/* * Copyright (C) 2014 Red Hat * Copyright (C) 2014 Intel Corp. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Rob Clark * Daniel Vetter */ #include #include #include #include #include #include /** * DOC: overview * * This helper library provides implementations of check and commit functions on * top of the CRTC modeset helper callbacks and the plane helper callbacks. It * also provides convenience implementations for the atomic state handling * callbacks for drivers which don't need to subclass the drm core structures to * add their own additional internal state. * * This library also provides default implementations for the check callback in * drm_atomic_helper_check and for the commit callback with * drm_atomic_helper_commit. But the individual stages and callbacks are expose * to allow drivers to mix and match and e.g. use the plane helpers only * together with a driver private modeset implementation. * * This library also provides implementations for all the legacy driver * interfaces on top of the atomic interface. See drm_atomic_helper_set_config, * drm_atomic_helper_disable_plane, drm_atomic_helper_disable_plane and the * various functions to implement set_property callbacks. New drivers must not * implement these functions themselves but must use the provided helpers. */ static void drm_atomic_helper_plane_changed(struct drm_atomic_state *state, struct drm_plane_state *plane_state, struct drm_plane *plane) { struct drm_crtc_state *crtc_state; if (plane->state->crtc) { crtc_state = state->crtc_states[drm_crtc_index(plane->crtc)]; if (WARN_ON(!crtc_state)) return; crtc_state->planes_changed = true; } if (plane_state->crtc) { crtc_state = state->crtc_states[drm_crtc_index(plane_state->crtc)]; if (WARN_ON(!crtc_state)) return; crtc_state->planes_changed = true; } } static struct drm_crtc * get_current_crtc_for_encoder(struct drm_device *dev, struct drm_encoder *encoder) { struct drm_mode_config *config = &dev->mode_config; struct drm_connector *connector; WARN_ON(!drm_modeset_is_locked(&config->connection_mutex)); list_for_each_entry(connector, &config->connector_list, head) { if (connector->state->best_encoder != encoder) continue; return connector->state->crtc; } return NULL; } static int steal_encoder(struct drm_atomic_state *state, struct drm_encoder *encoder, struct drm_crtc *encoder_crtc) { struct drm_mode_config *config = &state->dev->mode_config; struct drm_crtc_state *crtc_state; struct drm_connector *connector; struct drm_connector_state *connector_state; int ret; /* * We can only steal an encoder coming from a connector, which means we * must already hold the connection_mutex. */ WARN_ON(!drm_modeset_is_locked(&config->connection_mutex)); DRM_DEBUG_KMS("[ENCODER:%d:%s] in use on [CRTC:%d], stealing it\n", encoder->base.id, encoder->name, encoder_crtc->base.id); crtc_state = drm_atomic_get_crtc_state(state, encoder_crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); crtc_state->mode_changed = true; list_for_each_entry(connector, &config->connector_list, head) { if (connector->state->best_encoder != encoder) continue; DRM_DEBUG_KMS("Stealing encoder from [CONNECTOR:%d:%s]\n", connector->base.id, connector->name); connector_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(connector_state)) return PTR_ERR(connector_state); ret = drm_atomic_set_crtc_for_connector(connector_state, NULL); if (ret) return ret; connector_state->best_encoder = NULL; } return 0; } static int update_connector_routing(struct drm_atomic_state *state, int conn_idx) { struct drm_connector_helper_funcs *funcs; struct drm_encoder *new_encoder; struct drm_crtc *encoder_crtc; struct drm_connector *connector; struct drm_connector_state *connector_state; struct drm_crtc_state *crtc_state; int idx, ret; connector = state->connectors[conn_idx]; connector_state = state->connector_states[conn_idx]; if (!connector) return 0; DRM_DEBUG_KMS("Updating routing for [CONNECTOR:%d:%s]\n", connector->base.id, connector->name); if (connector->state->crtc != connector_state->crtc) { if (connector->state->crtc) { idx = drm_crtc_index(connector->state->crtc); crtc_state = state->crtc_states[idx]; crtc_state->mode_changed = true; } if (connector_state->crtc) { idx = drm_crtc_index(connector_state->crtc); crtc_state = state->crtc_states[idx]; crtc_state->mode_changed = true; } } if (!connector_state->crtc) { DRM_DEBUG_KMS("Disabling [CONNECTOR:%d:%s]\n", connector->base.id, connector->name); connector_state->best_encoder = NULL; return 0; } funcs = connector->helper_private; new_encoder = funcs->best_encoder(connector); if (!new_encoder) { DRM_DEBUG_KMS("No suitable encoder found for [CONNECTOR:%d:%s]\n", connector->base.id, connector->name); return -EINVAL; } if (new_encoder == connector_state->best_encoder) { DRM_DEBUG_KMS("[CONNECTOR:%d:%s] keeps [ENCODER:%d:%s], now on [CRTC:%d]\n", connector->base.id, connector->name, new_encoder->base.id, new_encoder->name, connector_state->crtc->base.id); return 0; } encoder_crtc = get_current_crtc_for_encoder(state->dev, new_encoder); if (encoder_crtc) { ret = steal_encoder(state, new_encoder, encoder_crtc); if (ret) { DRM_DEBUG_KMS("Encoder stealing failed for [CONNECTOR:%d:%s]\n", connector->base.id, connector->name); return ret; } } connector_state->best_encoder = new_encoder; idx = drm_crtc_index(connector_state->crtc); crtc_state = state->crtc_states[idx]; crtc_state->mode_changed = true; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] using [ENCODER:%d:%s] on [CRTC:%d]\n", connector->base.id, connector->name, new_encoder->base.id, new_encoder->name, connector_state->crtc->base.id); return 0; } static int mode_fixup(struct drm_atomic_state *state) { int ncrtcs = state->dev->mode_config.num_crtc; struct drm_crtc_state *crtc_state; struct drm_connector_state *conn_state; int i; bool