// SPDX-License-Identifier: GPL-2.0 #ifndef __KVM_X86_MMU_TDP_MMU_H #define __KVM_X86_MMU_TDP_MMU_H #include hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu); __must_check static inline bool kvm_tdp_mmu_get_root(struct kvm_mmu_page *root) { return refcount_inc_not_zero(&root->tdp_mmu_root_count); } void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, bool shared); bool __kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, bool can_yield, bool flush); static inline bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, bool flush) { return __kvm_tdp_mmu_zap_gfn_range(kvm, as_id, start, end, true, flush); } static inline bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) { gfn_t end = sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level + 1); /* * Don't allow yielding, as the caller may have a flush pending. Note, * if mmu_lock is held for write, zapping will never yield in this case, * but explicitly disallow it for safety. The TDP MMU does not yield * until it has made forward progress (steps sideways), and when zapping * a single shadow page that it's guaranteed to see (thus the mmu_lock * requirement), its "step sideways" will always step beyond the bounds * of the shadow page's gfn range and stop iterating before yielding. */ lockdep_assert_held_write(&kvm->mmu_lock); return __kvm_tdp_mmu_zap_gfn_range(kvm, kvm_mmu_page_as_id(sp), sp->gfn, end, false, false); } void kvm_tdp_mmu_zap_all(struct kvm *kvm); void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm); void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm); int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, bool flush); bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, const struct kvm_memory_slot *slot, int min_level); bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, const struct kvm_memory_slot *slot); void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn, unsigned long mask, bool wrprot); void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *slot); bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn, int min_level); void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, gfn_t start, gfn_t end, int target_level); static inline void kvm_tdp_mmu_walk_lockless_begin(void) { rcu_read_lock(); } static inline void kvm_tdp_mmu_walk_lockless_end(void) { rcu_read_unlock(); } int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level); u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr, u64 *spte); #ifdef CONFIG_X86_64 bool kvm_mmu_init_tdp_mmu(struct kvm *kvm); void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm); static inline bool is_tdp_mmu_page(struct kvm_mmu_page *sp) { return sp->tdp_mmu_page; } static inline bool is_tdp_mmu(struct kvm_mmu *mmu) { struct kvm_mmu_page *sp; hpa_t hpa = mmu->root_hpa; if (WARN_ON(!VALID_PAGE(hpa))) return false; /* * A NULL shadow page is legal when shadowing a non-paging guest with * PAE paging, as the MMU will be direct with root_hpa pointing at the * pae_root page, not a shadow page. */ sp = to_shadow_page(hpa); return sp && is_tdp_mmu_page(sp) && sp->root_count; } #else static inline bool kvm_mmu_init_tdp_mmu(struct kvm *kvm) { return false; } static inline void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) {} static inline bool is_tdp_mmu_page(struct kvm_mmu_page *sp) { return false; } static inline bool is_tdp_mmu(struct kvm_mmu *mmu) { return false; } #endif #endif /* __KVM_X86_MMU_TDP_MMU_H */