/* * Copyright (C) 2006 Ben Skeggs. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /* * Authors: * Ben Skeggs */ #include "drmP.h" #include "drm.h" #include "nouveau_drv.h" #include "nouveau_drm.h" #include "nouveau_ramht.h" #include "nouveau_vm.h" #include "nv50_display.h" struct nouveau_gpuobj_method { struct list_head head; u32 mthd; int (*exec)(struct nouveau_channel *, u32 class, u32 mthd, u32 data); }; struct nouveau_gpuobj_class { struct list_head head; struct list_head methods; u32 id; u32 engine; }; int nouveau_gpuobj_class_new(struct drm_device *dev, u32 class, u32 engine) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj_class *oc; oc = kzalloc(sizeof(*oc), GFP_KERNEL); if (!oc) return -ENOMEM; INIT_LIST_HEAD(&oc->methods); oc->id = class; oc->engine = engine; list_add(&oc->head, &dev_priv->classes); return 0; } int nouveau_gpuobj_mthd_new(struct drm_device *dev, u32 class, u32 mthd, int (*exec)(struct nouveau_channel *, u32, u32, u32)) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj_method *om; struct nouveau_gpuobj_class *oc; list_for_each_entry(oc, &dev_priv->classes, head) { if (oc->id == class) goto found; } return -EINVAL; found: om = kzalloc(sizeof(*om), GFP_KERNEL); if (!om) return -ENOMEM; om->mthd = mthd; om->exec = exec; list_add(&om->head, &oc->methods); return 0; } int nouveau_gpuobj_mthd_call(struct nouveau_channel *chan, u32 class, u32 mthd, u32 data) { struct drm_nouveau_private *dev_priv = chan->dev->dev_private; struct nouveau_gpuobj_method *om; struct nouveau_gpuobj_class *oc; list_for_each_entry(oc, &dev_priv->classes, head) { if (oc->id != class) continue; list_for_each_entry(om, &oc->methods, head) { if (om->mthd == mthd) return om->exec(chan, class, mthd, data); } } return -ENOENT; } int nouveau_gpuobj_mthd_call2(struct drm_device *dev, int chid, u32 class, u32 mthd, u32 data) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_channel *chan = NULL; unsigned long flags; int ret = -EINVAL; spin_lock_irqsave(&dev_priv->channels.lock, flags); if (chid >= 0 && chid < dev_priv->engine.fifo.channels) chan = dev_priv->channels.ptr[chid]; if (chan) ret = nouveau_gpuobj_mthd_call(chan, class, mthd, data); spin_unlock_irqrestore(&dev_priv->channels.lock, flags); return ret; } /* NVidia uses context objects to drive drawing operations. Context objects can be selected into 8 subchannels in the FIFO, and then used via DMA command buffers. A context object is referenced by a user defined handle (CARD32). The HW looks up graphics objects in a hash table in the instance RAM. An entry in the hash table consists of 2 CARD32. The first CARD32 contains the handle, the second one a bitfield, that contains the address of the object in instance RAM. The format of the second CARD32 seems to be: NV4 to NV30: 15: 0 instance_addr >> 4 17:16 engine (here uses 1 = graphics) 28:24 channel id (here uses 0) 31 valid (use 1) NV40: 15: 0 instance_addr >> 4 (maybe 19-0) 21:20 engine (here uses 1 = graphics) I'm unsure about the other bits, but using 0 seems to work. The key into the hash table depends on the object handle and channel id and is given as: */ int nouveau_gpuobj_new(struct drm_device *dev, struct nouveau_channel *chan, uint32_t size, int align, uint32_t