ret; for (i = 0; i < ncrtcs; i++) { crtc_state = state->crtc_states[i]; if (!crtc_state || !crtc_state->mode_changed) continue; drm_mode_copy(&crtc_state->adjusted_mode, &crtc_state->mode); } for (i = 0; i < state->num_connector; i++) { struct drm_encoder_helper_funcs *funcs; struct drm_encoder *encoder; conn_state = state->connector_states[i]; if (!conn_state) continue; WARN_ON(!!conn_state->best_encoder != !!conn_state->crtc); if (!conn_state->crtc || !conn_state->best_encoder) continue; crtc_state = state->crtc_states[drm_crtc_index(conn_state->crtc)]; /* * Each encoder has at most one connector (since we always steal * it away), so we won't call ->mode_fixup twice. */ encoder = conn_state->best_encoder; funcs = encoder->helper_private; if (encoder->bridge && encoder->bridge->funcs->mode_fixup) { ret = encoder->bridge->funcs->mode_fixup( encoder->bridge, &crtc_state->mode, &crtc_state->adjusted_mode); if (!ret) { DRM_DEBUG_KMS("Bridge fixup failed\n"); return -EINVAL; } } ret = funcs->mode_fixup(encoder, &crtc_state->mode, &crtc_state->adjusted_mode); if (!ret) { DRM_DEBUG_KMS("[ENCODER:%d:%s] fixup failed\n", encoder->base.id, encoder->name); return -EINVAL; } } for (i = 0; i < ncrtcs; i++) { struct drm_crtc_helper_funcs *funcs; struct drm_crtc *crtc; crtc_state = state->crtc_states[i]; crtc = state->crtcs[i]; if (!crtc_state || !crtc_state->mode_changed) continue; funcs = crtc->helper_private; ret = funcs->mode_fixup(crtc, &crtc_state->mode, &crtc_state->adjusted_mode); if (!ret) { DRM_DEBUG_KMS("[CRTC:%d] fixup failed\n", crtc->base.id); return -EINVAL; } } return 0; } static int drm_atomic_helper_check_modeset(struct drm_device *dev, struct drm_atomic_state *state) { int ncrtcs = dev->mode_config.num_crtc; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; int i, ret; for (i = 0; i < ncrtcs; i++) { crtc = state->crtcs[i]; crtc_state = state->crtc_states[i]; if (!crtc) continue; if (!drm_mode_equal(&crtc->state->mode, &crtc_state->mode)) { DRM_DEBUG_KMS("[CRTC:%d] mode changed\n", crtc->base.id); crtc_state->mode_changed = true; } if (crtc->state->enable != crtc_state->enable) { DRM_DEBUG_KMS("[CRTC:%d] enable changed\n", crtc->base.id); crtc_state->mode_changed = true; } } for (i = 0; i < state->num_connector; i++) { /* * This only sets crtc->mode_changed for routing changes, * drivers must set crtc->mode_changed themselves when connector * properties need to be updated. */ ret = update_connector_routing(state, i); if (ret) return ret; } /* * After all the routing has been prepared we need to add in any * connector which is itself unchanged, but who's crtc changes it's * configuration. This must be done before calling mode_fixup in case a * crtc only changed its mode but has the same set of connectors. */ for (i = 0; i < ncrtcs; i++) { int num_connectors; crtc = state->crtcs[i]; crtc_state = state->crtc_states[i]; if (!crtc || !crtc_state->mode_changed) continue; DRM_DEBUG_KMS("[CRTC:%d] needs full modeset, enable: %c\n", crtc->base.id, crtc_state->enable ? 'y' : 'n'); ret = drm_atomic_add_affected_connectors(state, crtc); if (ret != 0) return ret; num_connectors = drm_atomic_connectors_for_crtc(state, crtc); if (crtc_state->enable != !!num_connectors) { DRM_DEBUG_KMS("[CRTC:%d] enabled/connectors mismatch\n", crtc->base.id); return -EINVAL; } } return mode_fixup(state); } /** * drm_atomic_helper_check - validate state object * @dev: DRM device * @state: the driver state object * * Check the state object to see if the requested state is physically possible. * Only crtcs and planes have check callbacks, so for any additional (global) * checking that a driver needs it can simply wrap that around this function. * Drivers without such needs can directly use this as their ->atomic_check() * callback. * * RETURNS * Zero for success or -errno */ int drm_atomic_helper_check(struct drm_device *dev, struct drm_atomic_state *state) { int nplanes = dev->mode_config.num_total_plane; int ncrtcs = dev->mode_config.num_crtc; int i, ret = 0; for (i = 0; i < nplanes; i++) { struct drm_plane_helper_funcs *funcs; struct drm_plane *plane = state->planes[i]; struct drm_plane_state *plane_state = state->plane_states[i]; if (!plane) continue; funcs = plane->helper_private; drm_atomic_helper_plane_changed(state, plane_state, plane); if (!funcs || !funcs->atomic_check) continue; ret = funcs->atomic_check(plane, plane_state); if (ret) { DRM_DEBUG_KMS("[PLANE:%d] atomic check failed\n", plane->base.id); return ret; } } for (i = 0; i < ncrtcs; i++) { struct drm_crtc_helper_funcs *funcs; struct drm_crtc *crtc = state->crtcs[i]; if (!crtc) continue; funcs = crtc->helper_private; if (!funcs || !funcs->atomic_check) continue; ret = funcs->atomic_check(crtc, state->crtc_states[i]); if (ret) { DRM_DEBUG_KMS("[CRTC:%d] atomic check failed\n", crtc->base.id); return ret; } } ret = drm_atomic_helper_check_modeset(dev, state); if (ret) return ret; return ret; } EXPORT_SYMBOL(drm_atomic_helper_check); static void disable_outputs(struct drm_device *dev, struct drm_atomic_state *old_state) { int ncrtcs = old_state->dev->mode_config.num_crtc; int i; for (i = 0; i < old_state->num_connector; i++) { struct drm_connector_state *old_conn_state; struct drm_connector *connector; struct drm_encoder_helper_funcs *funcs; struct drm_encoder *encoder; old_conn_state = old_state->connector_states[i]; connector = old_state->connectors[i]; /* Shut down everything that's in the changeset and currently * still on. So need to check the old, saved state. */ if (!old_conn_state || !old_conn_state->crtc) continue; encoder = old_conn_state->best_encoder; /* We shouldn't get this far if we didn't previously have * an encoder.. but WARN_ON() rather than explode. */ if (WARN_ON(!encoder)) continue; funcs = encoder->helper_private; /* * Each encoder has at