/* * NAND Flash Controller Device Driver * Copyright © 2009-2010, Intel Corporation and its suppliers. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #include #include #include #include #include #include #include #include "denali.h" MODULE_LICENSE("GPL"); /* We define a module parameter that allows the user to override * the hardware and decide what timing mode should be used. */ #define NAND_DEFAULT_TIMINGS -1 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; module_param(onfi_timing_mode, int, S_IRUGO); MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." " -1 indicates use default timings"); #define DENALI_NAND_NAME "denali-nand" /* We define a macro here that combines all interrupts this driver uses into * a single constant value, for convenience. */ #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \ INTR_STATUS0__ECC_TRANSACTION_DONE | \ INTR_STATUS0__ECC_ERR | \ INTR_STATUS0__PROGRAM_FAIL | \ INTR_STATUS0__LOAD_COMP | \ INTR_STATUS0__PROGRAM_COMP | \ INTR_STATUS0__TIME_OUT | \ INTR_STATUS0__ERASE_FAIL | \ INTR_STATUS0__RST_COMP | \ INTR_STATUS0__ERASE_COMP) /* indicates whether or not the internal value for the flash bank is valid or not */ #define CHIP_SELECT_INVALID -1 #define SUPPORT_8BITECC 1 /* This macro divides two integers and rounds fractional values up * to the nearest integer value. */ #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) /* this macro allows us to convert from an MTD structure to our own * device context (denali) structure. */ #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) /* These constants are defined by the driver to enable common driver configuration options. */ #define SPARE_ACCESS 0x41 #define MAIN_ACCESS 0x42 #define MAIN_SPARE_ACCESS 0x43 #define DENALI_READ 0 #define DENALI_WRITE 0x100 /* types of device accesses. We can issue commands and get status */ #define COMMAND_CYCLE 0 #define ADDR_CYCLE 1 #define STATUS_CYCLE 2 /* this is a helper macro that allows us to * format the bank into the proper bits for the controller */ #define BANK(x) ((x) << 24) /* List of platforms this NAND controller has be integrated into */ static const struct pci_device_id denali_pci_ids[] = { { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, { /* end: all zeroes */ } }; /* these are static lookup tables that give us easy access to registers in the NAND controller. */ static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, INTR_STATUS1, INTR_STATUS2, INTR_STATUS3}; static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, DEVICE_RESET__BANK1, DEVICE_RESET__BANK2, DEVICE_RESET__BANK3}; static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, INTR_STATUS1__TIME_OUT, INTR_STATUS2__TIME_OUT, INTR_STATUS3__TIME_OUT}; static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, INTR_STATUS1__RST_COMP, INTR_STATUS2__RST_COMP, INTR_STATUS3__RST_COMP}; /* specifies the debug level of the driver */ static int nand_debug_level; /* forward declarations */ static void clear_interrupts(struct denali_nand_info *denali); static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask); static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask); static uint32_t read_interrupt_status(struct denali_nand_info *denali); #define DEBUG_DENALI 0 /* This is a wrapper for writing to the denali registers. * this allows us to create debug information so we can * observe how the driver is programming the device. * it uses standard linux convention for (val, addr) */ static void denali_write32(uint32_t value, void *addr) { iowrite32(value, addr); #if DEBUG_DENALI printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff)); #endif } /* Certain operations for the denali NAND controller use * an indexed mode to read/write data. The operation is * performed by writing the address value of the command * to the device memory followed by the data. This function * abstracts this common operation. */ static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) { denali_write32(address, denali->flash_mem); denali_write32(data, denali->flash_mem + 0x10); } /* Perform an indexed read of the device */ static void index_addr_read_data(struct denali_nand_info *denali, uint32_t address, uint32_t *pdata) { denali_write32(address, denali->flash_mem); *pdata = ioread32(denali->flash_mem + 0x10); } /* We need to buffer some data for some of the NAND core routines. * The operations manage buffering that data. */ static void reset_buf(struct denali_nand_info *denali) { denali->buf.head = denali->buf.tail = 0; } static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) { BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); denali->buf.buf[denali->buf.tail++] = byte; } /* reads the status of the device */ static void read_status(struct denali_nand_info *denali) { uint32_t cmd = 0x0; /* initialize the data buffer to store status */ reset_buf(denali); /* initiate a device status read */ cmd = MODE_11 | BANK(denali->flash_bank); index_addr(denali, cmd | COMMAND_CYCLE, 0x70); denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); /* update buffer with status value */ write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); #if DEBUG_DENALI printk(KERN_INFO "device reporting status value of 0x%2x\n", denali->buf.buf[0]); #endif } /* resets a specific device connected to the core */ static void reset_bank(struct denali_nand_info *denali) { uint32_t irq_status = 0; uint32_t irq_mask = reset_complete[denali->flash_bank] | operation_timeout[denali->flash_bank]; int bank = 0; clear_interrupts(denali); bank = device_reset_banks[denali->flash_bank]; denali_write32(bank, denali->flash_reg + DEVICE_RESET); irq_status = wait_for_irq(denali, irq_mask); if (irq_status & operation_timeout[denali->flash_bank]) printk(KERN_ERR "reset bank failed.\n"); } /* Reset the flash controller */ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) { uint32_t i; nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) denali_write32(reset_complete[i] | operation_timeout[i], denali->flash_reg + intr_status_addresses[i]); for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET); while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) & (reset_complete[i] | operation_timeout[i]))) ; if (ioread32(denali->flash_reg + intr_status_addresses[i]) & operation_timeout[i]) nand_dbg_print(NAND_DBG_WARN, "NAND Reset operation timed out on bank %d\n", i); } for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) denali_write32(reset_complete[i] | operation_timeout[i], denali->flash_reg + intr_status_addresses[i]); return PASS; } /* this routine calculates the ONFI timing values for a given mode and * programs the clocking register accordingly. The mode is determined by * the get_onfi_nand_para routine. */ static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode) { uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; uint16_t TclsRising = 1; uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; uint16_t dv_window = 0; uint16_t en_lo, en_hi; uint16_t acc_clks; uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); en_lo = CEIL_DIV(Trp[mode], CLK_X); en_hi = CEIL_DIV(Treh[mode], CLK_X); #if ONFI_BLOOM_TIME if ((en_hi * CLK_X) < (Treh[mode] + 2)) en_hi++; #endif if ((en_lo + en_hi) * CLK_X < Trc[mode]) en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); if ((en_lo + en_hi) < CLK_MULTI) en_lo += CLK_MULTI - en_lo - en_hi; while (dv_window < 8) { data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; data_invalid = data_invalid_rhoh < data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; dv_window = data_invalid - Trea[mode]; if (dv_window < 8) en_lo++; } acc_clks = CEIL_DIV(Trea[mode], CLK_X); while (((acc_clks * CLK_X) - Trea[mode]) < 3) acc_clks++; if ((data_invalid - acc_clks * CLK_X) < 2) nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n", __FILE__, __LINE__); addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); re_2_we = CEIL_DIV(Trhw[mode], CLK_X); re_2_re = CEIL_DIV(Trhz[mode], CLK_X); we_2_re = CEIL_DIV(Twhr[mode], CLK_X); cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); if (!TclsRising) cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); if (cs_cnt == 0) cs_cnt = 1; if (Tcea[mode]) { while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) cs_cnt++; } #if MODE5_WORKAROUND if (mode == 5) acc_clks = 5; #endif /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) && (ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) acc_clks = 6; denali_write32(acc_clks, denali->flash_reg + ACC_CLKS); denali_write32(re_2_we, denali->flash_reg + RE_2_WE); denali_write32(re_2_re, denali->flash_reg + RE_2_RE); denali_write32(we_2_re, denali->flash_reg + WE_2_RE); denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA); denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); } /* configures the initial ECC settings for the controller */ static void set_ecc_config(struct denali_nand_info *denali) { #if SUPPORT_8BITECC if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) || (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128)) denali_write32(8, denali->flash_reg + ECC_CORRECTION); #endif if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE) == 1) { denali->dev_info.wECCBytesPerSector = 4; denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - denali->dev_info.wPageDataSize / (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * denali->dev_info.wECCBytesPerSector - denali->dev_info.wSpareSkipBytes; } else { denali->dev_info.wECCBytesPerSector = (ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE) * 13 / 8; if ((denali->dev_info.wECCBytesPerSector) % 2 == 0) denali->dev_info.wECCBytesPerSector += 2; else denali->dev_info.wECCBytesPerSector += 1; denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - denali->dev_info.wPageDataSize / (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * denali->dev_info.wECCBytesPerSector - denali->dev_info.wSpareSkipBytes; } } /* queries the NAND device to see what ONFI modes it supports. */ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) { int i; uint16_t blks_lun_l, blks_lun_h, n_of_luns; uint32_t blockperlun, id; denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET); while (!((ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) | (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__TIME_OUT))) ; if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) { denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET); while (!((ioread32(denali->flash_reg + INTR_STATUS1) & INTR_STATUS1__RST_COMP) | (ioread32(denali->flash_reg + INTR_STATUS1) & INTR_STATUS1__TIME_OUT))) ; if (ioread32(denali->flash_reg + INTR_STATUS1) & INTR_STATUS1__RST_COMP) { denali_write32(DEVICE_RESET__BANK2, denali->flash_reg + DEVICE_RESET); while (!((ioread32(denali->flash_reg + INTR_STATUS2) & INTR_STATUS2__RST_COMP) | (ioread32(denali->flash_reg + INTR_STATUS2) & INTR_STATUS2__TIME_OUT))) ; if (ioread32(denali->flash_reg + INTR_STATUS2) & INTR_STATUS2__RST_COMP) { denali_write32(DEVICE_RESET__BANK3, denali->flash_reg + DEVICE_RESET); while (!((ioread32(denali->flash_reg + INTR_STATUS3) & INTR_STATUS3__RST_COMP) | (ioread32(denali->flash_reg + INTR_STATUS3) & INTR_STATUS3__TIME_OUT))) ; } else { printk(KERN_ERR "Getting a time out for bank 2!\n"); } } else { printk(KERN_ERR "Getting a time out for bank 1!\n"); } } denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0); denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1); denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2); denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3); denali->dev_info.wONFIDevFeatures = ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES); denali->dev_info.wONFIOptCommands = ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS); denali->dev_info.wONFITimingMode = ioread32(denali->flash_reg + ONFI_TIMING_MODE); denali->dev_info.wONFIPgmCacheTimingMode = ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE); n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS; blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L); blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U); blockperlun = (blks_lun_h << 16) | blks_lun_l; denali->dev_info.wTotalBlocks = n_of_luns * blockperlun; if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & ONFI_TIMING_MODE__VALUE)) return FAIL; for (i = 5; i > 0; i--) { if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) break; } NAND_ONFi_Timing_Mode(denali, i); index_addr(denali, MODE_11 | 0, 0x90); index_addr(denali, MODE_11 | 1, 0); for (i = 0; i < 3; i++) index_addr_read_data(denali, MODE_11 | 2, &id); nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id); denali->dev_info.MLCDevice = id & 0x0C; /* By now, all the ONFI devices we know support the page cache */ /* rw feature. So here we enable the pipeline_rw_ahead feature */ /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ return PASS; } static void get_samsung_nand_para(struct denali_nand_info *denali) { uint8_t no_of_planes; uint32_t blk_size; uint64_t plane_size, capacity; uint32_t id_bytes[5]; int i; index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90); index_addr(denali, (uint32_t)(MODE_11 | 1), 0); for (i = 0; i < 5; i++) index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]); nand_dbg_print(NAND_DBG_DEBUG, "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", id_bytes[0], id_bytes[1], id_bytes[2], id_bytes[3], id_bytes[4]); if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */ /* Set timing register values according to datasheet */ denali_write32(5, denali->flash_reg + ACC_CLKS); denali_write32(20, denali->flash_reg + RE_2_WE); denali_write32(12, denali->flash_reg + WE_2_RE); denali_write32(14, denali->flash_reg + ADDR_2_DATA); denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT); denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); denali_write32(2, denali->flash_reg + CS_SETUP_CNT); } no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2); plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4); blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4); capacity = (uint64_t)128 * plane_size * no_of_planes; do_div(capacity, blk_size); denali->dev_info.wTotalBlocks = capacity; } static void get_toshiba_nand_para(struct denali_nand_info *denali) { void __iomem *scratch_reg; uint32_t tmp; /* Workaround to fix a controller bug which reports a wrong */ /* spare area size for some kind of Toshiba NAND device */ if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); #if SUPPORT_15BITECC denali_write32(15, denali->flash_reg + ECC_CORRECTION); #elif SUPPORT_8BITECC denali_write32(8, denali->flash_reg + ECC_CORRECTION); #endif } /* As Toshiba NAND can not provide it's block number, */ /* so here we need user to provide the correct block */ /* number in a scratch register before the Linux NAND */ /* driver is loaded. If no valid value found in the scratch */ /* register, then we use default block number value */ scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); if (!scratch_reg) { printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", __FILE__, __LINE__); denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; } else { nand_dbg_print(NAND_DBG_WARN, "Spectra: ioremap reg address: 0x%p\n", scratch_reg); denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); if (denali->dev_info.wTotalBlocks < 512) denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; iounmap(scratch_reg); } } static void get_hynix_nand_para(struct denali_nand_info *denali) { void __iomem *scratch_reg; uint32_t main_size, spare_size; switch (denali->dev_info.wDeviceID) { case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED); spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED); denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); denali_write32(0, denali->flash_reg + DEVICE_WIDTH); #if SUPPORT_15BITECC denali_write32(15, denali->flash_reg + ECC_CORRECTION); #elif SUPPORT_8BITECC denali_write32(8, denali->flash_reg + ECC_CORRECTION); #endif denali->dev_info.MLCDevice = 1; break; default: nand_dbg_print(NAND_DBG_WARN, "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." "Will use default parameter values instead.\n", denali->dev_info.wDeviceID); } scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); if (!scratch_reg) { printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", __FILE__, __LINE__); denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; } else { nand_dbg_print(NAND_DBG_WARN, "Spectra: ioremap reg address: 0x%p\n", scratch_reg); denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); if (denali->dev_info.wTotalBlocks < 512) denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; iounmap(scratch_reg); } } /* determines how many NAND chips are connected to the controller. Note for Intel CE4100 devices we don't support more than one device. */ static void find_valid_banks(struct denali_nand_info *denali) { uint32_t id[LLD_MAX_FLASH_BANKS]; int i; denali->total_used_banks = 1; for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) { index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); nand_dbg_print(NAND_DBG_DEBUG, "Return 1st ID for bank[%d]: %x\n", i, id[i]); if (i == 0) { if (!(id[i] & 0x0ff)) break; /* WTF? */ } else { if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) denali->total_used_banks++; else break; } } if (denali->platform == INTEL_CE4100) { /* Platform limitations of the CE4100 device limit * users to a single chip solution for NAND. * Multichip support is not enabled. */ if (denali->total_used_banks != 1) { printk(KERN_ERR "Sorry, Intel CE4100 only supports " "a single NAND device.\n"); BUG(); } } nand_dbg_print(NAND_DBG_DEBUG, "denali->total_used_banks: %d\n", denali->total_used_banks); } static void detect_partition_feature(struct denali_nand_info *denali) { if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) & PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) { denali->dev_info.wSpectraStartBlock = ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & MIN_MAX_BANK_1__MIN_VALUE) * denali->dev_info.wTotalBlocks) + (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) & MIN_BLK_ADDR_1__VALUE); denali->dev_info.wSpectraEndBlock = (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & MIN_MAX_BANK_1__MAX_VALUE) >> 2) * denali->dev_info.wTotalBlocks) + (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) & MAX_BLK_ADDR_1__VALUE); denali->dev_info.wTotalBlocks *= denali->total_used_banks; if (denali->dev_info.wSpectraEndBlock >= denali->dev_info.wTotalBlocks) { denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; } denali->dev_info.wDataBlockNum = denali->dev_info.wSpectraEndBlock - denali->dev_info.wSpectraStartBlock + 1; } else { denali->dev_info.wTotalBlocks *= denali->total_used_banks; denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; denali->dev_info.wDataBlockNum = denali->dev_info.wSpectraEndBlock - denali->dev_info.wSpectraStartBlock + 1; } } else { denali->dev_info.wTotalBlocks *= denali->total_used_banks; denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; denali->dev_info.wDataBlockNum = denali->dev_info.wSpectraEndBlock - denali->dev_info.wSpectraStartBlock + 1; } } static void dump_device_info(struct denali_nand_info *denali) { nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n"); nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n", denali->dev_info.wDeviceMaker); nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n", denali->dev_info.wDeviceID); nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n", denali->dev_info.wDeviceType); nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n", denali->dev_info.wSpectraStartBlock); nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n", denali->dev_info.wSpectraEndBlock); nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n", denali->dev_info.wTotalBlocks); nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n", denali->dev_info.wPagesPerBlock); nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n", denali->dev_info.wPageSize); nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n", denali->dev_info.wPageDataSize); nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n", denali->dev_info.wPageSpareSize); nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n", denali->dev_info.wNumPageSpareFlag); nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n", denali->dev_info.wECCBytesPerSector); nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n", denali->dev_info.wBlockSize); nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n", denali->dev_info.wBlockDataSize); nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n", denali->dev_info.wDataBlockNum); nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n", denali->dev_info.bPlaneNum); nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n", denali->dev_info.wDeviceMainAreaSize); nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n", denali->dev_info.wDeviceSpareAreaSize); nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n", denali->dev_info.wDevicesConnected); nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n", denali->dev_info.wDeviceWidth); nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n", denali->dev_info.wHWRevision); nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n", denali->dev_info.wHWFeatures); nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n", denali->dev_info.wONFIDevFeatures); nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n", denali->dev_info.wONFIOptCommands); nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n", denali->dev_info.wONFITimingMode); nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n", denali->dev_info.wONFIPgmCacheTimingMode); nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n", denali->dev_info.MLCDevice ? "Yes" : "No"); nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n", denali->dev_info.wSpareSkipBytes); nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n", denali->dev_info.nBitsInPageNumber); nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n", denali->dev_info.nBitsInPageDataSize); nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n", denali->dev_info.nBitsInBlockDataSize); } static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) { uint16_t status = PASS; uint8_t no_of_planes; nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID); denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID); denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0); denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1); denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2); denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c; if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ if (FAIL == get_onfi_nand_para(denali)) return FAIL; } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */ get_samsung_nand_para(denali); } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */ get_toshiba_nand_para(denali); } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */ get_hynix_nand_para(denali); } else { denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; } nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" "acc_clks: %d, re_2_we: %d, we_2_re: %d," "addr_2_data: %d, rdwr_en_lo_cnt: %d, " "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", ioread32(denali->flash_reg + ACC_CLKS), ioread32(denali->flash_reg + RE_2_WE), ioread32(denali->flash_reg + WE_2_RE), ioread32(denali->flash_reg + ADDR_2_DATA), ioread32(denali->flash_reg + RDWR_EN_LO_CNT), ioread32(denali->flash_reg + RDWR_EN_HI_CNT), ioread32(denali->flash_reg + CS_SETUP_CNT)); denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION); denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES); denali->dev_info.wDeviceMainAreaSize = ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE); denali->dev_info.wDeviceSpareAreaSize = ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); denali->dev_info.wPageDataSize = ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); /* Note: When using the Micon 4K NAND device, the controller will report * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes. * And if force set it to 218 bytes, the controller can not work * correctly. So just let it be. But keep in mind that this bug may * cause * other problems in future. - Yunpeng 2008-10-10 */ denali->dev_info.wPageSpareSize = ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK); denali->dev_info.wPageSize = denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize; denali->dev_info.wBlockSize = denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock; denali->dev_info.wBlockDataSize = denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize; denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH); denali->dev_info.wDeviceType = ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8); denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED); denali->dev_info.wSpareSkipBytes = ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) * denali->dev_info.wDevicesConnected; denali->dev_info.nBitsInPageNumber = ilog2(denali->dev_info.wPagesPerBlock); denali->dev_info.nBitsInPageDataSize = ilog2(denali->dev_info.wPageDataSize); denali->dev_info.nBitsInBlockDataSize = ilog2(denali->dev_info.wBlockDataSize); set_ecc_config(denali); no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) & NUMBER_OF_PLANES__VALUE; switch (no_of_planes) { case 0: case 1: case 3: case 7: denali->dev_info.bPlaneNum = no_of_planes + 1; break; default: status = FAIL; break; } find_valid_banks(denali); detect_partition_feature(denali); dump_device_info(denali); /* If the user specified to override the default timings * with a specific ONFI mode, we apply those changes here. */ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) NAND_ONFi_Timing_Mode(denali, onfi_timing_mode); return status; } static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, uint16_t INT_ENABLE) { nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); if (INT_ENABLE) denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE); else denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE); } /* validation function to verify that the controlling software is making a valid request */ static inline bool is_flash_bank_valid(int flash_bank) { return (flash_bank >= 0 && flash_bank < 4); } static void denali_irq_init(struct denali_nand_info *denali) { uint32_t int_mask = 0; /* Disable global interrupts */ NAND_LLD_Enable_Disable_Interrupts(denali, false); int_mask = DENALI_IRQ_ALL; /* Clear all status bits */ denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0); denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1); denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2); denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3); denali_irq_enable(denali, int_mask); } static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) { NAND_LLD_Enable_Disable_Interrupts(denali, false); free_irq(irqnum, denali); } static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask) { denali_write32(int_mask, denali->flash_reg + INTR_EN0); denali_write32(int_mask, denali->flash_reg + INTR_EN1); denali_write32(int_mask, denali->flash_reg + INTR_EN2); denali_write32(int_mask, denali->flash_reg + INTR_EN3); } /* This function only returns when an interrupt that this driver cares about * occurs. This is to reduce the overhead of servicing interrupts */ static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) { return read_interrupt_status(denali) & DENALI_IRQ_ALL; } /* Interrupts are cleared by writing a 1 to the appropriate status