flags, struct nouveau_gpuobj **gpuobj_ret) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem; struct nouveau_gpuobj *gpuobj; struct drm_mm_node *ramin = NULL; int ret, i; NV_DEBUG(dev, "ch%d size=%u align=%d flags=0x%08x\n", chan ? chan->id : -1, size, align, flags); gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL); if (!gpuobj) return -ENOMEM; NV_DEBUG(dev, "gpuobj %p\n", gpuobj); gpuobj->dev = dev; gpuobj->flags = flags; kref_init(&gpuobj->refcount); gpuobj->size = size; spin_lock(&dev_priv->ramin_lock); list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list); spin_unlock(&dev_priv->ramin_lock); if (!(flags & NVOBJ_FLAG_VM) && chan) { ramin = drm_mm_search_free(&chan->ramin_heap, size, align, 0); if (ramin) ramin = drm_mm_get_block(ramin, size, align); if (!ramin) { nouveau_gpuobj_ref(NULL, &gpuobj); return -ENOMEM; } gpuobj->pinst = chan->ramin->pinst; if (gpuobj->pinst != ~0) gpuobj->pinst += ramin->start; gpuobj->cinst = ramin->start; gpuobj->vinst = ramin->start + chan->ramin->vinst; gpuobj->node = ramin; } else { ret = instmem->get(gpuobj, chan, size, align); if (ret) { nouveau_gpuobj_ref(NULL, &gpuobj); return ret; } ret = -ENOSYS; if (!(flags & NVOBJ_FLAG_DONT_MAP)) ret = instmem->map(gpuobj); if (ret) gpuobj->pinst = ~0; gpuobj->cinst = NVOBJ_CINST_GLOBAL; } if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) { for (i = 0; i < gpuobj->size; i += 4) nv_wo32(gpuobj, i, 0); instmem->flush(dev); } *gpuobj_ret = gpuobj; return 0; } int nouveau_gpuobj_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; NV_DEBUG(dev, "\n"); INIT_LIST_HEAD(&dev_priv->gpuobj_list); INIT_LIST_HEAD(&dev_priv->classes); spin_lock_init(&dev_priv->ramin_lock); dev_priv->ramin_base = ~0; return 0; } void nouveau_gpuobj_takedown(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj_method *om, *tm; struct nouveau_gpuobj_class *oc, *tc; NV_DEBUG(dev, "\n"); list_for_each_entry_safe(oc, tc, &dev_priv->classes, head) { list_for_each_entry_safe(om, tm, &oc->methods, head) { list_del(&om->head); kfree(om); } list_del(&oc->head); kfree(oc); } BUG_ON(!list_empty(&dev_priv->gpuobj_list)); } static void nouveau_gpuobj_del(struct kref *ref) { struct nouveau_gpuobj *gpuobj = container_of(ref, struct nouveau_gpuobj, refcount); struct drm_device *dev = gpuobj->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_instmem_engine *instmem = &dev_priv->engine.instmem; int i; NV_DEBUG(dev, "gpuobj %p\n", gpuobj); if (gpuobj->node && (gpuobj->flags & NVOBJ_FLAG_ZERO_FREE)) { for (i = 0; i < gpuobj->size; i += 4) nv_wo32(gpuobj, i, 0); instmem->flush(dev); } if (gpuobj->dtor) gpuobj->dtor(dev, gpuobj); if (gpuobj->cinst == NVOBJ_CINST_GLOBAL) { if (gpuobj->node) { instmem->unmap(gpuobj); instmem->put(gpuobj); } } else { if (gpuobj->node) { spin_lock(&dev_priv->ramin_lock); drm_mm_put_block(gpuobj->node); spin_unlock(&dev_priv->ramin_lock); } } spin_lock(&dev_priv->ramin_lock); list_del(&gpuobj->list); spin_unlock(&dev_priv->ramin_lock); kfree(gpuobj); } void nouveau_gpuobj_ref(struct nouveau_gpuobj *ref, struct nouveau_gpuobj **ptr) { if (ref) kref_get(&ref->refcount); if (*ptr) kref_put(&(*ptr)->refcount, nouveau_gpuobj_del); *ptr = ref; } int nouveau_gpuobj_new_fake(struct drm_device *dev, u32 pinst, u64 