most one connector (since we always steal * it away), so we won't call call disable hooks twice. */ if (encoder->bridge) encoder->bridge->funcs->disable(encoder->bridge); /* Right function depends upon target state. */ if (connector->state->crtc) funcs->prepare(encoder); else if (funcs->disable) funcs->disable(encoder); else funcs->dpms(encoder, DRM_MODE_DPMS_OFF); if (encoder->bridge) encoder->bridge->funcs->post_disable(encoder->bridge); } for (i = 0; i < ncrtcs; i++) { struct drm_crtc_helper_funcs *funcs; struct drm_crtc *crtc; crtc = old_state->crtcs[i]; /* Shut down everything that needs a full modeset. */ if (!crtc || !crtc->state->mode_changed) continue; funcs = crtc->helper_private; /* Right function depends upon target state. */ if (crtc->state->enable) funcs->prepare(crtc); else if (funcs->disable) funcs->disable(crtc); else funcs->dpms(crtc, DRM_MODE_DPMS_OFF); } } static void set_routing_links(struct drm_device *dev, struct drm_atomic_state *old_state) { int ncrtcs = old_state->dev->mode_config.num_crtc; int i; /* clear out existing links */ for (i = 0; i < old_state->num_connector; i++) { struct drm_connector *connector; connector = old_state->connectors[i]; if (!connector || !connector->encoder) continue; WARN_ON(!connector->encoder->crtc); connector->encoder->crtc = NULL; connector->encoder = NULL; } /* set new links */ for (i = 0; i < old_state->num_connector; i++) { struct drm_connector *connector; connector = old_state->connectors[i]; if (!connector || !connector->state->crtc) continue; if (WARN_ON(!connector->state->best_encoder)) continue; connector->encoder = connector->state->best_encoder; connector->encoder->crtc = connector->state->crtc; } /* set legacy state in the crtc structure */ for (i = 0; i < ncrtcs; i++) { struct drm_crtc *crtc; crtc = old_state->crtcs[i]; if (!crtc) continue; crtc->mode = crtc->state->mode; crtc->enabled = crtc->state->enable; crtc->x = crtc->primary->state->src_x >> 16; crtc->y = crtc->primary->state->src_y >> 16; } } static void crtc_set_mode(struct drm_device *dev, struct drm_atomic_state *old_state) { int ncrtcs = old_state->dev->mode_config.num_crtc; int i; for (i = 0; i < ncrtcs; i++) { struct drm_crtc_helper_funcs *funcs; struct drm_crtc *crtc; crtc = old_state->crtcs[i]; if (!crtc || !crtc->state->mode_changed) continue; funcs = crtc->helper_private; if (crtc->state->enable) funcs->mode_set_nofb(crtc); } for (i = 0; i < old_state->num_connector; i++) { struct drm_connector *connector; struct drm_crtc_state *new_crtc_state; struct drm_encoder_helper_funcs *funcs; struct drm_encoder *encoder; struct drm_display_mode *mode, *adjusted_mode; connector = old_state->connectors[i]; if (!connector || !connector->state->best_encoder) continue; encoder = connector->state->best_encoder; funcs = encoder->helper_private; new_crtc_state = connector->state->crtc->state; mode = &new_crtc_state->mode; adjusted_mode = &new_crtc_state->adjusted_mode; /* * Each encoder has at most one connector (since we always steal * it away), so we won't call call mode_set hooks twice. */ funcs->mode_set(encoder, mode, adjusted_mode); if (encoder->bridge && encoder->bridge->funcs->mode_set) encoder->bridge->funcs->mode_set(encoder->bridge, mode, adjusted_mode); } } /** * drm_atomic_helper_commit_pre_planes - modeset commit before plane updates * @dev: DRM device * @state: atomic state * * This function commits the modeset changes that need to be committed before * updating planes. It shuts down all the outputs that need to be shut down and * prepares them (if required) with the new mode. */ void drm_atomic_helper_commit_pre_planes(struct drm_device *dev, struct drm_atomic_state *state) { disable_outputs(dev, state); set_routing_links(dev, state); crtc_set_mode(dev, state); } EXPORT_SYMBOL(drm_atomic_helper_commit_pre_planes); /** * drm_atomic_helper_commit_post_planes - modeset commit after plane updates * @dev: DRM device * @old_state: atomic state object with old state structures * * This function commits the modeset changes that need to be committed after * updating planes: It enables all the outputs with the new configuration which * had to be turned off for the update. */ void drm_atomic_helper_commit_post_planes(struct drm_device *dev, struct drm_atomic_state *old_state) { int ncrtcs = old_state->dev->mode_config.num_crtc; int i; for (i = 0; i < ncrtcs; i++) { struct drm_crtc_helper_funcs *funcs; struct drm_crtc *crtc; crtc = old_state->crtcs[i]; /* Need to filter out CRTCs where only planes change. */ if (!crtc || !crtc->state->mode_changed) continue; funcs = crtc->helper_private; if (crtc->state->enable) funcs->commit(crtc); } for (i = 0; i < old_state->num_connector; i++) { struct drm_connector *connector; struct drm_encoder_helper_funcs *funcs; struct drm_encoder *encoder; connector = old_state->connectors[i]; if (!connector || !connector->state->best_encoder) continue; encoder = connector->state->best_encoder; funcs = encoder->helper_private; /* * Each encoder has at most one connector (since we always steal * it away), so we won't call call enable hooks twice. */ if (encoder->bridge) encoder->bridge->funcs->pre_enable(encoder->bridge); funcs->commit(encoder); if (encoder->bridge) encoder->bridge->funcs->enable(encoder->bridge); } } EXPORT_SYMBOL(drm_atomic_helper_commit_post_planes); static void wait_for_fences(struct drm_device *dev, struct drm_atomic_state *state) { int nplanes = dev->mode_config.num_total_plane; int i; for (i = 0; i < nplanes; i++) { struct drm_plane *plane = state->planes[i]; if (!plane || !plane->state->fence) continue; WARN_ON(!plane->state->fb); fence_wait(plane->state->fence, false); fence_put(plane->state->fence); plane->state->fence = NULL; } } static bool framebuffer_changed(struct drm_device *dev, struct drm_atomic_state *old_state, struct