0), depth_to_use); /* ** Since the queue depth is not tunable under Linux, ** we need to know this value in order not to ** announce stupid things to user. ** ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable.. ** In fact we just tuned it, or did I miss ** something important? :) */ if (lp) { lp->numtags = lp->maxtags = numtags; lp->scdev_depth = depth_to_use; } ncr_setup_tags (np, device); #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n", np->unit, device->id, device->lun, depth_to_use); #endif if (spi_support_sync(device->sdev_target) && !spi_initial_dv(device->sdev_target)) spi_dv_device(device); return 0; } static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *)) { struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; unsigned long flags; int sts; #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx_queue_command\n"); #endif cmd->scsi_done = done; cmd->host_scribble = NULL; cmd->__data_mapped = 0; cmd->__data_mapping = 0; spin_lock_irqsave(&np->smp_lock, flags); if ((sts = ncr_queue_command(np, cmd)) != DID_OK) { cmd->result = ScsiResult(sts, 0); #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx : command not queued - result=%d\n", sts); #endif } #ifdef DEBUG_NCR53C8XX else printk("ncr53c8xx : command successfully queued\n"); #endif spin_unlock_irqrestore(&np->smp_lock, flags); if (sts != DID_OK) { unmap_scsi_data(np, cmd); done(cmd); sts = 0; } return sts; } irqreturn_t ncr53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs) { unsigned long flags; struct Scsi_Host *shost = (struct Scsi_Host *)dev_id; struct host_data *host_data = (struct host_data *)shost->hostdata; struct ncb *np = host_data->ncb; struct scsi_cmnd *done_list; #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx : interrupt received\n"); #endif if (DEBUG_FLAGS & DEBUG_TINY) printk ("["); spin_lock_irqsave(&np->smp_lock, flags); ncr_exception(np); done_list = np->done_list; np->done_list = NULL; spin_unlock_irqrestore(&np->smp_lock, flags); if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n"); if (done_list) ncr_flush_done_cmds(done_list); return IRQ_HANDLED; } static void ncr53c8xx_timeout(unsigned long npref) { struct ncb *np = (struct ncb *) npref; unsigned long flags; struct scsi_cmnd *done_list; spin_lock_irqsave(&np->smp_lock, flags); ncr_timeout(np); done_list = np->done_list; np->done_list = NULL; spin_unlock_irqrestore(&np->smp_lock, flags); if (done_list) ncr_flush_done_cmds(done_list); } static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd) { struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; int sts; unsigned long flags; struct scsi_cmnd *done_list; /* * If the mid-level driver told us reset is synchronous, it seems * that we must call the done() callback for the involved command, * even if this command was not queued to the low-level driver, * before returning SUCCESS. */ spin_lock_irqsave(&np->smp_lock, flags); sts = ncr_reset_bus(np, cmd, 1); done_list = np->done_list; np->done_list = NULL; spin_unlock_irqrestore(&np->smp_lock, flags); ncr_flush_done_cmds(done_list); return sts; } #if 0 /* unused and broken */ static int ncr53c8xx_abort(struct scsi_cmnd *cmd) { struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; int sts; unsigned long flags; struct scsi_cmnd *done_list; #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS printk("ncr53c8xx_abort: pid=%lu serial_number=%ld\n", cmd->pid, cmd->serial_number); #else printk("ncr53c8xx_abort: command pid %lu\n", cmd->pid); #endif NCR_LOCK_NCB(np, flags); sts = ncr_abort_command(np, cmd); out: done_list = np->done_list; np->done_list = NULL; NCR_UNLOCK_NCB(np, flags); ncr_flush_done_cmds(done_list); return sts; } #endif /* ** Scsi command waiting list management. ** ** It may happen that we cannot insert a scsi command into the start queue, ** in the following circumstances. ** Too few preallocated ccb(s), ** maxtags < cmd_per_lun of the Linux host control block, ** etc... ** Such scsi commands are inserted into a waiting list. ** When a scsi command complete, we try to requeue the commands of the ** waiting list. */ #define next_wcmd host_scribble static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd) { struct scsi_cmnd *wcmd; #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd); #endif cmd->next_wcmd = NULL; if (!