vinst, u32 size, u32 flags, struct nouveau_gpuobj **pgpuobj) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj = NULL; int i; NV_DEBUG(dev, "pinst=0x%08x vinst=0x%010llx size=0x%08x flags=0x%08x\n", pinst, vinst, size, flags); gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL); if (!gpuobj) return -ENOMEM; NV_DEBUG(dev, "gpuobj %p\n", gpuobj); gpuobj->dev = dev; gpuobj->flags = flags; kref_init(&gpuobj->refcount); gpuobj->size = size; gpuobj->pinst = pinst; gpuobj->cinst = NVOBJ_CINST_GLOBAL; gpuobj->vinst = vinst; if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) { for (i = 0; i < gpuobj->size; i += 4) nv_wo32(gpuobj, i, 0); dev_priv->engine.instmem.flush(dev); } spin_lock(&dev_priv->ramin_lock); list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list); spin_unlock(&dev_priv->ramin_lock); *pgpuobj = gpuobj; return 0; } /* DMA objects are used to reference a piece of memory in the framebuffer, PCI or AGP address space. Each object is 16 bytes big and looks as follows: entry[0] 11:0 class (seems like I can always use 0 here) 12 page table present? 13 page entry linear? 15:14 access: 0 rw, 1 ro, 2 wo 17:16 target: 0 NV memory, 1 NV memory tiled, 2 PCI, 3 AGP 31:20 dma adjust (bits 0-11 of the address) entry[1] dma limit (size of transfer) entry[X] 1 0 readonly, 1 readwrite 31:12 dma frame address of the page (bits 12-31 of the address) entry[N] page table terminator, same value as the first pte, as does nvidia rivatv uses 0xffffffff Non linear page tables need a list of frame addresses afterwards, the rivatv project has some info on this. The method below creates a DMA object in instance RAM and returns a handle to it that can be used to set up context objects. */ void nv50_gpuobj_dma_init(struct nouveau_gpuobj *obj, u32 offset, int class, u64 base, u64 size, int target, int access, u32 type, u32 comp) { struct drm_nouveau_private *dev_priv = obj->dev->dev_private; struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem; u32 flags0; flags0 = (comp << 29) | (type << 22) | class; flags0 |= 0x00100000; switch (access) { case NV_MEM_ACCESS_RO: flags0 |= 0x00040000; break; case NV_MEM_ACCESS_RW: case NV_MEM_ACCESS_WO: flags0 |= 0x00080000; break; default: break; } switch (target) { case NV_MEM_TARGET_VRAM: flags0 |= 0x00010000; break; case NV_MEM_TARGET_PCI: flags0 |= 0x00020000; break; case NV_MEM_TARGET_PCI_NOSNOOP: flags0 |= 0x00030000; break; case NV_MEM_TARGET_GART: base += dev_priv->gart_info.aper_base; default: flags0 &= ~0x00100000; break; } /* convert to base + limit */ size = (base + size) - 1; nv_wo32(obj, offset + 0x00, flags0); nv_wo32(obj, offset + 0x04, lower_32_bits(size)); nv_wo32(obj, offset + 0x08, lower_32_bits(base)); nv_wo32(obj, offset + 0x0c, upper_32_bits(size) << 24 | upper_32_bits(base)); nv_wo32(obj, offset + 0x10, 0x00000000); nv_wo32(obj, offset + 0x14, 0x00000000); pinstmem->flush(obj->dev); } int nv50_gpuobj_dma_new(struct nouveau_channel *chan, int class, u64 base, u64 size, int target, int access, u32 type, u32 comp, struct nouveau_gpuobj **pobj) { struct drm_device *dev = chan->dev; int ret; ret = nouveau_gpuobj_new(dev, chan, 24, 16, NVOBJ_FLAG_ZERO_FREE, pobj); if (ret) return ret; nv50_gpuobj_dma_init(*pobj, 