drm_crtc *crtc) { struct drm_plane *plane; struct drm_plane_state *old_plane_state; int nplanes = old_state->dev->mode_config.num_total_plane; int i; for (i = 0; i < nplanes; i++) { plane = old_state->planes[i]; old_plane_state = old_state->plane_states[i]; if (!plane) continue; if (plane->state->crtc != crtc && old_plane_state->crtc != crtc) continue; if (plane->state->fb != old_plane_state->fb) return true; } return false; } /** * drm_atomic_helper_wait_for_vblanks - wait for vblank on crtcs * @dev: DRM device * @old_state: atomic state object with old state structures * * Helper to, after atomic commit, wait for vblanks on all effected * crtcs (ie. before cleaning up old framebuffers using * drm_atomic_helper_cleanup_planes()). It will only wait on crtcs where the * framebuffers have actually changed to optimize for the legacy cursor and * plane update use-case. */ void drm_atomic_helper_wait_for_vblanks(struct drm_device *dev, struct drm_atomic_state *old_state) { struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state; int ncrtcs = old_state->dev->mode_config.num_crtc; int i, ret; for (i = 0; i < ncrtcs; i++) { crtc = old_state->crtcs[i]; old_crtc_state = old_state->crtc_states[i]; if (!crtc) continue; /* No one cares about the old state, so abuse it for tracking * and store whether we hold a vblank reference (and should do a * vblank wait) in the ->enable boolean. */ old_crtc_state->enable = false; if (!crtc->state->enable) continue; if (!framebuffer_changed(dev, old_state, crtc)) continue; ret = drm_crtc_vblank_get(crtc); if (ret != 0) continue; old_crtc_state->enable = true; old_crtc_state->last_vblank_count = drm_vblank_count(dev, i); } for (i = 0; i < ncrtcs; i++) { crtc = old_state->crtcs[i]; old_crtc_state = old_state->crtc_states[i]; if (!crtc || !old_crtc_state->enable) continue; ret = wait_event_timeout(dev->vblank[i].queue, old_crtc_state->last_vblank_count != drm_vblank_count(dev, i), msecs_to_jiffies(50)); drm_crtc_vblank_put(crtc); } } EXPORT_SYMBOL(drm_atomic_helper_wait_for_vblanks); /** * drm_atomic_helper_commit - commit validated state object * @dev: DRM device * @state: the driver state object * @async: asynchronous commit * * This function commits a with drm_atomic_helper_check() pre-validated state * object. This can still fail when e.g. the framebuffer reservation fails. For * now this doesn't implement asynchronous commits. * * RETURNS * Zero for success or -errno. */ int drm_atomic_helper_commit(struct drm_device *dev, struct drm_atomic_state *state, bool async) { int ret; if (async) return -EBUSY; ret = drm_atomic_helper_prepare_planes(dev, state); if (ret) return ret; /* * This is the point of no return - everything below never fails except * when the hw goes bonghits. Which means we can commit the new state on * the software side now. */ drm_atomic_helper_swap_state(dev, state); /* * Everything below can be run asynchronously without the need to grab * any modeset locks at all under one conditions: It must be guaranteed * that the asynchronous work has either been cancelled (if the driver * supports it, which at least requires that the framebuffers get * cleaned up with drm_atomic_helper_cleanup_planes()) or completed * before the new state gets committed on the software side with * drm_atomic_helper_swap_state(). * * This scheme allows new atomic state updates to be prepared and * checked in parallel to the asynchronous completion of the previous * update. Which is important since compositors need to figure out the * composition of the next frame right after having submitted the * current layout. */ wait_for_fences(dev, state); drm_atomic_helper_commit_pre_planes(dev, state); drm_atomic_helper_commit_planes(dev, state); drm_atomic_helper_commit_post_planes(dev, state); drm_atomic_helper_wait_for_vblanks(dev, state); drm_atomic_helper_cleanup_planes(dev, state); drm_atomic_state_free(state); return 0; } EXPORT_SYMBOL(drm_atomic_helper_commit); /** * DOC: implementing async commit * * For now the atomic helpers don't support async commit directly. If there is * real need it could be added though, using the dma-buf fence infrastructure * for generic synchronization with outstanding rendering. * * For now drivers have to implement async commit themselves, with the following * sequence being the recommended one: * * 1. Run drm_atomic_helper_prepare_planes() first. This is the only function * which commit needs to call which can fail, so we want to run it first and * synchronously. * * 2. Synchronize with any outstanding asynchronous commit worker threads which * might be affected the new state update. This can be done by either cancelling * or flushing the work items, depending upon whether the driver can deal with * cancelled updates. Note that it is important to ensure that the framebuffer * cleanup is still done when cancelling. * * For sufficient parallelism it is recommended to have a work item per crtc * (for updates which don't touch global state) and a global one. Then we only * need to synchronize with the crtc work items for changed crtcs and the global * work item, which allows nice concurrent updates on disjoint sets of crtcs. * * 3. The software state is updated synchronously with * drm_atomic_helper_swap_state. Doing this under the protection of all modeset * locks means concurrent callers never see inconsistent state. And doing this * while it's guaranteed that no relevant async worker runs means that async * workers do not need grab any locks. Actually they must not grab locks, for * otherwise the work flushing will deadlock. * * 4. Schedule a work item to do all subsequent steps, using the split-out * commit helpers: a) pre-plane commit b) plane commit c) post-plane commit and * then cleaning up the framebuffers after the old framebuffer is no longer * being