(wcmd = np->waiting_list)) np->waiting_list = cmd; else { while ((wcmd->next_wcmd) != 0) wcmd = (struct scsi_cmnd *) wcmd->next_wcmd; wcmd->next_wcmd = (char *) cmd; } } static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd) { struct scsi_cmnd **pcmd = &np->waiting_list; while (*pcmd) { if (cmd == *pcmd) { if (to_remove) { *pcmd = (struct scsi_cmnd *) cmd->next_wcmd; cmd->next_wcmd = NULL; } #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd); #endif return cmd; } pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd; } return NULL; } static void process_waiting_list(struct ncb *np, int sts) { struct scsi_cmnd *waiting_list, *wcmd; waiting_list = np->waiting_list; np->waiting_list = NULL; #ifdef DEBUG_WAITING_LIST if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts); #endif while ((wcmd = waiting_list) != 0) { waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd; wcmd->next_wcmd = NULL; if (sts == DID_OK) { #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd); #endif sts = ncr_queue_command(np, wcmd); } if (sts != DID_OK) { #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts); #endif wcmd->result = ScsiResult(sts, 0); ncr_queue_done_cmd(np, wcmd); } } } #undef next_wcmd static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf) { struct Scsi_Host *host = class_to_shost(dev); struct host_data *host_data = (struct host_data *)host->hostdata; return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id); } static struct class_device_attribute ncr53c8xx_revision_attr = { .attr = { .name = "revision", .mode = S_IRUGO, }, .show = show_ncr53c8xx_revision, }; static struct class_device_attribute *ncr53c8xx_host_attrs[] = { &ncr53c8xx_revision_attr, NULL }; /*========================================================== ** ** Boot command line. ** **========================================================== */ #ifdef MODULE char *ncr53c8xx; /* command line passed by insmod */ module_param(ncr53c8xx, charp, 0); #endif static int __init ncr53c8xx_setup(char *str) { return sym53c8xx__setup(str); } #ifndef MODULE __setup("ncr53c8xx=", ncr53c8xx_setup); #endif /* * Host attach and initialisations. * * Allocate host data and ncb structure. * Request IO region and remap MMIO region. * Do chip initialization. * If all is OK, install interrupt handling and * start the timer daemon. */ struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt, int unit, struct ncr_device *device) { struct host_data *host_data; struct ncb *np = NULL; struct Scsi_Host *instance = NULL; u_long flags = 0; int i; if (!tpnt->name) tpnt->name = SCSI_NCR_DRIVER_NAME; if (!tpnt->shost_attrs) tpnt->shost_attrs = ncr53c8xx_host_attrs; tpnt->queuecommand = ncr53c8xx_queue_command; tpnt->slave_configure = ncr53c8xx_slave_configure; tpnt->slave_alloc = ncr53c8xx_slave_alloc; tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset; tpnt->can_queue = SCSI_NCR_CAN_QUEUE; tpnt->this_id = 7; tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE; tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN; tpnt->use_clustering = ENABLE_CLUSTERING; if (device->differential) driver_setup.diff_support = device->differential; printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n", unit, device->chip.revision_id, device->slot.irq); instance = scsi_host_alloc(tpnt, sizeof(*host_data)); if (!instance) goto attach_error; host_data = (struct host_data *) instance->hostdata; np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB"); if (!np) goto attach_error; spin_lock_init(&np->smp_lock); np->dev = device->dev; np->p_ncb = vtobus(np); host_data->ncb = np; np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB"); if (!np->ccb) goto attach_error; /* Store input information in the host data structure. */ np->unit = unit; np->verbose = driver_setup.verbose; sprintf(np->inst_name, "ncr53c720-%d", np->unit); np->revision_id = device->chip.revision_id; np->features = device->chip.features; np->clock_divn = device->chip.nr_divisor; np->maxoffs = device->chip.offset_max; np->maxburst = device->chip.burst_max; np->myaddr = device->host_id; /* Allocate SCRIPTS areas. */ np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT"); if (!np->script0) goto attach_error; np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH"); if (!np->scripth0) goto attach_error; init_timer(&np->timer); np->timer.data = (unsigned long) np; np->timer.function = ncr53c8xx_timeout; /* Try to map the controller chip to virtual and physical memory. */ np->paddr = device->slot.base; np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0; if (device->slot.base_v) np->vaddr = device->slot.base_v; else np->vaddr = ioremap(device->slot.base_c, 128); if (!np->vaddr) { printk(KERN_ERR "%s: can't map memory mapped IO region\n",ncr_name(np)); goto attach_error; } else { if (bootverbose > 1) printk(KERN_INFO "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr); } /* Make the controller's registers available. Now the INB INW INL * OUTB OUTW OUTL macros can be used safely. */ np->reg = (struct ncr_reg __iomem *)np->vaddr; /* Do chip dependent initialization. */ ncr_prepare_setting(np); if (np->paddr2 && sizeof(struct script) > 4096) { np->paddr2 = 0; printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n", ncr_name(np)); } instance->max_channel = 0; instance->this_id = np->myaddr; instance->max_id = np->maxwide ? 