0, class, base, size, target, access, type, comp); return 0; } int nouveau_gpuobj_dma_new(struct nouveau_channel *chan, int class, u64 base, u64 size, int access, int target, struct nouveau_gpuobj **pobj) { struct drm_nouveau_private *dev_priv = chan->dev->dev_private; struct drm_device *dev = chan->dev; struct nouveau_gpuobj *obj; u32 flags0, flags2; int ret; if (dev_priv->card_type >= NV_50) { u32 comp = (target == NV_MEM_TARGET_VM) ? NV_MEM_COMP_VM : 0; u32 type = (target == NV_MEM_TARGET_VM) ? NV_MEM_TYPE_VM : 0; return nv50_gpuobj_dma_new(chan, class, base, size, target, access, type, comp, pobj); } if (target == NV_MEM_TARGET_GART) { struct nouveau_gpuobj *gart = dev_priv->gart_info.sg_ctxdma; if (dev_priv->gart_info.type == NOUVEAU_GART_PDMA) { if (base == 0) { nouveau_gpuobj_ref(gart, pobj); return 0; } base = nouveau_sgdma_get_physical(dev, base); target = NV_MEM_TARGET_PCI; } else { base += dev_priv->gart_info.aper_base; if (dev_priv->gart_info.type == NOUVEAU_GART_AGP) target = NV_MEM_TARGET_PCI_NOSNOOP; else target = NV_MEM_TARGET_PCI; } } flags0 = class; flags0 |= 0x00003000; /* PT present, PT linear */ flags2 = 0; switch (target) { case NV_MEM_TARGET_PCI: flags0 |= 0x00020000; break; case NV_MEM_TARGET_PCI_NOSNOOP: flags0 |= 0x00030000; break; default: break; } switch (access) { case NV_MEM_ACCESS_RO: flags0 |= 0x00004000; break; case NV_MEM_ACCESS_WO: flags0 |= 0x00008000; default: flags2 |= 0x00000002; break; } flags0 |= (base & 0x00000fff) << 20; flags2 |= (base & 0xfffff000); ret = nouveau_gpuobj_new(dev, chan, 16, 16, NVOBJ_FLAG_ZERO_FREE, &obj); if (ret) return ret; nv_wo32(obj, 0x00, flags0); nv_wo32(obj, 0x04, size - 1); nv_wo32(obj, 0x08, flags2); nv_wo32(obj, 0x0c, flags2); obj->engine = NVOBJ_ENGINE_SW; obj->class = class; *pobj = obj; return 0; } /* Context objects in the instance RAM have the following structure. * On NV40 they are 32 byte long, on NV30 and smaller 16 bytes. NV4 - NV30: entry[0] 11:0 class 12 chroma key enable 13 user clip enable 14 swizzle enable 17:15 patch config: scrcopy_and, rop_and, blend_and, scrcopy, srccopy_pre, blend_pre 18 synchronize enable 19 endian: 1 big, 0 little 21:20 dither mode 23 single step enable 24 patch status: 0 invalid, 1 valid 25 context_surface 0: 1 valid 26 context surface 1: 1 valid 27 context pattern: 1 valid 28 context rop: 1 valid 29,30 context beta, beta4 entry[1] 7:0 mono format 15:8 color format 31:16 notify instance address entry[2] 15:0 dma 0 instance address 31:16 dma 1 instance address entry[3] dma method traps NV40: No idea what the exact format is. Here's what can be deducted: entry[0]: 11:0 class (maybe uses more bits here?) 17 user clip enable 21:19 patch config 25 patch status valid ? entry[1]: 15:0 DMA notifier (maybe 20:0) entry[2]: 15:0 DMA 0 instance (maybe 20:0) 24 big endian entry[3]: 15:0 DMA 1 instance (maybe 20:0) entry[4]: entry[5]: set to 0? */ static int nouveau_gpuobj_sw_new(struct nouveau_channel *chan, u32 handle, u16 class) { struct drm_nouveau_private *dev_priv = chan->dev->dev_private; struct nouveau_gpuobj *gpuobj; int ret; gpuobj = kzalloc(sizeof(*gpuobj), GFP_KERNEL); if (!gpuobj) return -ENOMEM; gpuobj->dev = chan->dev; gpuobj->engine = NVOBJ_ENGINE_SW; gpuobj->class = class; kref_init(&gpuobj->refcount); gpuobj->cinst = 0x40; spin_lock(&dev_priv->ramin_lock); list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list); spin_unlock(&dev_priv->ramin_lock); ret = nouveau_ramht_insert(chan, handle, gpuobj); nouveau_gpuobj_ref(NULL, &gpuobj); return ret; } int nouveau_gpuobj_gr_new(struct nouveau_channel *chan, u32 handle, int class) { struct drm_nouveau_private *dev_priv = chan->dev->dev_private; struct drm_device *dev = chan->dev; struct nouveau_gpuobj_class *oc; int ret; NV_DEBUG(dev, "ch%d class=0x%04x\n", chan->id, class); list_for_each_entry(oc, &dev_priv->classes, head) { struct nouveau_exec_engine *eng = dev_priv->eng[oc->engine]; if (oc->id != class) continue; if (oc->engine == NVOBJ_ENGINE_SW) return nouveau_gpuobj_sw_new(chan, handle, class); if (!chan->engctx[oc->engine]) { ret = eng->context_new(chan, oc->engine); if (ret) return ret; } return eng->object_new(chan, oc->engine, handle, class); } NV_ERROR(dev, "illegal object class: 0x%x\n", class); return -EINVAL; } static int nouveau_gpuobj_channel_init_pramin(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; uint32_t size; uint32_t base; int ret; NV_DEBUG(dev, "ch%d\n", chan->id); /* Base amount for object storage (4KiB enough?) */ size = 0x2000; base = 0; if (dev_priv->card_type == NV_50) { /* Various fixed table thingos */ size += 0x1400; /* mostly unknown stuff */ size += 0x4000; /* vm pd */ base = 0x6000; /* RAMHT, not sure about setting size yet, 32KiB to be safe */ size += 0x8000; /* RAMFC */ size += 0x1000; } ret = nouveau_gpuobj_new(dev, NULL, size, 0x1000, 0, &chan->ramin); if (ret) { NV_ERROR(dev, "Error allocating channel PRAMIN: %d\n", ret); return ret; } ret = drm_mm_init(&chan->ramin_heap, base, size); if (ret) { NV_ERROR(dev, "Error creating PRAMIN heap: %d\n", ret); nouveau_gpuobj_ref(NULL, &chan->ramin); return ret; } return 0; } static int nvc0_gpuobj_channel_init(struct nouveau_channel *chan, struct nouveau_vm *vm) { struct drm_device *dev = chan->dev; struct nouveau_gpuobj *pgd = NULL; struct nouveau_vm_pgd *vpgd; int ret, i; ret = nouveau_gpuobj_new(dev, NULL, 4096, 0x1000, 0, &chan->ramin); if (ret) return ret; /* create page directory for this vm if none currently exists, * will be destroyed automagically when last reference to the * vm is removed */ if (list_empty(&vm->pgd_list)) { ret = nouveau_gpuobj_new(dev, NULL, 65536, 0x1000, 0, &pgd); if (ret) return ret; } nouveau_vm_ref(vm, &chan->vm, pgd); nouveau_gpuobj_ref(NULL, &pgd); /* point channel at vm's page directory */ vpgd = list_first_entry(&vm->pgd_list, struct nouveau_vm_pgd, head); nv_wo32(chan->ramin, 0x0200, lower_32_bits(vpgd->obj->vinst)); nv_wo32(chan->ramin, 0x0204, upper_32_bits(vpgd->obj->vinst)); nv_wo32(chan->ramin, 0x0208, 0xffffffff); nv_wo32(chan->ramin, 0x020c, 0x000000ff); /* map display semaphore buffers into channel's vm */ for (i = 0; i < 2; i++) { struct nv50_display_crtc *dispc = &nv50_display(dev)->crtc[i]; ret = nouveau_bo_vma_add(dispc->sem.bo, chan->vm, &chan->dispc_vma[i]); if (ret) return ret; } return 0; } int nouveau_gpuobj_channel_init(struct nouveau_channel *chan, uint32_t vram_h, uint32_t tt_h) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fpriv *fpriv = nouveau_fpriv(chan->file_priv); struct