displayed. */ /** * drm_atomic_helper_prepare_planes - prepare plane resources after commit * @dev: DRM device * @state: atomic state object with old state structures * * This function prepares plane state, specifically framebuffers, for the new * configuration. If any failure is encountered this function will call * ->cleanup_fb on any already successfully prepared framebuffer. * * Returns: * 0 on success, negative error code on failure. */ int drm_atomic_helper_prepare_planes(struct drm_device *dev, struct drm_atomic_state *state) { int nplanes = dev->mode_config.num_total_plane; int ret, i; for (i = 0; i < nplanes; i++) { struct drm_plane_helper_funcs *funcs; struct drm_plane *plane = state->planes[i]; struct drm_framebuffer *fb; if (!plane) continue; funcs = plane->helper_private; fb = state->plane_states[i]->fb; if (fb && funcs->prepare_fb) { ret = funcs->prepare_fb(plane, fb); if (ret) goto fail; } } return 0; fail: for (i--; i >= 0; i--) { struct drm_plane_helper_funcs *funcs; struct drm_plane *plane = state->planes[i]; struct drm_framebuffer *fb; if (!plane) continue; funcs = plane->helper_private; fb = state->plane_states[i]->fb; if (fb && funcs->cleanup_fb) funcs->cleanup_fb(plane, fb); } return ret; } EXPORT_SYMBOL(drm_atomic_helper_prepare_planes); /** * drm_atomic_helper_commit_planes - commit plane state * @dev: DRM device * @old_state: atomic state object with old state structures * * This function commits the new plane state using the plane and atomic helper * functions for planes and crtcs. It assumes that the atomic state has already * been pushed into the relevant object state pointers, since this step can no * longer fail. * * It still requires the global state object @old_state to know which planes and * crtcs need to be updated though. */ void drm_atomic_helper_commit_planes(struct drm_device *dev, struct drm_atomic_state *old_state) { int nplanes = dev->mode_config.num_total_plane; int ncrtcs = dev->mode_config.num_crtc; int i; for (i = 0; i < ncrtcs; i++) { struct drm_crtc_helper_funcs *funcs; struct drm_crtc *crtc = old_state->crtcs[i]; if (!crtc) continue; funcs = crtc->helper_private; if (!funcs || !funcs->atomic_begin) continue; funcs->atomic_begin(crtc); } for (i = 0; i < nplanes; i++) { struct drm_plane_helper_funcs *funcs; struct drm_plane *plane = old_state->planes[i]; if (!plane) continue; funcs = plane->helper_private; if (!funcs || !funcs->atomic_update) continue; funcs->atomic_update(plane); } for (i = 0; i < ncrtcs; i++) { struct drm_crtc_helper_funcs *funcs; struct drm_crtc *crtc = old_state->crtcs[i]; if (!crtc) continue; funcs = crtc->helper_private; if (!funcs || !funcs->atomic_flush) continue; funcs->atomic_flush(crtc); } } EXPORT_SYMBOL(drm_atomic_helper_commit_planes); /** * drm_atomic_helper_cleanup_planes - cleanup plane resources after commit * @dev: DRM device * @old_state: atomic state object with old state structures * * This function cleans up plane state, specifically framebuffers, from the old * configuration. Hence the old configuration must be perserved in @old_state to * be able to call this function. * * This function must also be called on the new state when the atomic update * fails at any point after calling drm_atomic_helper_prepare_planes(). */ void drm_atomic_helper_cleanup_planes(struct drm_device *dev, struct drm_atomic_state *old_state) { int nplanes = dev->mode_config.num_total_plane; int i; for (i = 0; i < nplanes; i++) { struct drm_plane_helper_funcs *funcs; struct drm_plane *plane = old_state->planes[i]; struct drm_framebuffer *old_fb; if (!plane) continue; funcs = plane->helper_private; old_fb = old_state->plane_states[i]->fb; if (old_fb && funcs->cleanup_fb) funcs->cleanup_fb(plane, old_fb); } } EXPORT_SYMBOL(drm_atomic_helper_cleanup_planes); /** * drm_atomic_helper_swap_state - store atomic state into current sw state * @dev: DRM device * @state: atomic state * * This function stores the atomic state into the current state pointers in all * driver objects. It should be called after all failing steps have been done * and succeeded, but before the actual hardware state is committed. * * For cleanup and error recovery the current state for all changed objects will * be swaped into @state. * * With that sequence it fits perfectly into the plane prepare/cleanup sequence: * * 1. Call drm_atomic_helper_prepare_planes() with the staged atomic state. * * 2. Do any other steps that might fail. * * 3. Put the staged state into the current state pointers with this function. * * 4. Actually commit the hardware state. * * 5. Call drm_atomic_helper_cleanup_planes with @state, which since step 3 * contains the old state. Also do any other cleanup required with that state. */ void drm_atomic_helper_swap_state(struct drm_device *dev, struct drm_atomic_state *state) { int i; for (i = 0; i < dev->mode_config.num_connector; i++) { struct drm_connector *connector = state->connectors[i]; if (!connector) continue; connector->state->state = state; swap(state->connector_states[i], connector->state); connector->state->state = NULL; } for (i = 0; i < dev->mode_config.num_crtc; i++) { struct drm_crtc *crtc = state->crtcs[i]; if (!crtc) continue; crtc->state->state = state; swap(state->crtc_states[i], crtc->state); crtc->state->state = NULL; } for (i = 0; i < dev->mode_config.num_total_plane; i++) { struct drm_plane *plane = state->planes[i]; if (!plane) continue; plane->state->state = state; swap(state->plane_states[i], plane->state); plane->state->state = NULL; } } EXPORT_SYMBOL(drm_atomic_helper_swap_state); /** * drm_atomic_helper_update_plane - Helper for primary plane update using atomic * @plane: plane object to update * @crtc: owning CRTC of owning plane * @fb: framebuffer to flip onto plane * @crtc_x: x offset of primary plane on crtc * @crtc_y: y