/* * Copyright 2006 Dave Airlie * Copyright 2007 Maarten Maathuis * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "nouveau_drm.h" #include "hw.h" #include #define CHIPSET_NFORCE 0x01a0 #define CHIPSET_NFORCE2 0x01f0 /* * misc hw access wrappers/control functions */ void NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value) { NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value); } uint8_t NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index) { NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); return NVReadPRMVIO(dev, head, NV_PRMVIO_SR); } void NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value) { NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value); } uint8_t NVReadVgaGr(struct drm_device *dev, int head, uint8_t index) { NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); return NVReadPRMVIO(dev, head, NV_PRMVIO_GX); } /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied) * it affects only the 8 bit vga io regs, which we access using mmio at * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d* * in general, the set value of cr44 does not matter: reg access works as * expected and values can be set for the appropriate head by using a 0x2000 * offset as required * however: * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and * cr44 must be set to 0 or 3 for accessing values on the correct head * through the common 0xc03c* addresses * b) in tied mode (4) head B is programmed to the values set on head A, and * access using the head B addresses can have strange results, ergo we leave * tied mode in init once we know to what cr44 should be restored on exit * * the owner parameter is slightly abused: * 0 and 1 are treated as head values and so the set value is (owner * 3) * other values are treated as literal values to set */ void NVSetOwner(struct drm_device *dev, int owner) { struct nouveau_drm *drm = nouveau_drm(dev); if (owner == 1) owner *= 3; if (drm->device.info.chipset == 0x11) { /* This might seem stupid, but the blob does it and * omitting it often locks the system up. */ NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX); NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX); } /* CR44 is always changed on CRTC0 */ NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner); if (drm->device.info.chipset == 0x11) { /* set me harder */ NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); } } void NVBlankScreen(struct drm_device *dev, int head, bool blank) { unsigned char seq1; if (nv_two_heads(dev)) NVSetOwner(dev, head); seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX); NVVgaSeqReset(dev, head, true); if (blank) NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20); else NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20); NVVgaSeqReset(dev, head, false); } /* * PLL getting */ static void nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1, uint32_t pll2, struct nouveau_pll_vals *pllvals) { struct nouveau_drm *drm = nouveau_drm(dev); /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */ /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */ pllvals->log2P = (pll1 >> 16) & 0x7; pllvals->N2 = pllvals->M2 = 1; if (reg1 <= 0x405c) { pllvals->NM1 = pll2 & 0xffff; /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */ if (!(pll1 & 0x1100)) pllvals->NM2 = pll2 >> 16; } else { pllvals->NM1 = pll1 & 0xffff; if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2) pllvals->NM2 = pll2 & 0xffff; else if (drm->device.info.chipset == 0x30 || drm->device.info.chipset == 0x35) { pllvals->M1 &= 0xf; /* only 4 bits */ if (pll1 & NV30_RAMDAC_ENABLE_VCO2) { pllvals->M2 = (pll1 >> 4) & 0x7; pllvals->N2 = ((pll1 >> 21) & 0x18) | ((pll1 >> 19) & 0x7); } } } } int nouveau_hw_get_pllvals(struct drm_device *dev, enum nvbios_pll_type plltype, struct nouveau_pll_vals *pllvals) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->device; struct nouveau_bios *bios = nvxx_bios(device); uint32_t reg1, pll1, pll2 = 0; struct nvbios_pll pll_lim; int ret; ret = nvbios_pll_parse(bios, plltype, &pll_lim); if (ret || !(reg1 = pll_lim.reg)) return -ENOENT; pll1 = nvif_rd32(device, reg1); if (reg1 <= 0x405c) pll2 = nvif_rd32(device, reg1 + 4); else if (nv_two_reg_pll(dev)) { uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70); pll2 = nvif_rd32(device, reg2); } if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS && reg1 >= NV_PRAMDAC_VPLL_COEFF) { uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580); /* check whether vpll has been forced into single stage mode */ if (reg1 == NV_PRAMDAC_VPLL_COEFF) { if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE) pll2 = 0; } else if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE) pll2 = 0; } nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals); pllvals->refclk = pll_lim.refclk; return 0; } int nouveau_hw_pllvals_to_clk(struct nouveau_pll_vals *pv) { /* Avoid divide by zero if called at an inappropriate time */ if (!pv->M1 || !pv->M2) return 0; return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P; } int nouveau_hw_get_clock(struct drm_device *dev, enum nvbios_pll_type plltype) { struct nouveau_pll_vals pllvals; int ret; if (plltype == PLL_MEMORY && (dev->pdev->device & 0x0ff0) == CHIPSET_NFORCE) { uint32_t mpllP; pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP); if (!mpllP) mpllP = 4; return 400000 / mpllP; } else if (plltype == PLL_MEMORY && (dev->pdev->device & 0xff0) == CHIPSET_NFORCE2) { uint32_t clock; pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock); return clock; } ret = nouveau_hw_get_pllvals(dev, plltype, &pllvals); if (ret) return ret; return nouveau_hw_pllvals_to_clk(&pllvals); } static void nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head) { /* the vpll on an unused head can come up with a random value, way * beyond the pll limits. for some reason this causes the chip to * lock up when reading the dac palette regs, so set a valid pll here * when such a condition detected. only seen on nv11 to date */ struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->device; struct nouveau_clk *clk = nvxx_clk(device); struct nouveau_bios *bios = nvxx_bios(device); struct nvbios_pll pll_lim; struct nouveau_pll_vals pv; enum nvbios_pll_type pll = head ? PLL_VPLL1 : PLL_VPLL0; if (nvbios_pll_parse(bios, pll, &pll_lim)) return; nouveau_hw_get_pllvals(dev, pll, &pv); if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m && pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n && pv.log2P <= pll_lim.max_p) return; NV_WARN(drm, "VPLL %d outwith limits, attempting to fix\n", head + 1); /* set lowest clock within static limits */ pv.M1 = pll_lim.vco1.max_m; pv.N1 = pll_lim.vco1.min_n; pv.log2P = pll_lim.max_p_usable; clk->pll_prog(clk, pll_lim.reg, &pv); } /* * vga font save/restore */ static void nouveau_vga_font_io(struct drm_device *dev, void __iomem *iovram, bool save, unsigned plane) { unsigned i; NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane); NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane); for (i = 0; i < 16384; i++) { if (save) { nv04_display(dev)->saved_vga_font[plane][i] = ioread32_native(iovram + i * 4); } else { iowrite32_native(nv04_display(dev)->saved_vga_font[plane][i], iovram + i * 4); } } } void nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save) { struct nouveau_drm *drm = nouveau_drm(dev); uint8_t misc, gr4, gr5, gr6, seq2, seq4; bool graphicsmode; unsigned plane; void __iomem *iovram; if (nv_two_heads(dev)) NVSetOwner(dev, 0); NVSetEnablePalette(dev, 0, true); graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1; NVSetEnablePalette(dev, 0, false); if (graphicsmode) /* graphics mode => framebuffer => no need to save */ return; NV_INFO(drm, "%sing VGA fonts\n", save ? "Sav" : "Restor"); /* map first 64KiB of VRAM, holds VGA fonts etc */ iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536); if (!iovram) { NV_ERROR(drm, "Failed to map VRAM, " "cannot save/restore VGA fonts.\n"); return; } if (nv_two_heads(dev)) NVBlankScreen(dev, 1, true); NVBlankScreen(dev, 0, true); /* save control regs */ misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ); seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX); seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX); gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX); gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX); gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX); NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67); NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6); NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0); NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5); /* store font in planes 0..3 */ for (plane = 0; plane < 4; plane++) nouveau_vga_font_io(dev, iovram, save, plane); /* restore control regs */ NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc); NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4); NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5); NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6); NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2); NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4); if (nv_two_heads(dev)) NVBlankScreen(dev, 1, false); NVBlankScreen(dev, 0, false); iounmap(iovram); } /* * mode state save/load */ static void rd_cio_state(struct drm_device *dev, int head, struct nv04_crtc_reg *crtcstate, int index) { crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index); } static void wr_cio_state(struct drm_device *dev, int head, struct nv04_crtc_reg *crtcstate, int index) { NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]); } static void nv_save_state_ramdac(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC); nouveau_hw_get_pllvals(dev, head ? PLL_VPLL1 : PLL_VPLL0, ®p->pllvals); state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT); if (nv_two_heads(dev)) state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); if (drm->device.info.chipset == 0x11) regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11); regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL); if (nv_gf4_disp_arch(dev)) regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630); if (drm->device.info.chipset >= 0x30) regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634); regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP); regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL); regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW); regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY); regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL); regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW); regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY); regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2); for (i = 0; i < 7; i++) { uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg); regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20); } if (nv_gf4_disp_arch(dev)) { regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER); for (i = 0; i < 3; i++) { regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4); regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4); } } regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0); if (!nv_gf4_disp_arch(dev) && head == 0) { /* early chips don't allow access to PRAMDAC_TMDS_* without * the head A FPCLK on (nv11 even locks up) */ NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 & ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK); } regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1); regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2); regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR); if (nv_gf4_disp_arch(dev)) regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0); if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) { regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20); regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24); regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34); for (i = 0; i < 38; i++) regp->ctv_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_CTV + 4*i); } } static void nv_load_state_ramdac(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_clk *clk = nvxx_clk(&drm->device); struct nv04_crtc_reg *regp = &state->crtc_reg[head]; uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF; int i; if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync); clk->pll_prog(clk, pllreg, ®p->pllvals); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel); if (nv_two_heads(dev)) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk); if (drm->device.info.chipset == 0x11) NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither); NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl); if (nv_gf4_disp_arch(dev)) NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630); if (drm->device.info.chipset >= 0x30) NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2); for (i = 0; i < 7; i++) { uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]); NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]); } if (nv_gf4_disp_arch(dev)) { NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither); for (i = 0; i < 3; i++) { NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]); NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]); } } NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color); if (nv_gf4_disp_arch(dev)) NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0); if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) { NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20); NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24); NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34); for (i = 0; i < 38; i++) NVWriteRAMDAC(dev, head, NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]); } } static void nv_save_state_vga(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ); for (i = 0; i < 25; i++) rd_cio_state(dev, head, regp, i); NVSetEnablePalette(dev, head, true); for (i = 0; i < 21; i++) regp->Attribute[i] = NVReadVgaAttr(dev, head, i); NVSetEnablePalette(dev, head, false); for (i = 0; i < 9; i++) regp->Graphics[i] = NVReadVgaGr(dev, head, i); for (i = 0; i < 5; i++) regp->Sequencer[i] = NVReadVgaSeq(dev, head, i); } static void nv_load_state_vga(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg); for (i = 0; i < 5; i++) NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]); nv_lock_vga_crtc_base(dev, head, false); for (i = 0; i < 25; i++) wr_cio_state(dev, head, regp, i); nv_lock_vga_crtc_base(dev, head, true); for (i = 0; i < 9; i++) NVWriteVgaGr(dev, head, i, regp->Graphics[i]); NVSetEnablePalette(dev, head, true); for (i = 0; i < 21; i++) NVWriteVgaAttr(dev, head, i, regp->Attribute[i]); NVSetEnablePalette(dev, head, false); } static void nv_save_state_ext(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_21); if (drm->device.info.family >= NV_DEVICE_INFO_V0_KELVIN) rd_cio_state(dev, head, regp, NV_CIO_CRE_47); if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE) rd_cio_state(dev, head, regp, 0x9f); rd_cio_state(dev, head, regp, NV_CIO_CRE_49); rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830); regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834); if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE) regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT); if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850); if (nv_two_heads(dev)) regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL); regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG); } regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG); rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB); rd_cio_state(dev, head, regp, NV_CIO_CRE_4B); rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); } /* NV11 and NV20 don't have this, they stop at 0x52. */ if (nv_gf4_disp_arch(dev)) { rd_cio_state(dev, head, regp, NV_CIO_CRE_42); rd_cio_state(dev, head, regp, NV_CIO_CRE_53); rd_cio_state(dev, head, regp, NV_CIO_CRE_54); for (i = 0; i < 0x10; i++) regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i); rd_cio_state(dev, head, regp, NV_CIO_CRE_59); rd_cio_state(dev, head, regp, NV_CIO_CRE_5B); rd_cio_state(dev, head, regp, NV_CIO_CRE_85); rd_cio_state(dev, head, regp, NV_CIO_CRE_86); } regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START); } static void nv_load_state_ext(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->device; struct nouveau_timer *ptimer = nvxx_timer(device); struct nv04_crtc_reg *regp = &state->crtc_reg[head]; uint32_t reg900; int i; if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { if (nv_two_heads(dev)) /* setting ENGINE_CTRL (EC) *must* come before * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in * EC that should not be overwritten by writing stale EC */ NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl); nvif_wr32(device, NV_PVIDEO_STOP, 1); nvif_wr32(device, NV_PVIDEO_INTR_EN, 0); nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(0), 0); nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(1), 0); nvif_wr32(device, NV_PVIDEO_LIMIT(0), device->info.ram_size - 1); nvif_wr32(device, NV_PVIDEO_LIMIT(1), device->info.ram_size - 1); nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(0), device->info.ram_size - 1); nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(1), device->info.ram_size - 1); nvif_wr32(device, NV_PBUS_POWERCTRL_2, 0); NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg); NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830); NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834); if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE) NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext); if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) { NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850); reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900); if (regp->crtc_cfg == NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC) NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000); else NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000); } } NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg); wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); if (drm->device.info.family >= NV_DEVICE_INFO_V0_KELVIN) wr_cio_state(dev, head, regp, NV_CIO_CRE_47); if (drm->device.info.family >= NV_DEVICE_INFO_V0_RANKINE) wr_cio_state(dev, head, regp, 0x9f); wr_cio_state(dev, head, regp, NV_CIO_CRE_49); wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); if (drm->device.info.family == NV_DEVICE_INFO_V0_CURIE) nv_fix_nv40_hw_cursor(dev, head); wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB); wr_cio_state(dev, head, regp, NV_CIO_CRE_4B); wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); } /* NV11 and NV20 stop at 0x52. */ if (nv_gf4_disp_arch(dev)) { if (drm->device.info.family < NV_DEVICE_INFO_V0_KELVIN) { /* Not waiting for vertical retrace before modifying CRE_53/CRE_54 causes lockups. */ nouveau_timer_wait_eq(ptimer, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x8); nouveau_timer_wait_eq(ptimer, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x0); } wr_cio_state(dev, head, regp, NV_CIO_CRE_42); wr_cio_state(dev, head, regp, NV_CIO_CRE_53); wr_cio_state(dev, head, regp, NV_CIO_CRE_54); for (i = 0; i < 0x10; i++) NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]); wr_cio_state(dev, head, regp, NV_CIO_CRE_59); wr_cio_state(dev, head, regp, NV_CIO_CRE_5B); wr_cio_state(dev, head, regp, NV_CIO_CRE_85); wr_cio_state(dev, head, regp, NV_CIO_CRE_86); } NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start); } static void nv_save_state_palette(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nvif_device *device = &nouveau_drm(dev)->device; int head_offset = head * NV_PRMDIO_SIZE, i; nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset, NV_PRMDIO_PIXEL_MASK_MASK); nvif_wr08(device, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0); for (i = 0; i < 768; i++) { state->crtc_reg[head].DAC[i] = nvif_rd08(device, NV_PRMDIO_PALETTE_DATA + head_offset); } NVSetEnablePalette(dev, head, false); } void nouveau_hw_load_state_palette(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nvif_device *device = &nouveau_drm(dev)->device; int head_offset = head * NV_PRMDIO_SIZE, i; nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset, NV_PRMDIO_PIXEL_MASK_MASK); nvif_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0); for (i = 0; i < 768; i++) { nvif_wr08(device, NV_PRMDIO_PALETTE_DATA + head_offset, state->crtc_reg[head].DAC[i]); } NVSetEnablePalette(dev, head, false); } void nouveau_hw_save_state(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); if (drm->device.info.chipset == 0x11) /* NB: no attempt is made to restore the bad pll later on */ nouveau_hw_fix_bad_vpll(dev, head); nv_save_state_ramdac(dev, head, state); nv_save_state_vga(dev, head, state); nv_save_state_palette(dev, head, state); nv_save_state_ext(dev, head, state); } void nouveau_hw_load_state(struct drm_device *dev, int head, struct nv04_mode_state *state) { NVVgaProtect(dev, head, true); nv_load_state_ramdac(dev, head, state); nv_load_state_ext(dev, head, state); nouveau_hw_load_state_palette(dev, head, state); nv_load_state_vga(dev, head, state); NVVgaProtect(dev, head, false); }