// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "registers.h" #include "idxd.h" struct idxd_cdev_context { const char *name; dev_t devt; struct ida minor_ida; }; /* * ictx is an array based off of accelerator types. enum idxd_type * is used as index */ static struct idxd_cdev_context ictx[IDXD_TYPE_MAX] = { { .name = "dsa" }, { .name = "iax" } }; struct idxd_user_context { struct idxd_wq *wq; struct task_struct *task; unsigned int pasid; struct mm_struct *mm; unsigned int flags; struct iommu_sva *sva; }; static void idxd_cdev_dev_release(struct device *dev) { struct idxd_cdev *idxd_cdev = dev_to_cdev(dev); struct idxd_cdev_context *cdev_ctx; struct idxd_wq *wq = idxd_cdev->wq; cdev_ctx = &ictx[wq->idxd->data->type]; ida_simple_remove(&cdev_ctx->minor_ida, idxd_cdev->minor); kfree(idxd_cdev); } static struct device_type idxd_cdev_device_type = { .name = "idxd_cdev", .release = idxd_cdev_dev_release, }; static inline struct idxd_cdev *inode_idxd_cdev(struct inode *inode) { struct cdev *cdev = inode->i_cdev; return container_of(cdev, struct idxd_cdev, cdev); } static inline struct idxd_wq *inode_wq(struct inode *inode) { struct idxd_cdev *idxd_cdev = inode_idxd_cdev(inode); return idxd_cdev->wq; } static void idxd_xa_pasid_remove(struct idxd_user_context *ctx) { struct idxd_wq *wq = ctx->wq; void *ptr; mutex_lock(&wq->uc_lock); ptr = xa_cmpxchg(&wq->upasid_xa, ctx->pasid, ctx, NULL, GFP_KERNEL); if (ptr != (void *)ctx) dev_warn(&wq->idxd->pdev->dev, "xarray cmpxchg failed for pasid %u\n", ctx->pasid); mutex_unlock(&wq->uc_lock); } static int idxd_cdev_open(struct inode *inode, struct file *filp) { struct idxd_user_context *ctx; struct idxd_device *idxd; struct idxd_wq *wq; struct device *dev; int rc = 0; struct iommu_sva *sva; unsigned int pasid; wq = inode_wq(inode); idxd = wq->idxd; dev = &idxd->pdev->dev; dev_dbg(dev, "%s called: %d\n", __func__, idxd_wq_refcount(wq)); ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; mutex_lock(&wq->wq_lock); if (idxd_wq_refcount(wq) > 0 && wq_dedicated(wq)) { rc = -EBUSY; goto failed; } ctx->wq = wq; filp->private_data = ctx; if (device_user_pasid_enabled(idxd)) { sva = iommu_sva_bind_device(dev, current->mm); if (IS_ERR(sva)) { rc = PTR_ERR(sva); dev_err(dev, "pasid allocation failed: %d\n", rc); goto failed; } pasid = iommu_sva_get_pasid(sva); if (pasid == IOMMU_PASID_INVALID) { rc = -EINVAL; goto failed_get_pasid; } ctx->sva = sva; ctx->pasid = pasid; ctx->mm = current->mm; mutex_lock(&wq->uc_lock); rc = xa_insert(&wq->upasid_xa, pasid, ctx, GFP_KERNEL); mutex_unlock(&wq->uc_lock); if (rc < 0) dev_warn(dev, "PASID entry already exist in xarray.\n"); if (wq_dedicated(wq)) { rc = idxd_wq_set_pasid(wq, pasid); if (rc < 0) { iommu_sva_unbind_device(sva); dev_err(dev, "wq set pasid failed: %d\n", rc); goto failed_set_pasid; } } } idxd_wq_get(wq); mutex_unlock(&wq->wq_lock); return 0; failed_set_pasid: if (device_user_pasid_enabled(idxd)) idxd_xa_pasid_remove(ctx); failed_get_pasid: if (device_user_pasid_enabled(idxd)) iommu_sva_unbind_device(sva); failed: mutex_unlock(&wq->wq_lock); kfree(ctx); return rc; } static int idxd_cdev_release(struct inode *node, struct file *filep) { struct idxd_user_context *ctx = filep->private_data; struct idxd_wq *wq = ctx->wq; struct idxd_device *idxd = wq->idxd; struct device *dev = &idxd->pdev->dev; int rc; dev_dbg(dev, "%s called\n", __func__); filep->private_data = NULL; /* Wait for in-flight operations to complete. */ if (wq_shared(wq)) { idxd_device_drain_pasid(idxd, ctx->pasid); } else { if (device_user_pasid_enabled(idxd)) { /* The wq disable in the disable pasid function will drain the wq */ rc = idxd_wq_disable_pasid(wq); if (rc < 0) dev_err(dev, "wq disable pasid failed.