offset of primary plane on crtc * @crtc_w: width of primary plane rectangle on crtc * @crtc_h: height of primary plane rectangle on crtc * @src_x: x offset of @fb for panning * @src_y: y offset of @fb for panning * @src_w: width of source rectangle in @fb * @src_h: height of source rectangle in @fb * * Provides a default plane update handler using the atomic driver interface. * * RETURNS: * Zero on success, error code on failure */ int drm_atomic_helper_update_plane(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h) { struct drm_atomic_state *state; struct drm_plane_state *plane_state; int ret = 0; state = drm_atomic_state_alloc(plane->dev); if (!state) return -ENOMEM; state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); retry: plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); goto fail; } ret = drm_atomic_set_crtc_for_plane(plane_state, crtc); if (ret != 0) goto fail; drm_atomic_set_fb_for_plane(plane_state, fb); plane_state->crtc_x = crtc_x; plane_state->crtc_y = crtc_y; plane_state->crtc_h = crtc_h; plane_state->crtc_w = crtc_w; plane_state->src_x = src_x; plane_state->src_y = src_y; plane_state->src_h = src_h; plane_state->src_w = src_w; ret = drm_atomic_commit(state); if (ret != 0) goto fail; /* Driver takes ownership of state on successful commit. */ return 0; fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_free(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); /* * Someone might have exchanged the framebuffer while we dropped locks * in the backoff code. We need to fix up the fb refcount tracking the * core does for us. */ plane->old_fb = plane->fb; goto retry; } EXPORT_SYMBOL(drm_atomic_helper_update_plane); /** * drm_atomic_helper_disable_plane - Helper for primary plane disable using * atomic * @plane: plane to disable * * Provides a default plane disable handler using the atomic driver interface. * * RETURNS: * Zero on success, error code on failure */ int drm_atomic_helper_disable_plane(struct drm_plane *plane) { struct drm_atomic_state *state; struct drm_plane_state *plane_state; int ret = 0; state = drm_atomic_state_alloc(plane->dev); if (!state) return -ENOMEM; state->acquire_ctx = drm_modeset_legacy_acquire_ctx(plane->crtc); retry: plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); goto fail; } ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); if (ret != 0) goto fail; drm_atomic_set_fb_for_plane(plane_state, NULL); plane_state->crtc_x = 0; plane_state->crtc_y = 0; plane_state->crtc_h = 0; plane_state->crtc_w = 0; plane_state->src_x = 0; plane_state->src_y = 0; plane_state->src_h = 0; plane_state->src_w = 0; ret = drm_atomic_commit(state); if (ret != 0) goto fail; /* Driver takes ownership of state on successful commit. */ return 0; fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_free(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); /* * Someone might have exchanged the framebuffer while we dropped locks * in the backoff code. We need to fix up the fb refcount tracking the * core does for us. */ plane->old_fb = plane->fb; goto retry; } EXPORT_SYMBOL(drm_atomic_helper_disable_plane); static int update_output_state(struct drm_atomic_state *state, struct drm_mode_set *set) { struct drm_device *dev = set->crtc->dev; struct drm_connector_state *conn_state; int ncrtcs = state->dev->mode_config.num_crtc; int ret, i, j; ret = drm_modeset_lock(&dev->mode_config.connection_mutex, state->acquire_ctx); if (ret) return ret; /* First grab all affected connector/crtc states. */ for (i = 0; i < set->num_connectors; i++) { conn_state = drm_atomic_get_connector_state(state, set->connectors[i]); if (IS_ERR(conn_state)) return PTR_ERR(conn_state); } for (i = 0; i < ncrtcs; i++) { struct drm_crtc *crtc = state->crtcs[i]; if (!crtc) continue; ret = drm_atomic_add_affected_connectors(state, crtc); if (ret) return ret; } /* Then recompute connector->crtc links and crtc enabling state. */ for (i = 0; i < state->num_connector; i++) { struct drm_connector *connector; connector = state->connectors[i]; conn_state = state->connector_states[i]; if (!connector) continue; if (conn_state->crtc == set->crtc) { ret = drm_atomic_set_crtc_for_connector(conn_state, NULL); if (ret) return ret; } for (j = 0; j < set->num_connectors; j++) { if (set->connectors[j] == connector) { ret = drm_atomic_set_crtc_for_connector(conn_state, set->crtc); if (ret) return ret; break; } } } for (i = 0; i < ncrtcs; i++) { struct drm_crtc *crtc = state->crtcs[i]; struct drm_crtc_state *crtc_state = state->crtc_states[i]; if (!crtc) continue; /* Don't update ->enable for the CRTC in the set_config request, * since a mismatch would indicate a bug in the upper layers. * The actual modeset code later on will catch any * inconsistencies here. */ if (crtc == set->crtc) continue; crtc_state->enable = drm_atomic_connectors_for_crtc(state, crtc); } return 0; } /** * drm_atomic_helper_set_config - set a new config from userspace * @set: mode set configuration * * Provides a default crtc set_config handler using the atomic driver interface. * * Returns: * Returns 0 on success, negative errno numbers on failure. */ int drm_atomic_helper_set_config(struct drm_mode_set *set) { struct drm_atomic_state *state; struct drm_crtc *crtc = set->crtc; struct drm_crtc_state *crtc_state; struct drm_plane_state *primary_state; int ret = 0; state = drm_atomic_state_alloc(crtc->dev); if (!state) return -ENOMEM; state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); retry: crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } if (!set->mode) { WARN_ON(set->fb); WARN_ON(set->num_connectors); crtc_state->enable = false; goto commit; } WARN_ON(!set->fb); WARN_ON(!set->num_connectors); crtc_state->enable = true; drm_mode_copy(&crtc_state->mode, set->mode); primary_state = drm_atomic_get_plane_state(state, crtc->primary); if (IS_ERR(primary_state)) { ret = PTR_ERR(primary_state); goto fail; } ret = drm_atomic_set_crtc_for_plane(primary_state, crtc); if (ret != 0) goto fail; drm_atomic_set_fb_for_plane(primary_state, set->fb); primary_state->crtc_x = 0; primary_state->crtc_y = 0; primary_state->crtc_h = set->mode->vdisplay; primary_state->crtc_w = set->mode->hdisplay; primary_state->src_x = set->x << 16; primary_state->src_y = set->y << 16; primary_state->src_h = set->mode->vdisplay << 16; primary_state->src_w = set->mode->hdisplay << 16; commit: ret = update_output_state(state, set); if (ret) goto fail; ret = drm_atomic_commit(state); if (ret != 0) goto fail; /* Driver takes ownership of state on successful commit. */ return 0; fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_free(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); /* * Someone might have exchanged the framebuffer while we dropped locks * in the backoff code. We need to fix up the fb refcount tracking the * core does for us. */ crtc->primary->old_fb = crtc->primary->fb; goto retry; } EXPORT_SYMBOL(drm_atomic_helper_set_config); /** * drm_atomic_helper_crtc_set_property - helper for crtc prorties * @crtc: DRM crtc * @property: DRM property * @val: value of property * * Provides a default plane disablle handler using the atomic driver interface. * * RETURNS: * Zero on success, error code on failure */ int drm_atomic_helper_crtc_set_property(struct drm_crtc *crtc, struct drm_property *property, uint64_t val) { struct drm_atomic_state *state; struct drm_crtc_state *crtc_state; int ret = 0; state = drm_atomic_state_alloc(crtc->dev); if (!state) return -ENOMEM; /* ->set_property is always called with all locks held. */ state->acquire_ctx = crtc->dev->mode_config.acquire_ctx; retry: crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } ret = crtc->funcs->atomic_set_property(crtc, crtc_state, property, val); if (ret) goto fail; ret = drm_atomic_commit(state); if (ret != 0) goto fail; /* Driver takes ownership of state on successful commit. */ return 0; fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_free(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); goto retry; } EXPORT_SYMBOL(drm_atomic_helper_crtc_set_property); /** * drm_atomic_helper_plane_set_property - helper for plane prorties * @plane: DRM plane * @property: DRM property * @val: value of property * * Provides a default plane disable handler using the atomic driver interface. * * RETURNS: * Zero on success, error code on failure */ int drm_atomic_helper_plane_set_property(struct drm_plane *plane, struct drm_property *property, uint64_t val) { struct drm_atomic_state *state; struct drm_plane_state *plane_state; int ret = 0; state = drm_atomic_state_alloc(plane->dev); if (!state) return -ENOMEM; /* ->set_property is always called with all locks held. */ state->acquire_ctx = plane->dev->mode_config.acquire_ctx; retry: plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); goto fail; } ret = plane->funcs->atomic_set_property(plane, plane_state, property, val); if (ret) goto fail; ret = drm_atomic_commit(state); if (ret != 0) goto fail; /* Driver takes ownership of state on successful commit. */ return 0; fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_free(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); goto retry; } EXPORT_SYMBOL(drm_atomic_helper_plane_set_property); /** * drm_atomic_helper_connector_set_property - helper for connector prorties * @connector: DRM connector * @property: DRM property * @val: value of property * * Provides a default plane disablle handler using the atomic driver interface. * * RETURNS: * Zero on success, error code on failure */ int drm_atomic_helper_connector_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct drm_atomic_state *state; struct drm_connector_state *connector_state; int ret = 0; state = drm_atomic_state_alloc(connector->dev); if (!state) return -ENOMEM; /* ->set_property is always called with all locks held. */ state->acquire_ctx = connector->dev->mode_config.acquire_ctx; retry: connector_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(connector_state)) { ret = PTR_ERR(connector_state); goto fail; } ret = connector->funcs->atomic_set_property(connector, connector_state, property, val); if (ret) goto fail; ret = drm_atomic_commit(state); if (ret != 0) goto fail; /* Driver takes ownership of state on successful commit. */ return 0; fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_free(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); goto retry; } EXPORT_SYMBOL(drm_atomic_helper_connector_set_property); /** * drm_atomic_helper_page_flip - execute a legacy page flip * @crtc: DRM crtc * @fb: DRM framebuffer * @event: optional DRM event to signal upon completion * @flags: flip flags for non-vblank sync'ed updates * * Provides a default page flip implementation using the atomic driver interface. * * Note that for now so called async page flips (i.e. updates which are not * synchronized to vblank) are not supported, since the atomic interfaces have * no provisions for this yet. * * Returns: * Returns 0 on success, negative errno numbers on failure. */ int drm_atomic_helper_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_plane *plane = crtc->primary; struct drm_atomic_state *state; struct drm_plane_state *plane_state; struct drm_crtc_state *crtc_state; int ret = 0; if (flags & DRM_MODE_PAGE_FLIP_ASYNC) return -EINVAL; state = drm_atomic_state_alloc(plane->dev); if (!state) return -ENOMEM; state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); retry: crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } crtc_state->event = event; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); goto fail; } ret = drm_atomic_set_crtc_for_plane(plane_state, crtc); if (ret != 0) goto