bit */ static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask) { uint32_t intr_status_reg = 0; intr_status_reg = intr_status_addresses[denali->flash_bank]; denali_write32(irq_mask, denali->flash_reg + intr_status_reg); } static void clear_interrupts(struct denali_nand_info *denali) { uint32_t status = 0x0; spin_lock_irq(&denali->irq_lock); status = read_interrupt_status(denali); #if DEBUG_DENALI denali->irq_debug_array[denali->idx++] = 0x30000000 | status; denali->idx %= 32; #endif denali->irq_status = 0x0; spin_unlock_irq(&denali->irq_lock); } static uint32_t read_interrupt_status(struct denali_nand_info *denali) { uint32_t intr_status_reg = 0; intr_status_reg = intr_status_addresses[denali->flash_bank]; return ioread32(denali->flash_reg + intr_status_reg); } #if DEBUG_DENALI static void print_irq_log(struct denali_nand_info *denali) { int i = 0; printk(KERN_INFO "ISR debug log index = %X\n", denali->idx); for (i = 0; i < 32; i++) printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]); } #endif /* This is the interrupt service routine. It handles all interrupts * sent to this device. Note that on CE4100, this is a shared * interrupt. */ static irqreturn_t denali_isr(int irq, void *dev_id) { struct denali_nand_info *denali = dev_id; uint32_t irq_status = 0x0; irqreturn_t result = IRQ_NONE; spin_lock(&denali->irq_lock); /* check to see if a valid NAND chip has * been selected. */ if (is_flash_bank_valid(denali->flash_bank)) { /* check to see if controller generated * the interrupt, since this is a shared interrupt */ irq_status = denali_irq_detected(denali); if (irq_status != 0) { #if DEBUG_DENALI denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status; denali->idx %= 32; printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status); #endif /* handle interrupt */ /* first acknowledge it */ clear_interrupt(denali, irq_status); /* store the status in the device context for someone to read */ denali->irq_status |= irq_status; /* notify anyone who cares that it happened */ complete(&denali->complete); /* tell the OS that we've handled this */ result = IRQ_HANDLED; } } spin_unlock(&denali->irq_lock); return result; } #define BANK(x) ((x) << 24) static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) { unsigned long comp_res = 0; uint32_t intr_status = 0; bool retry = false; unsigned long timeout = msecs_to_jiffies(1000); do { #if DEBUG_DENALI printk(KERN_INFO "waiting for 0x%x\n", irq_mask); #endif comp_res = wait_for_completion_timeout(&denali->complete, timeout); spin_lock_irq(&denali->irq_lock); intr_status = denali->irq_status; #if DEBUG_DENALI denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status; denali->idx %= 32; #endif if (intr_status & irq_mask) { denali->irq_status &= ~irq_mask; spin_unlock_irq(&denali->irq_lock); #if DEBUG_DENALI if (retry) printk(KERN_INFO "status on retry = 0x%x\n", intr_status); #endif /* our interrupt was detected */ break; } else { /* these are not the interrupts you are looking for - * need to wait again */ spin_unlock_irq(&denali->irq_lock); #if DEBUG_DENALI print_irq_log(denali); printk(KERN_INFO "received irq nobody cared:" " irq_status = 0x%x, irq_mask = 0x%x," " timeout = %ld\n", intr_status, irq_mask, comp_res); #endif retry = true; } } while (comp_res != 0); if (comp_res == 0) { /* timeout */ printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", intr_status, irq_mask); intr_status = 0; } return intr_status; } /* This helper function setups the registers for ECC and whether or not the spare area will be transfered. */ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, bool transfer_spare) { int ecc_en_flag = 0, transfer_spare_flag = 0; /* set ECC, transfer spare bits if needed */ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; /* Enable spare area/ECC per user's request. */ denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); } /* sends a pipeline command operation to the controller. See the Denali NAND controller's user guide for more information (section 4.2.3.6). */ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, bool transfer_spare, int access_type, int op) { int status = PASS; uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, irq_mask = 0; if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP; else if (op == DENALI_WRITE) irq_mask = 0; else BUG(); setup_ecc_for_xfer(denali, ecc_en, transfer_spare); #if DEBUG_DENALI spin_lock_irq(&denali->irq_lock); denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4); denali->idx %= 32; spin_unlock_irq(&denali->irq_lock); #endif /* clear interrupts */ clear_interrupts(denali); addr = BANK(denali->flash_bank) | denali->page; if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { cmd = MODE_01 | addr; denali_write32(cmd, denali->flash_mem); } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { /* read spare area */ cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, access_type); cmd = MODE_01 | addr; denali_write32(cmd, denali->flash_mem); } else if (op == DENALI_READ) { /* setup page read request for access type */ cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, access_type); /* page 33 of the NAND controller spec indicates we should not use the pipeline commands in Spare area only mode. So we don't. */ if (access_type == SPARE_ACCESS) { cmd = MODE_01 | addr; denali_write32(cmd, denali->flash_mem); } else { index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count); /* wait for command to be accepted * can always use status0 bit as the * mask is identical for each * bank. */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { printk(KERN_ERR "cmd, page, addr on timeout " "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr); status = FAIL; } else { cmd = MODE_01 | addr; denali_write32(cmd, denali->flash_mem); } } } return status; } /* helper function that simply writes a buffer to the flash */ static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, int len) { uint32_t i = 0, *buf32; /* verify that the len is a multiple of 4. see comment in * read_data_from_flash_mem() */ BUG_ON((len % 4) != 0); /* write the data to the flash memory */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) denali_write32(*buf32++, denali->flash_mem + 0x10); return i*4; /* intent is to return the number of bytes read */ } /* helper function that simply reads a buffer from the flash */ static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, int len) { uint32_t i = 0, *buf32; /* we assume that len will be a multiple of 4, if not * it would be nice to know about it ASAP rather than * have random failures... * This assumption is based on the fact that this * function is designed to be used to read flash pages, * which are typically multiples of 4... */ BUG_ON((len % 4) != 0); /* transfer the data from the flash */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) *buf32++ = ioread32(denali->flash_mem + 0x10); return i*4; /* intent is to return the number of bytes read */ } /* writes OOB data to the device */ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | INTR_STATUS0__PROGRAM_FAIL; int status = 0; denali->page = page; if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, DENALI_WRITE) == PASS) { write_data_to_flash_mem(denali, buf, mtd->oobsize); #if DEBUG_DENALI spin_lock_irq(&denali->irq_lock); denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize; denali->idx %= 32; spin_unlock_irq(&denali->irq_lock); #endif /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { printk(KERN_ERR "OOB write failed\n"); status = -EIO; } } else { printk(KERN_ERR "unable to send pipeline command\n"); status = -EIO; } return status; } /* reads OOB data from the device */ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0; denali->page = page; #if DEBUG_DENALI printk(KERN_INFO "read_oob %d\n", page); #endif if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, DENALI_READ) == PASS) { read_data_from_flash_mem(denali, buf, mtd->oobsize); /* wait for command to be accepted * can always use status0 bit as the mask is identical for each * bank. */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) printk(KERN_ERR "page on OOB timeout %d\n", denali->page); /* We set the device back to MAIN_ACCESS here as I observed * instability with the controller if you do a block erase * and the last transaction was a SPARE_ACCESS. Block erase * is reliable (according to the MTD test infrastructure) * if you are in MAIN_ACCESS. */ addr = BANK(denali->flash_bank) | denali->page; cmd = MODE_10 | addr; index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); #if DEBUG_DENALI spin_lock_irq(&denali->irq_lock); denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize; denali->idx %= 32; spin_unlock_irq(&denali->irq_lock); #endif } } /* this function examines buffers to see if they contain data that * indicate that the buffer is part of an erased region of flash. */ bool is_erased(uint8_t *buf, int len) { int i = 0; for (i = 0; i < len; i++) if (buf[i] != 0xFF) return false; return true; } #define ECC_SECTOR_SIZE 512 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO)) #define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, uint8_t *oobbuf, uint32_t irq_status) { bool check_erased_page = false; if (irq_status & INTR_STATUS0__ECC_ERR) { /* read the ECC errors. we'll ignore them for now */ uint32_t err_address = 0, err_correction_info = 0; uint32_t err_byte = 0, err_sector = 0, err_device = 0; uint32_t err_correction_value = 0; do { err_address = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS); err_sector = ECC_SECTOR(err_address); err_byte = ECC_BYTE(err_address); err_correction_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO); err_correction_value = ECC_CORRECTION_VALUE(err_correction_info); err_device = ECC_ERR_DEVICE(err_correction_info); if (ECC_ERROR_CORRECTABLE(err_correction_info)) { /* offset in our buffer is computed as: sector number * sector size + offset in sector */ int offset = err_sector * ECC_SECTOR_SIZE + err_byte; if (offset < denali->mtd.writesize) { /* correct the ECC error */ buf[offset] ^= err_correction_value; denali->mtd.ecc_stats.corrected++; } else { /* bummer, couldn't correct the error */ printk(KERN_ERR "ECC offset invalid\n"); denali->mtd.ecc_stats.failed++; } } else { /* if the error is not correctable, need to * look at the page to see if it is an erased * page. if so, then it's not a real ECC error * */ check_erased_page = true; } #if DEBUG_DENALI printk(KERN_INFO "Detected ECC error in page %d:" " err_addr = 0x%08x, info to fix is" " 0x%08x\n", denali->page, err_address, err_correction_info); #endif } while (!ECC_LAST_ERR(err_correction_info)); } return check_erased_page; } /* programs the controller to either enable/disable DMA transfers */ static void denali_enable_dma(struct denali_nand_info *denali, bool en) { uint32_t reg_val = 0x0; if (en) reg_val = DMA_ENABLE__FLAG; denali_write32(reg_val, denali->flash_reg + DMA_ENABLE); ioread32(denali->flash_reg + DMA_ENABLE); } /* setups the HW to perform the data DMA */ static void denali_setup_dma(struct denali_nand_info *denali, int op) { uint32_t mode = 0x0; const int page_count = 1; dma_addr_t addr = denali->buf.dma_buf; mode = MODE_10 | BANK(denali->flash_bank); /* DMA is a four step process */ /* 1. setup transfer type and # of pages */ index_addr(denali, mode | denali->page, 0x2000 | op | page_count); /* 2. set memory high address bits 23:8 */ index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); /* 3. set memory low address bits 23:8 */ index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); /* 4. interrupt when complete, burst len = 64 bytes*/ index_addr(denali, mode | 0x14000, 0x2400); } /* writes a page. user specifies type, and this function handles the configuration details. */ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, bool raw_xfer) { struct denali_nand_info *denali = mtd_to_denali(mtd); struct pci_dev *pci_dev = denali->dev; dma_addr_t addr = denali->buf.dma_buf; size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | INTR_STATUS0__PROGRAM_FAIL; /* if it is a raw xfer, we want to disable ecc, and send * the spare area. * !raw_xfer - enable ecc * raw_xfer - transfer spare */ setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); /* copy buffer into DMA buffer */ memcpy(denali->buf.buf, buf, mtd->writesize); if (raw_xfer) { /* transfer the data to the spare area */ memcpy(denali->buf.buf + mtd->writesize, chip->oob_poi, mtd->oobsize); } pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE); clear_interrupts(denali); denali_enable_dma(denali, true); denali_setup_dma(denali, DENALI_WRITE); /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { printk(KERN_ERR "timeout on write_page" " (type = %d)\n", raw_xfer); denali->status = (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : PASS; } denali_enable_dma(denali, false); pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE); } /* NAND core entry points */ /* this is the callback that the NAND core calls to write a page. Since writing a page with ECC or without is similar, all the work is done by write_page above. */ static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { /* for regular page writes, we let HW handle all the ECC * data written to the device. */ write_page(mtd, chip, buf, false); } /* This is the callback that the NAND core calls to write a page without ECC. raw access is similiar to ECC page writes, so all the work is done in the write_page() function above. */ static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { /* for raw page writes, we want to disable ECC and simply write whatever data is in the buffer. */ write_page(mtd, chip, buf, true); } static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { return write_oob_data(mtd, chip->oob_poi, page); } static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { read_oob_data(mtd, chip->oob_poi, page); return 0; /* notify NAND core to send command to NAND device. */ } static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); struct pci_dev *pci_dev = denali->dev; dma_addr_t addr = denali->buf.dma_buf; size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | INTR_STATUS0__ECC_ERR; bool check_erased_page = false; setup_ecc_for_xfer(denali, true, false); denali_enable_dma(denali, true); pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); clear_interrupts(denali); denali_setup_dma(denali, DENALI_READ); /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); memcpy(buf, denali->buf.buf, mtd->writesize); check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); denali_enable_dma(denali, false); if (check_erased_page) { read_oob_data(&denali->mtd, chip->oob_poi, denali->page); /* check ECC failures that may have occurred on erased pages */ if (check_erased_page) { if (!is_erased(buf, denali->mtd.writesize)) denali->mtd.ecc_stats.failed++; if (!is_erased(buf, denali->mtd.oobsize)) denali->mtd.ecc_stats.failed++; } } return 0; } static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); struct pci_dev *pci_dev = denali->dev; dma_addr_t addr = denali->buf.dma_buf; size_t size = denali->mtd.writesize + denali->mtd.oobsize; uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; setup_ecc_for_xfer(denali, false, true); denali_enable_dma(denali, true); pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); clear_interrupts(denali); denali_setup_dma(denali, DENALI_READ); /* wait for operation to complete */ irq_status = wait_for_irq(denali, irq_mask); pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); denali_enable_dma(denali, false); memcpy(buf, denali->buf.buf, mtd->writesize); memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); return 0; } static uint8_t denali_read_byte(struct mtd_info *mtd) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint8_t result = 0xff; if (denali->buf.head < denali->buf.tail) result = denali->buf.buf[denali->buf.head++]; #if DEBUG_DENALI printk(KERN_INFO "read byte -> 0x%02x\n", result); #endif return result; } static void denali_select_chip(struct mtd_info *mtd, int chip) { struct denali_nand_info *denali = mtd_to_denali(mtd); #if DEBUG_DENALI printk(KERN_INFO "denali select chip %d\n", chip); #endif spin_lock_irq(&denali->irq_lock); denali->flash_bank = chip; spin_unlock_irq(&denali->irq_lock); } static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) { struct denali_nand_info *denali = mtd_to_denali(mtd); int status = denali->status; denali->status = 0; #if DEBUG_DENALI printk(KERN_INFO "waitfunc %d\n", status); #endif return status; } static void denali_erase(struct mtd_info *mtd, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t cmd = 0x0, irq_status = 0; #if DEBUG_DENALI printk(KERN_INFO "erase page: %d\n", page); #endif /* clear interrupts */ clear_interrupts(denali); /* setup page read request for access type */ cmd = MODE_10 | BANK(denali->flash_bank) | page; index_addr(denali, (uint32_t)cmd, 0x1); /* wait for erase to complete or failure to occur */ irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | INTR_STATUS0__ERASE_FAIL); denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS; } static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); #if DEBUG_DENALI printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page); #endif switch (cmd) { case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: read_status(denali); break; case NAND_CMD_READID: reset_buf(denali); if (denali->flash_bank < denali->total_used_banks) { /* write manufacturer information into nand buffer for NAND subsystem to fetch. */ write_byte_to_buf(denali, denali->dev_info.wDeviceMaker); write_byte_to_buf(denali, denali->dev_info.wDeviceID); write_byte_to_buf(denali, denali->dev_info.bDeviceParam0); write_byte_to_buf(denali, denali->dev_info.bDeviceParam1); write_byte_to_buf(denali, denali->dev_info.bDeviceParam2); } else { int i; for (i = 0; i < 5; i++) write_byte_to_buf(denali, 0xff); } break; case NAND_CMD_READ0: case NAND_CMD_SEQIN: denali->page = page; break; case NAND_CMD_RESET: reset_bank(denali); break; case NAND_CMD_READOOB: /* TODO: Read OOB data */ break; default: printk(KERN_ERR ": unsupported command" " received 0x%x\n", cmd); break; } } /* stubs for ECC functions not used by the NAND core */ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc_code) { printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); BUG(); return -EIO; } static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, uint8_t *read_ecc, uint8_t *calc_ecc) { printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); BUG(); return -EIO; } static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) { printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n"); BUG(); } /* end NAND core entry points */ /* Initialization code to bring the device up to a known good state */ static void denali_hw_init(struct denali_nand_info *denali) { denali_irq_init(denali); NAND_Flash_Reset(denali); denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE); denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); /* Should set value for these registers when init */ denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); denali_write32(1, denali->flash_reg + ECC_ENABLE); } /* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */ #define ECC_BYTES_SLC (4 * (2048 / ECC_SECTOR_SIZE)) static struct nand_ecclayout nand_oob_slc = { .eccbytes = 4, .eccpos = { 0, 1, 2, 3 }, /* not used */ .oobfree = { { .offset = ECC_BYTES_SLC, .length = 64 - ECC_BYTES_SLC } } }; #define ECC_BYTES_MLC (14 * (2048 / ECC_SECTOR_SIZE)) static struct nand_ecclayout nand_oob_mlc_14bit = { .eccbytes = 14, .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */ .oobfree = { { .offset = ECC_BYTES_MLC, .length = 64 - ECC_BYTES_MLC } } }; static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = mirror_pattern, }; /* initalize driver data structures */ void denali_drv_init(struct denali_nand_info *denali) { denali->idx = 0; /* setup interrupt handler */ /* the completion object will be used to notify * the callee that the interrupt is done */ init_completion(&denali->complete); /* the spinlock will be used to synchronize the ISR * with any element that might be access shared * data (interrupt status) */ spin_lock_init(&denali->irq_lock); /* indicate that MTD has not selected a valid bank yet */ denali->flash_bank = CHIP_SELECT_INVALID; /* initialize our irq_status variable to indicate no interrupts */ denali->irq_status = 0; } /* driver entry point */ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { int ret = -ENODEV; resource_size_t csr_base, mem_base; unsigned long csr_len, mem_len; struct denali_nand_info *denali; nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); denali = kzalloc(sizeof(*denali), GFP_KERNEL); if (!denali) return -ENOMEM; ret = pci_enable_device(dev); if (ret) { printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); goto failed_enable; } if (id->driver_data == INTEL_CE4100) { /* Due to a silicon limitation, we can only support * ONFI timing mode 1 and below. */ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { printk(KERN_ERR "Intel CE4100 only supports" " ONFI timing mode 1 or below\n"); ret = -EINVAL; goto failed_enable; } denali->platform = INTEL_CE4100; mem_base = pci_resource_start(dev, 0); mem_len = pci_resource_len(dev, 1); csr_base = pci_resource_start(dev, 1); csr_len = pci_resource_len(dev, 1); } else { denali->platform = INTEL_MRST; csr_base = pci_resource_start(dev, 0); csr_len = pci_resource_start(dev, 0); mem_base = pci_resource_start(dev, 1); mem_len = pci_resource_len(dev, 1); if (!mem_len) { mem_base = csr_base + csr_len; mem_len = csr_len; nand_dbg_print(NAND_DBG_WARN, "Spectra: No second" " BAR for PCI device;" " assuming %08Lx\n", (uint64_t)csr_base); } } /* Is 32-bit DMA supported? */ ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32)); if (ret) { printk(KERN_ERR "Spectra: no usable DMA configuration\n"); goto failed_enable; } denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) { printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); goto failed_enable; } pci_set_master(dev); denali->dev = dev; ret = pci_request_regions(dev, DENALI_NAND_NAME); if (ret) { printk(KERN_ERR "Spectra: Unable to request memory regions\n"); goto failed_req_csr; } denali->flash_reg = ioremap_nocache(csr_base, csr_len); if (!denali->flash_reg) { printk(KERN_ERR "Spectra: Unable to remap memory region\n"); ret = -ENOMEM; goto failed_remap_csr; } nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n", (uint64_t)csr_base, denali->flash_reg, csr_len); denali->flash_mem = ioremap_nocache(mem_base, mem_len); if (!denali->flash_mem) { printk(KERN_ERR "Spectra: ioremap_nocache failed!"); iounmap(denali->flash_reg); ret = -ENOMEM; goto failed_remap_csr; } nand_dbg_print(NAND_DBG_WARN, "Spectra: Remapped flash base address: " "0x%p, len: %ld\n", denali->flash_mem, csr_len); denali_hw_init(denali); denali_drv_init(denali); nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq); if (request_irq(dev->irq, denali_isr, IRQF_SHARED, DENALI_NAND_NAME, denali)) { printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); ret = -ENODEV; goto failed_request_irq; } /* now that our ISR is registered, we can enable interrupts */ NAND_LLD_Enable_Disable_Interrupts(denali, true); pci_set_drvdata(dev, denali); NAND_Read_Device_ID(denali); /* MTD supported page sizes vary by kernel. We validate our * kernel supports the device here. */ if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) { ret = -ENODEV; printk(KERN_ERR "Spectra: device size not supported by this " "version of MTD."); goto failed_nand; } nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" "acc_clks: %d, re_2_we: %d, we_2_re: %d," "addr_2_data: %d, rdwr_en_lo_cnt: %d, " "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", ioread32(denali->flash_reg + ACC_CLKS), ioread32(denali->flash_reg + RE_2_WE), ioread32(denali->flash_reg + WE_2_RE), ioread32(denali->flash_reg + ADDR_2_DATA), ioread32(denali->flash_reg + RDWR_EN_LO_CNT), ioread32(denali->flash_reg + RDWR_EN_HI_CNT), ioread32(denali->flash_reg + CS_SETUP_CNT)); denali->mtd.name = "Denali NAND"; denali->mtd.owner = THIS_MODULE; denali->mtd.priv = &denali->nand; /* register the driver with the NAND core subsystem */ denali->nand.select_chip = denali_select_chip; denali->nand.cmdfunc = denali_cmdfunc; denali->nand.read_byte = denali_read_byte; denali->nand.waitfunc = denali_waitfunc; /* scan for NAND devices attached to the controller * this is the first stage in a two step process to register * with the nand subsystem */ if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) { ret = -ENXIO; goto failed_nand; } /* second stage of the NAND scan * this stage requires information regarding ECC and * bad block management. */ /* Bad block management */ denali->nand.bbt_td = &bbt_main_descr; denali->nand.bbt_md = &bbt_mirror_descr; /* skip the scan for now until we have OOB read and write support */ denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; if (denali->dev_info.MLCDevice) { denali->nand.ecc.layout = &nand_oob_mlc_14bit; denali->nand.ecc.bytes = ECC_BYTES_MLC; } else {/* SLC */ denali->nand.ecc.layout = &nand_oob_slc; denali->nand.ecc.bytes = ECC_BYTES_SLC; } /* These functions are required by the NAND core framework, otherwise, * the NAND core will assert. However, we don't need them, so we'll stub * them out. */ denali->nand.ecc.calculate = denali_ecc_calculate; denali->nand.ecc.correct = denali_ecc_correct; denali->nand.ecc.hwctl = denali_ecc_hwctl; /* override the default read operations */ denali->nand.ecc.size = denali->mtd.writesize; denali->nand.ecc.read_page = denali_read_page; denali->nand.ecc.read_page_raw = denali_read_page_raw; denali->nand.ecc.write_page = denali_write_page; denali->nand.ecc.write_page_raw = denali_write_page_raw; denali->nand.ecc.read_oob = denali_read_oob; denali->nand.ecc.write_oob = denali_write_oob; denali->nand.erase_cmd = denali_erase; if (nand_scan_tail(&denali->mtd)) { ret = -ENXIO; goto failed_nand; } ret = add_mtd_device(&denali->mtd); if (ret) { printk(KERN_ERR "Spectra: Failed to register" " MTD device: %d\n", ret); goto failed_nand; } return 0; failed_nand: denali_irq_cleanup(dev->irq, denali); failed_request_irq: iounmap(denali->flash_reg); iounmap(denali->flash_mem); failed_remap_csr: pci_release_regions(dev); failed_req_csr: pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, PCI_DMA_BIDIRECTIONAL); failed_enable: kfree(denali); return ret; } /* driver exit point */ static void denali_pci_remove(struct pci_dev *dev) { struct denali_nand_info *denali = pci_get_drvdata(dev); nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n", __FILE__, __LINE__, __func__); nand_release(&denali->mtd); del_mtd_device(&denali->mtd); denali_irq_cleanup(dev->irq, denali); iounmap(denali->flash_reg); iounmap(denali->flash_mem); pci_release_regions(dev); pci_disable_device(dev); pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, PCI_DMA_BIDIRECTIONAL); pci_set_drvdata(dev, NULL); kfree(denali); } MODULE_DEVICE_TABLE(pci, denali_pci_ids); static struct pci_driver denali_pci_driver = { .name = DENALI_NAND_NAME, .id_table = denali_pci_ids, .probe = denali_pci_probe, .remove = denali_pci_remove, }; static int __devinit denali_init(void) { printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__); return pci_register_driver(&denali_pci_driver); } /* Free memory */ static void __devexit denali_exit(void) { pci_unregister_driver(&denali_pci_driver); } module_init(denali_init); module_exit(denali_exit);