\n"); } else { idxd_wq_drain(wq); } } if (ctx->sva) { iommu_sva_unbind_device(ctx->sva); idxd_xa_pasid_remove(ctx); } kfree(ctx); mutex_lock(&wq->wq_lock); idxd_wq_put(wq); mutex_unlock(&wq->wq_lock); return 0; } static int check_vma(struct idxd_wq *wq, struct vm_area_struct *vma, const char *func) { struct device *dev = &wq->idxd->pdev->dev; if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) { dev_info_ratelimited(dev, "%s: %s: mapping too large: %lu\n", current->comm, func, vma->vm_end - vma->vm_start); return -EINVAL; } return 0; } static int idxd_cdev_mmap(struct file *filp, struct vm_area_struct *vma) { struct idxd_user_context *ctx = filp->private_data; struct idxd_wq *wq = ctx->wq; struct idxd_device *idxd = wq->idxd; struct pci_dev *pdev = idxd->pdev; phys_addr_t base = pci_resource_start(pdev, IDXD_WQ_BAR); unsigned long pfn; int rc; dev_dbg(&pdev->dev, "%s called\n", __func__); rc = check_vma(wq, vma, __func__); if (rc < 0) return rc; vm_flags_set(vma, VM_DONTCOPY); pfn = (base + idxd_get_wq_portal_full_offset(wq->id, IDXD_PORTAL_LIMITED)) >> PAGE_SHIFT; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_private_data = ctx; return io_remap_pfn_range(vma, vma->vm_start, pfn, PAGE_SIZE, vma->vm_page_prot); } static __poll_t idxd_cdev_poll(struct file *filp, struct poll_table_struct *wait) { struct idxd_user_context *ctx = filp->private_data; struct idxd_wq *wq = ctx->wq; struct idxd_device *idxd = wq->idxd; __poll_t out = 0; poll_wait(filp, &wq->err_queue, wait); spin_lock(&idxd->dev_lock); if (idxd->sw_err.valid) out = EPOLLIN | EPOLLRDNORM; spin_unlock(&idxd->dev_lock); return out; } static const struct file_operations idxd_cdev_fops = { .owner = THIS_MODULE, .open = idxd_cdev_open, .release = idxd_cdev_release, .mmap = idxd_cdev_mmap, .poll = idxd_cdev_poll, }; int idxd_cdev_get_major(struct idxd_device *idxd) { return MAJOR(ictx[idxd->data->type].devt); } int idxd_wq_add_cdev(struct idxd_wq *wq) { struct idxd_device *idxd = wq->idxd; struct idxd_cdev *idxd_cdev; struct cdev *cdev; struct device *dev; struct idxd_cdev_context *cdev_ctx; int rc, minor; idxd_cdev = kzalloc(sizeof(*idxd_cdev), GFP_KERNEL); if (!idxd_cdev) return -ENOMEM; idxd_cdev->idxd_dev.type = IDXD_DEV_CDEV; idxd_cdev->wq = wq; cdev = &idxd_cdev->cdev; dev = cdev_dev(idxd_cdev); cdev_ctx = &ictx[wq->idxd->data->type]; minor = ida_simple_get(&cdev_ctx->minor_ida, 0, MINORMASK, GFP_KERNEL); if (minor < 0) { kfree(idxd_cdev); return minor; } idxd_cdev->minor = minor; device_initialize(dev); dev->parent = wq_confdev(wq); dev->bus = &dsa_bus_type; dev->type = &idxd_cdev_device_type; dev->devt = MKDEV(MAJOR(cdev_ctx->devt), minor); rc = dev_set_name(dev, "%s/wq%u.%u", idxd->data->name_prefix, idxd->id, wq->id); if (rc < 0) goto err; wq->idxd_cdev = idxd_cdev; cdev_init(cdev, &idxd_cdev_fops); rc = cdev_device_add(cdev, dev); if (rc) { dev_dbg(&wq->idxd->pdev->dev, "cdev_add failed: %d\n", rc); goto err; } return 0; err: put_device(dev); wq->idxd_cdev = NULL; return rc; } void idxd_wq_del_cdev(struct idxd_wq *wq) { struct idxd_cdev *idxd_cdev; idxd_cdev = wq->idxd_cdev; wq->idxd_cdev = NULL; cdev_device_del(&idxd_cdev->cdev, cdev_dev(idxd_cdev)); put_device(cdev_dev(idxd_cdev)); } static int idxd_user_drv_probe(struct idxd_dev *idxd_dev) { struct idxd_wq *wq = idxd_dev_to_wq(idxd_dev); struct idxd_device *idxd = wq->idxd; int rc; if (idxd->state != IDXD_DEV_ENABLED) return -ENXIO; /* * User type WQ is enabled only when SVA is enabled for two reasons: * - If no IOMMU or IOMMU Passthrough without SVA, userspace * can directly access physical address through the WQ. * - The IDXD cdev driver does not provide any ways to pin * user pages and translate the address from user VA to IOVA or * PA without IOMMU SVA. Therefore the application has no way * to instruct the device to perform DMA function. This makes * the cdev not usable for normal application usage. */ if (!device_user_pasid_enabled(idxd)) { idxd->cmd_status = IDXD_SCMD_WQ_USER_NO_IOMMU; dev_dbg(&idxd->pdev->dev, "User type WQ cannot be enabled without SVA.