fail; drm_atomic_set_fb_for_plane(plane_state, fb); ret = drm_atomic_async_commit(state); if (ret != 0) goto fail; /* TODO: ->page_flip is the only driver callback where the core * doesn't update plane->fb. For now patch it up here. */ plane->fb = plane->state->fb; /* Driver takes ownership of state on successful async commit. */ return 0; fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_free(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); /* * Someone might have exchanged the framebuffer while we dropped locks * in the backoff code. We need to fix up the fb refcount tracking the * core does for us. */ plane->old_fb = plane->fb; goto retry; } EXPORT_SYMBOL(drm_atomic_helper_page_flip); /** * DOC: atomic state reset and initialization * * Both the drm core and the atomic helpers assume that there is always the full * and correct atomic software state for all connectors, CRTCs and planes * available. Which is a bit a problem on driver load and also after system * suspend. One way to solve this is to have a hardware state read-out * infrastructure which reconstructs the full software state (e.g. the i915 * driver). * * The simpler solution is to just reset the software state to everything off, * which is easiest to do by calling drm_mode_config_reset(). To facilitate this * the atomic helpers provide default reset implementations for all hooks. */ /** * drm_atomic_helper_crtc_reset - default ->reset hook for CRTCs * @crtc: drm CRTC * * Resets the atomic state for @crtc by freeing the state pointer (which might * be NULL, e.g. at driver load time) and allocating a new empty state object. */ void drm_atomic_helper_crtc_reset(struct drm_crtc *crtc) { kfree(crtc->state); crtc->state = kzalloc(sizeof(*crtc->state), GFP_KERNEL); } EXPORT_SYMBOL(drm_atomic_helper_crtc_reset); /** * drm_atomic_helper_crtc_duplicate_state - default state duplicate hook * @crtc: drm CRTC * * Default CRTC state duplicate hook for drivers which don't have their own * subclassed CRTC state structure. */ struct drm_crtc_state * drm_atomic_helper_crtc_duplicate_state(struct drm_crtc *crtc) { struct drm_crtc_state *state; if (WARN_ON(!crtc->state)) return NULL; state = kmemdup(crtc->state, sizeof(*crtc->state), GFP_KERNEL); if (state) { state->mode_changed = false; state->planes_changed = false; state->event = NULL; } return state; } EXPORT_SYMBOL(drm_atomic_helper_crtc_duplicate_state); /** * drm_atomic_helper_crtc_destroy_state - default state destroy hook * @crtc: drm CRTC * @state: CRTC state object to release * * Default CRTC state destroy hook for drivers which don't have their own * subclassed CRTC state structure. */ void drm_atomic_helper_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { kfree(state); } EXPORT_SYMBOL(drm_atomic_helper_crtc_destroy_state); /** * drm_atomic_helper_plane_reset - default ->reset hook for planes * @plane: drm plane * * Resets the atomic state for @plane by freeing the state pointer (which might * be NULL, e.g. at driver load time) and allocating a new empty state object. */ void drm_atomic_helper_plane_reset(struct drm_plane *plane) { if (plane->state && plane->state->fb) drm_framebuffer_unreference(plane->state->fb); kfree(plane->state); plane->state = kzalloc(sizeof(*plane->state), GFP_KERNEL); } EXPORT_SYMBOL(drm_atomic_helper_plane_reset); /** * drm_atomic_helper_plane_duplicate_state - default state duplicate hook * @plane: drm plane * * Default plane state duplicate hook for drivers which don't have their own * subclassed plane state structure. */ struct drm_plane_state * drm_atomic_helper_plane_duplicate_state(struct drm_plane *plane) { struct drm_plane_state *state; if (WARN_ON(!plane->state)) return NULL; state = kmemdup(plane->state, sizeof(*plane->state), GFP_KERNEL); if (state && state->fb) drm_framebuffer_reference(state->fb); return state; } EXPORT_SYMBOL(drm_atomic_helper_plane_duplicate_state); /** * drm_atomic_helper_plane_destroy_state - default state destroy hook * @plane: drm plane * @state: plane state object to release * * Default plane state destroy hook for drivers which don't have their own * subclassed plane state structure. */ void drm_atomic_helper_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { if (state->fb) drm_framebuffer_unreference(state->fb); kfree(state); } EXPORT_SYMBOL(drm_atomic_helper_plane_destroy_state); /** * drm_atomic_helper_connector_reset - default ->reset hook for connectors * @connector: drm connector * * Resets the atomic state for @connector by freeing the state pointer (which * might be NULL, e.g. at driver load time) and allocating a new empty state * object. */ void drm_atomic_helper_connector_reset(struct drm_connector *connector) { kfree(connector->state); connector->state = kzalloc(sizeof(*connector->state), GFP_KERNEL); } EXPORT_SYMBOL(drm_atomic_helper_connector_reset); /** * drm_atomic_helper_connector_duplicate_state - default state duplicate hook * @connector: drm connector * * Default connector state duplicate hook for drivers which don't have their own * subclassed connector state structure. */ struct drm_connector_state * drm_atomic_helper_connector_duplicate_state(struct drm_connector *connector) { if (WARN_ON(!connector->state)) return NULL; return kmemdup(connector->state, sizeof(*connector->state), GFP_KERNEL); } EXPORT_SYMBOL(drm_atomic_helper_connector_duplicate_state); /** * drm_atomic_helper_connector_destroy_state - default state destroy hook * @connector: drm connector * @state: connector state object to release * * Default connector state destroy hook for drivers which don't have their own * subclassed connector state structure. */ void drm_atomic_helper_connector_destroy_state(struct drm_connector *connector, struct drm_connector_state *state) { kfree(state); } EXPORT_SYMBOL(drm_atomic_helper_connector_destroy_state);