// SPDX-License-Identifier: GPL-2.0 /* * Hyper-V specific APIC code. * * Copyright (C) 2018, Microsoft, Inc. * * Author : K. Y. Srinivasan <kys@microsoft.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * */ #include <linux/types.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/clockchips.h> #include <linux/hyperv.h> #include <linux/slab.h> #include <linux/cpuhotplug.h> #include <asm/hypervisor.h> #include <asm/mshyperv.h> #include <asm/apic.h> #include <asm/trace/hyperv.h> static struct apic orig_apic; static u64 hv_apic_icr_read(void) { u64 reg_val; rdmsrl(HV_X64_MSR_ICR, reg_val); return reg_val; } static void hv_apic_icr_write(u32 low, u32 id) { u64 reg_val; reg_val = SET_APIC_DEST_FIELD(id); reg_val = reg_val << 32; reg_val |= low; wrmsrl(HV_X64_MSR_ICR, reg_val); } static u32 hv_apic_read(u32 reg) { u32 reg_val, hi; switch (reg) { case APIC_EOI: rdmsr(HV_X64_MSR_EOI, reg_val, hi); return reg_val; case APIC_TASKPRI: rdmsr(HV_X64_MSR_TPR, reg_val, hi); return reg_val; default: return native_apic_mem_read(reg); } } static void hv_apic_write(u32 reg, u32 val) { switch (reg) { case APIC_EOI: wrmsr(HV_X64_MSR_EOI, val, 0); break; case APIC_TASKPRI: wrmsr(HV_X64_MSR_TPR, val, 0); break; default: native_apic_mem_write(reg, val); } } static void hv_apic_eoi_write(u32 reg, u32 val) { wrmsr(HV_X64_MSR_EOI, val, 0); } /* * IPI implementation on Hyper-V. */ static bool __send_ipi_mask_ex(const struct cpumask *mask, int vector) { struct hv_send_ipi_ex **arg; struct hv_send_ipi_ex *ipi_arg; unsigned long flags; int nr_bank = 0; int ret = 1; if (!(ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) return false; local_irq_save(flags); arg = (struct hv_send_ipi_ex **)this_cpu_ptr(hyperv_pcpu_input_arg); ipi_arg = *arg; if (unlikely(!ipi_arg)) goto ipi_mask_ex_done; ipi_arg->vector = vector; ipi_arg->reserved = 0; ipi_arg->vp_set.valid_bank_mask = 0; if (!cpumask_equal(mask, cpu_present_mask)) { ipi_arg->vp_set.format = HV_GENERIC_SET_SPARSE_4K; nr_bank = cpumask_to_vpset(&(ipi_arg->vp_set), mask); } if (nr_bank < 0) goto ipi_mask_ex_done; if (!nr_bank) ipi_arg->vp_set.format = HV_GENERIC_SET_ALL; ret = hv_do_rep_hypercall(HVCALL_SEND_IPI_EX, 0, nr_bank, ipi_arg, NULL); ipi_mask_ex_done: local_irq_restore(flags); return ((ret == 0) ? true : false); } static bool __send_ipi_mask(const struct cpumask *mask, int vector) { int cur_cpu, vcpu; struct hv_send_ipi ipi_arg; int ret = 1; trace_hyperv_send_ipi_mask(mask, vector); if (cpumask_empty(mask)) return true; if (!hv_hypercall_pg) return false; if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR)) return false; /* * From the supplied CPU set we need to figure out if we can get away * with cheaper HVCALL_SEND_IPI hypercall. This is possible when the * highest VP number in the set is < 64. As VP numbers are usually in * ascending order and match Linux CPU ids, here is an optimization: * we check the VP number for the highest bit in the supplied set first * so we can quickly find out if using HVCALL_SEND_IPI_EX hypercall is * a must. We will also check all VP numbers when walking the supplied * CPU set to remain correct in all cases. */ if (hv_cpu_number_to_vp_number(cpumask_last(mask)) >= 64) goto do_ex_hypercall; ipi_arg.vector = vector; ipi_arg.cpu_mask = 0; for_each_cpu(cur_cpu, mask) { vcpu = hv_cpu_number_to_vp_number(cur_cpu); if (vcpu == VP_INVAL) return false; /* * This particular version of the IPI hypercall can * only target upto 64 CPUs. */ if (vcpu >= 64) goto do_ex_hypercall; __set_bit(vcpu, (unsigned long *)&ipi_arg.cpu_mask); } ret = hv_do_fast_hypercall16(HVCALL_SEND_IPI, ipi_arg.vector, ipi_arg.cpu_mask); return ((ret == 0) ? true : false); do_ex_hypercall: return __send_ipi_mask_ex(mask, vector); } static bool __send_ipi_one(int cpu, int vector) { struct cpumask mask = CPU_MASK_NONE; cpumask_set_cpu(cpu, &mask); return __send_ipi_mask(&mask, vector); } static void hv_send_ipi(int cpu, int vector) { if (!__send_ipi_one(cpu, vector)) orig_apic.send_IPI(cpu, vector); } static void hv_send_ipi_mask(const struct cpumask *mask, int vector) { if (!__send_ipi_mask(mask, vector)) orig_apic.send_IPI_mask(mask, vector); } static void hv_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) { unsigned int this_cpu = smp_processor_id(); struct cpumask new_mask; const struct cpumask *local_mask; cpumask_copy(&new_mask, mask); cpumask_clear_cpu(this_cpu, &new_mask); local_mask = &new_mask; if (!__send_ipi_mask(local_mask, vector)) orig_apic.send_IPI_mask_allbutself(mask, vector); } static void hv_send_ipi_allbutself(int vector) { hv_send_ipi_mask_allbutself(cpu_online_mask, vector); } static void hv_send_ipi_all(int vector) { if (!__send_ipi_mask(cpu_online_mask, vector)) orig_apic.send_IPI_all(vector); } static void hv_send_ipi_self(int vector) { if (!__send_ipi_one(smp_processor_id(), vector)) orig_apic.send_IPI_self(vector); } void __init hv_apic_init(void) { if (ms_hyperv.hints & HV_X64_CLUSTER_IPI_RECOMMENDED) { pr_info("Hyper-V: Using IPI hypercalls\n"); /* * Set the IPI entry points. */ orig_apic = *apic; apic->send_IPI = hv_send_ipi; apic->send_IPI_mask = hv_send_ipi_mask; apic->send_IPI_mask_allbutself = hv_send_ipi_mask_allbutself; apic->send_IPI_allbutself = hv_send_ipi_allbutself; apic->send_IPI_all = hv_send_ipi_all; apic->send_IPI_self = hv_send_ipi_self; } if (ms_hyperv.hints & HV_X64_APIC_ACCESS_RECOMMENDED) { pr_info("Hyper-V: Using MSR based APIC access\n"); apic_set_eoi_write(hv_apic_eoi_write); apic->read = hv_apic_read; apic->write = hv_apic_write; apic->icr_write = hv_apic_icr_write; apic->icr_read = hv_apic_icr_read; } }