nouveau_vm *vm = fpriv ? fpriv->vm : dev_priv->chan_vm; struct nouveau_gpuobj *vram = NULL, *tt = NULL; int ret, i; NV_DEBUG(dev, "ch%d vram=0x%08x tt=0x%08x\n", chan->id, vram_h, tt_h); if (dev_priv->card_type >= NV_C0) return nvc0_gpuobj_channel_init(chan, vm); /* Allocate a chunk of memory for per-channel object storage */ ret = nouveau_gpuobj_channel_init_pramin(chan); if (ret) { NV_ERROR(dev, "init pramin\n"); return ret; } /* NV50 VM * - Allocate per-channel page-directory * - Link with shared channel VM */ if (vm) { u32 pgd_offs = (dev_priv->chipset == 0x50) ? 0x1400 : 0x0200; u64 vm_vinst = chan->ramin->vinst + pgd_offs; u32 vm_pinst = chan->ramin->pinst; if (vm_pinst != ~0) vm_pinst += pgd_offs; ret = nouveau_gpuobj_new_fake(dev, vm_pinst, vm_vinst, 0x4000, 0, &chan->vm_pd); if (ret) return ret; nouveau_vm_ref(vm, &chan->vm, chan->vm_pd); } /* RAMHT */ if (dev_priv->card_type < NV_50) { nouveau_ramht_ref(dev_priv->ramht, &chan->ramht, NULL); } else { struct nouveau_gpuobj *ramht = NULL; ret = nouveau_gpuobj_new(dev, chan, 0x8000, 16, NVOBJ_FLAG_ZERO_ALLOC, &ramht); if (ret) return ret; ret = nouveau_ramht_new(dev, ramht, &chan->ramht); nouveau_gpuobj_ref(NULL, &ramht); if (ret) return ret; /* dma objects for display sync channel semaphore blocks */ for (i = 0; i < dev->mode_config.num_crtc; i++) { struct nouveau_gpuobj *sem = NULL; struct nv50_display_crtc *dispc = &nv50_display(dev)->crtc[i]; u64 offset = dispc->sem.bo->bo.offset; ret = nouveau_gpuobj_dma_new(chan, 0x3d, offset, 0xfff, NV_MEM_ACCESS_RW, NV_MEM_TARGET_VRAM, &sem); if (ret) return ret; ret = nouveau_ramht_insert(chan, NvEvoSema0 + i, sem); nouveau_gpuobj_ref(NULL, &sem); if (ret) return ret; } } /* VRAM ctxdma */ if (dev_priv->card_type >= NV_50) { ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, 0, (1ULL << 40), NV_MEM_ACCESS_RW, NV_MEM_TARGET_VM, &vram); if (ret) { NV_ERROR(dev, "Error creating VRAM ctxdma: %d\n", ret); return ret; } } else { ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, 0, dev_priv->fb_available_size, NV_MEM_ACCESS_RW, NV_MEM_TARGET_VRAM, &vram); if (ret) { NV_ERROR(dev, "Error creating VRAM ctxdma: %d\n", ret); return ret; } } ret = nouveau_ramht_insert(chan, vram_h, vram); nouveau_gpuobj_ref(NULL, &vram); if (ret) { NV_ERROR(dev, "Error adding VRAM ctxdma to RAMHT: %d\n", ret); return ret; } /* TT memory ctxdma */ if (dev_priv->card_type >= NV_50) { ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, 0, (1ULL << 40), NV_MEM_ACCESS_RW, NV_MEM_TARGET_VM, &tt); } else { ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, 0, dev_priv->gart_info.aper_size, NV_MEM_ACCESS_RW, NV_MEM_TARGET_GART, &tt); } if (ret) { NV_ERROR(dev, "Error creating TT ctxdma: %d\n", ret); return ret; } ret = nouveau_ramht_insert(chan, tt_h, tt); nouveau_gpuobj_ref(NULL, &tt); if (ret) { NV_ERROR(dev, "Error adding TT ctxdma to RAMHT: %d\n", ret); return ret; } return 0; } void nouveau_gpuobj_channel_takedown(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; int i; NV_DEBUG(dev, "ch%d\n", chan->id); if (dev_priv->card_type >= NV_50) { struct nv50_display *disp = nv50_display(dev); for (i = 0; i < dev->mode_config.num_crtc; i++) { struct nv50_display_crtc *dispc = &disp->crtc[i]; nouveau_bo_vma_del(dispc->sem.bo, &chan->dispc_vma[i]); } nouveau_vm_ref(NULL, &chan->vm, chan->vm_pd); nouveau_gpuobj_ref(NULL, &chan->vm_pd); } if (drm_mm_initialized(&chan->ramin_heap)) drm_mm_takedown(&chan->ramin_heap); nouveau_gpuobj_ref(NULL, &chan->ramin); } int nouveau_gpuobj_suspend(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj; int i; list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) { if (gpuobj->cinst != NVOBJ_CINST_GLOBAL) continue; gpuobj->suspend = vmalloc(gpuobj->size); if (!gpuobj->suspend) { nouveau_gpuobj_resume(dev); return -ENOMEM; } for (i = 0; i < gpuobj->size; i += 4) gpuobj->suspend[i/4] = nv_ro32(gpuobj, i); } return 0; } void nouveau_gpuobj_resume(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj; int i; list_for_each_entry(gpuobj, &dev_priv->gpuobj_list, list) { if (!gpuobj->suspend) continue; for (i = 0; i < gpuobj->size; i += 4) nv_wo32(gpuobj, i, gpuobj->suspend[i/4]); vfree(gpuobj->suspend); gpuobj->suspend = NULL; } dev_priv->engine.instmem.flush(dev); } int nouveau_ioctl_grobj_alloc(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_nouveau_grobj_alloc *init = data; struct nouveau_channel *chan; int ret; if (init->handle == ~0) return -EINVAL; chan = nouveau_channel_get(file_priv, init->channel); if (IS_ERR(chan)) return PTR_ERR(chan); if (nouveau_ramht_find(chan, init->handle)) { ret = -EEXIST; goto out; } ret = nouveau_gpuobj_gr_new(chan, init->handle, init->class); if (ret) { NV_ERROR(dev, "Error creating object: %d (%d/0x%08x)\n", ret, init->channel, init->handle); } out: nouveau_channel_put(&chan); return ret; } int nouveau_ioctl_gpuobj_free(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_nouveau_gpuobj_free *objfree = data; struct nouveau_channel *chan; int ret; chan = nouveau_channel_get(file_priv, objfree->channel); if (IS_ERR(chan)) return PTR_ERR(chan); /* Synchronize with the user channel */ nouveau_channel_idle(chan); ret = nouveau_ramht_remove(chan, objfree->handle); nouveau_channel_put(&chan); return ret; } u32 nv_ro32(struct nouveau_gpuobj *gpuobj, u32 offset) { struct drm_nouveau_private *dev_priv = gpuobj->dev->dev_private; struct drm_device *dev = gpuobj->dev; unsigned long flags; if (gpuobj->pinst == ~0 || !dev_priv->ramin_available) { u64 ptr = gpuobj->vinst + offset; u32 base = ptr >> 16; u32 val; spin_lock_irqsave(&dev_priv->vm_lock, flags); if (dev_priv->ramin_base != base) { dev_priv->ramin_base = base; nv_wr32(dev, 0x001700, dev_priv->ramin_base); } val = nv_rd32(dev, 0x700000 + (ptr & 0xffff)); spin_unlock_irqrestore(&dev_priv->vm_lock, flags); return val; } return nv_ri32(dev, gpuobj->pinst + offset); } void nv_wo32(struct nouveau_gpuobj *gpuobj, u32 offset, u32 val) { struct drm_nouveau_private *dev_priv = gpuobj->dev->dev_private; struct drm_device *dev = gpuobj->dev; unsigned long flags; if (gpuobj->pinst == ~0 || !dev_priv->ramin_available) { u64 ptr = gpuobj->vinst + offset; u32 base = ptr >> 16; spin_lock_irqsave(&dev_priv->vm_lock, flags); if (dev_priv->ramin_base != base) { dev_priv->ramin_base = base; nv_wr32(dev, 0x001700, dev_priv->ramin_base); } nv_wr32(dev, 0x700000 + (ptr & 0xffff), val); spin_unlock_irqrestore(&dev_priv->vm_lock, flags); return; } nv_wi32(dev, gpuobj->pinst + offset, val); }