\n"); return -EOPNOTSUPP; } mutex_lock(&wq->wq_lock); wq->wq = create_workqueue(dev_name(wq_confdev(wq))); if (!wq->wq) { rc = -ENOMEM; goto wq_err; } wq->type = IDXD_WQT_USER; rc = drv_enable_wq(wq); if (rc < 0) goto err; rc = idxd_wq_add_cdev(wq); if (rc < 0) { idxd->cmd_status = IDXD_SCMD_CDEV_ERR; goto err_cdev; } idxd->cmd_status = 0; mutex_unlock(&wq->wq_lock); return 0; err_cdev: drv_disable_wq(wq); err: destroy_workqueue(wq->wq); wq->type = IDXD_WQT_NONE; wq_err: mutex_unlock(&wq->wq_lock); return rc; } static void idxd_user_drv_remove(struct idxd_dev *idxd_dev) { struct idxd_wq *wq = idxd_dev_to_wq(idxd_dev); mutex_lock(&wq->wq_lock); idxd_wq_del_cdev(wq); drv_disable_wq(wq); wq->type = IDXD_WQT_NONE; destroy_workqueue(wq->wq); wq->wq = NULL; mutex_unlock(&wq->wq_lock); } static enum idxd_dev_type dev_types[] = { IDXD_DEV_WQ, IDXD_DEV_NONE, }; struct idxd_device_driver idxd_user_drv = { .probe = idxd_user_drv_probe, .remove = idxd_user_drv_remove, .name = "user", .type = dev_types, }; EXPORT_SYMBOL_GPL(idxd_user_drv); int idxd_cdev_register(void) { int rc, i; for (i = 0; i < IDXD_TYPE_MAX; i++) { ida_init(&ictx[i].minor_ida); rc = alloc_chrdev_region(&ictx[i].devt, 0, MINORMASK, ictx[i].name); if (rc) goto err_free_chrdev_region; } return 0; err_free_chrdev_region: for (i--; i >= 0; i--) unregister_chrdev_region(ictx[i].devt, MINORMASK); return rc; } void idxd_cdev_remove(void) { int i; for (i = 0; i < IDXD_TYPE_MAX; i++) { unregister_chrdev_region(ictx[i].devt, MINORMASK); ida_destroy(&ictx[i].minor_ida); } } /** * idxd_copy_cr - copy completion record to user address space found by wq and * PASID * @wq: work queue * @pasid: PASID * @addr: user fault address to write * @cr: completion record * @len: number of bytes to copy * * This is called by a work that handles completion record fault. * * Return: number of bytes copied. */ int idxd_copy_cr(struct idxd_wq *wq, ioasid_t pasid, unsigned long addr, void *cr, int len) { struct device *dev = &wq->idxd->pdev->dev; int left = len, status_size = 1; struct idxd_user_context *ctx; struct mm_struct *mm; mutex_lock(&wq->uc_lock); ctx = xa_load(&wq->upasid_xa, pasid); if (!ctx) { dev_warn(dev, "No user context\n"); goto out; } mm = ctx->mm; /* * The completion record fault handling work is running in kernel * thread context. It temporarily switches to the mm to copy cr * to addr in the mm. */ kthread_use_mm(mm); left = copy_to_user((void __user *)addr + status_size, cr + status_size, len - status_size); /* * Copy status only after the rest of completion record is copied * successfully so that the user gets the complete completion record * when a non-zero status is polled. */ if (!left) { u8 status; /* * Ensure that the completion record's status field is written * after the rest of the completion record has been written. * This ensures that the user receives the correct completion * record information once polling for a non-zero status. */ wmb(); status = *(u8 *)cr; if (put_user(status, (u8 __user *)addr)) left += status_size; } else { left += status_size; } kthread_unuse_mm(mm); out: mutex_unlock(&wq->uc_lock); return len - left; }