16 : 8; instance->max_lun = SCSI_NCR_MAX_LUN; instance->base = (unsigned long) np->reg; instance->irq = device->slot.irq; instance->unique_id = device->slot.base; instance->dma_channel = 0; instance->cmd_per_lun = MAX_TAGS; instance->can_queue = (MAX_START-4); /* This can happen if you forget to call ncr53c8xx_init from * your module_init */ BUG_ON(!ncr53c8xx_transport_template); instance->transportt = ncr53c8xx_transport_template; /* Patch script to physical addresses */ ncr_script_fill(&script0, &scripth0); np->scripth = np->scripth0; np->p_scripth = vtobus(np->scripth); np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0); ncr_script_copy_and_bind(np, (ncrcmd *) &script0, (ncrcmd *) np->script0, sizeof(struct script)); ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0, (ncrcmd *) np->scripth0, sizeof(struct scripth)); np->ccb->p_ccb = vtobus (np->ccb); /* Patch the script for LED support. */ if (np->features & FE_LED0) { np->script0->idle[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); np->script0->reselected[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); np->script0->start[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); } /* * Look for the target control block of this nexus. * For i = 0 to 3 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) */ for (i = 0 ; i < 4 ; i++) { np->jump_tcb[i].l_cmd = cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); np->jump_tcb[i].l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target)); } ncr_chip_reset(np, 100); /* Now check the cache handling of the chipset. */ if (ncr_snooptest(np)) { printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n"); goto attach_error; } /* Install the interrupt handler. */ np->irq = device->slot.irq; /* Initialize the fixed part of the default ccb. */ ncr_init_ccb(np, np->ccb); /* * After SCSI devices have been opened, we cannot reset the bus * safely, so we do it here. Interrupt handler does the real work. * Process the reset exception if interrupts are not enabled yet. * Then enable disconnects. */ spin_lock_irqsave(&np->smp_lock, flags); if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) { printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np)); spin_unlock_irqrestore(&np->smp_lock, flags); goto attach_error; } ncr_exception(np); np->disc = 1; /* * The middle-level SCSI driver does not wait for devices to settle. * Wait synchronously if more than 2 seconds. */ if (driver_setup.settle_delay > 2) { printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n", ncr_name(np), driver_setup.settle_delay); mdelay(1000 * driver_setup.settle_delay); } /* start the timeout daemon */ np->lasttime=0; ncr_timeout (np); /* use SIMPLE TAG messages by default */ #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG np->order = SIMPLE_QUEUE_TAG; #endif spin_unlock_irqrestore(&np->smp_lock, flags); return instance; attach_error: if (!instance) return NULL; printk(KERN_INFO "%s: detaching...\n", ncr_name(np)); if (!np) goto unregister; if (np->scripth0) m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); if (np->script0) m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); if (np->ccb) m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); m_free_dma(np, sizeof(struct ncb), "NCB"); host_data->ncb = NULL; unregister: scsi_host_put(instance); return NULL; } int ncr53c8xx_release(struct Scsi_Host *host) { struct host_data *host_data; #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx: release\n"); #endif if (!host) return 1; host_data = (struct host_data *)host->hostdata; if (host_data && host_data->ncb) ncr_detach(host_data->ncb); return 1; } static void ncr53c8xx_set_period(struct scsi_target *starget, int period) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; struct tcb *tp = &np->target[starget->id]; if (period > np->maxsync) period = np->maxsync; else if (period < np->minsync) period = np->minsync; tp->usrsync = period; ncr_negotiate(np, tp); } static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; struct tcb *tp = &np->target[starget->id]; if (offset > np->maxoffs) offset = np->maxoffs; else if (offset < 0) offset = 0; tp->maxoffs = offset; ncr_negotiate(np, tp); } static void ncr53c8xx_set_width(struct scsi_target *starget, int width) { struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; struct tcb *tp = &np->target[starget->id]; if (width > np->maxwide) width = np->maxwide; else if (width < 0) width = 0; tp->usrwide = width; ncr_negotiate(np, tp); } static void ncr53c8xx_get_signalling(struct Scsi_Host *shost) { struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; enum spi_signal_type type; switch (np->scsi_mode) { case SMODE_SE: type = SPI_SIGNAL_SE; break; case SMODE_HVD: type = SPI_SIGNAL_HVD; break; default: type = SPI_SIGNAL_UNKNOWN; break; } spi_signalling(shost) = type; } static struct spi_function_template ncr53c8xx_transport_functions = { .set_period = ncr53c8xx_set_period, .show_period = 1, .set_offset = ncr53c8xx_set_offset, .show_offset = 1, .set_width = ncr53c8xx_set_width, .show_width = 1, .get_signalling = ncr53c8xx_get_signalling, }; int __init ncr53c8xx_init(void) { ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions); if (!ncr53c8xx_transport_template) return -ENODEV; return 0; } void ncr53c8xx_exit(void) { spi_release_transport(ncr53c8xx_transport_template); }