/* * * Bluetooth HCI UART driver for Intel devices * * Copyright (C) 2015 Intel Corporation * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hci_uart.h" #include "btintel.h" #define STATE_BOOTLOADER 0 #define STATE_DOWNLOADING 1 #define STATE_FIRMWARE_LOADED 2 #define STATE_FIRMWARE_FAILED 3 #define STATE_BOOTING 4 #define STATE_LPM_ENABLED 5 #define STATE_TX_ACTIVE 6 #define STATE_SUSPENDED 7 #define STATE_LPM_TRANSACTION 8 #define HCI_LPM_WAKE_PKT 0xf0 #define HCI_LPM_PKT 0xf1 #define HCI_LPM_MAX_SIZE 10 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE #define LPM_OP_TX_NOTIFY 0x00 #define LPM_OP_SUSPEND_ACK 0x02 #define LPM_OP_RESUME_ACK 0x03 struct hci_lpm_pkt { __u8 opcode; __u8 dlen; __u8 data[0]; } __packed; struct intel_device { struct list_head list; struct platform_device *pdev; struct gpio_desc *reset; int irq; }; static LIST_HEAD(intel_device_list); static DEFINE_MUTEX(intel_device_list_lock); struct intel_data { struct sk_buff *rx_skb; struct sk_buff_head txq; unsigned long flags; }; static u8 intel_convert_speed(unsigned int speed) { switch (speed) { case 9600: return 0x00; case 19200: return 0x01; case 38400: return 0x02; case 57600: return 0x03; case 115200: return 0x04; case 230400: return 0x05; case 460800: return 0x06; case 921600: return 0x07; case 1843200: return 0x08; case 3250000: return 0x09; case 2000000: return 0x0a; case 3000000: return 0x0b; default: return 0xff; } } static int intel_wait_booting(struct hci_uart *hu) { struct intel_data *intel = hu->priv; int err; err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING, TASK_INTERRUPTIBLE, msecs_to_jiffies(1000)); if (err == 1) { bt_dev_err(hu->hdev, "Device boot interrupted"); return -EINTR; } if (err) { bt_dev_err(hu->hdev, "Device boot timeout"); return -ETIMEDOUT; } return err; } static int intel_wait_lpm_transaction(struct hci_uart *hu) { struct intel_data *intel = hu->priv; int err; err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION, TASK_INTERRUPTIBLE, msecs_to_jiffies(1000)); if (err == 1) { bt_dev_err(hu->hdev, "LPM transaction interrupted"); return -EINTR; } if (err) { bt_dev_err(hu->hdev, "LPM transaction timeout"); return -ETIMEDOUT; } return err; } static int intel_lpm_suspend(struct hci_uart *hu) { static const u8 suspend[] = { 0x01, 0x01, 0x01 }; struct intel_data *intel = hu->priv; struct sk_buff *skb; if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || test_bit(STATE_SUSPENDED, &intel->flags)) return 0; if (test_bit(STATE_TX_ACTIVE, &intel->flags)) return -EAGAIN; bt_dev_dbg(hu->hdev, "Suspending"); skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL); if (!skb) { bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); return -ENOMEM; } memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend)); bt_cb(skb)->pkt_type = HCI_LPM_PKT; set_bit(STATE_LPM_TRANSACTION, &intel->flags); skb_queue_tail(&intel->txq, skb); hci_uart_tx_wakeup(hu); intel_wait_lpm_transaction(hu); /* Even in case of failure, continue and test the suspended flag */ clear_bit(STATE_LPM_TRANSACTION, &intel->flags); if (!test_bit(STATE_SUSPENDED, &intel->flags)) { bt_dev_err(hu->hdev, "Device suspend error"); return -EINVAL; } bt_dev_dbg(hu->hdev, "Suspended"); hci_uart_set_flow_control(hu, true); return 0; } static int intel_lpm_resume(struct hci_uart *hu) { struct intel_data *intel = hu->priv; struct sk_buff *skb; if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || !test_bit(STATE_SUSPENDED, &intel->flags)) return 0; bt_dev_dbg(hu->hdev, "Resuming"); hci_uart_set_flow_control(hu, false); skb = bt_skb_alloc(0, GFP_KERNEL); if (!skb) { bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); return -ENOMEM; } bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT; set_bit(STATE_LPM_TRANSACTION, &intel->flags); skb_queue_tail(&intel->txq, skb); hci_uart_tx_wakeup(hu); intel_wait_lpm_transaction(hu); /* Even in case of failure, continue and test the suspended flag */ clear_bit(STATE_LPM_TRANSACTION, &intel->flags); if (test_bit(STATE_SUSPENDED, &intel->flags)) { bt_dev_err(hu->hdev, "Device resume error"); return -EINVAL; } bt_dev_dbg(hu->hdev, "Resumed"); return 0; } static int intel_lpm_host_wake(struct hci_uart *hu) { static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 }; struct intel_data *intel = hu->priv; struct sk_buff *skb; hci_uart_set_flow_control(hu, false); clear_bit(STATE_SUSPENDED, &intel->flags); skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL); if (!skb) { bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); return -ENOMEM; } memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack, sizeof(lpm_resume_ack)); bt_cb(skb)->pkt_type = HCI_LPM_PKT; skb_queue_tail(&intel->txq, skb); hci_uart_tx_wakeup(hu); bt_dev_dbg(hu->hdev, "Resumed by controller"); return 0; } static irqreturn_t intel_irq(int irq, void *dev_id) { struct intel_device *idev = dev_id; dev_info(&idev->pdev->dev, "hci_intel irq\n"); return IRQ_HANDLED; } static int intel_set_power(struct hci_uart *hu, bool powered) { struct list_head *p; int err = -ENODEV; mutex_lock(&intel_device_list_lock); list_for_each(p, &intel_device_list) { struct intel_device *idev = list_entry(p, struct intel_device, list); /* tty device and pdev device should share the same parent * which is the UART port. */ if (hu->tty->dev->parent != idev->pdev->dev.parent) continue; if (!idev->reset) { err = -ENOTSUPP; break; } BT_INFO("hu %p, Switching compatible pm device (%s) to %u", hu, dev_name(&idev->pdev->dev), powered); gpiod_set_value(idev->reset, powered); if (idev->irq < 0) break; if (powered && device_can_wakeup(&idev->pdev->dev)) { err = devm_request_threaded_irq(&idev->pdev->dev, idev->irq, NULL, intel_irq, IRQF_ONESHOT, "bt-host-wake", idev); if (err) { BT_ERR("hu %p, unable to allocate irq-%d", hu, idev->irq); break; } device_wakeup_enable(&idev->pdev->dev); } else if (!powered && device_may_wakeup(&idev->pdev->dev)) { devm_free_irq(&idev->pdev->dev, idev->irq, idev); device_wakeup_disable(&idev->pdev->dev); } } mutex_unlock(&intel_device_list_lock); return err; } static int intel_open(struct hci_uart *hu) { struct intel_data *intel; BT_DBG("hu %p", hu); intel = kzalloc(sizeof(*intel), GFP_KERNEL); if (!intel) return -ENOMEM; skb_queue_head_init(&intel->txq); hu->priv = intel; if (!intel_set_power(hu, true)) set_bit(STATE_BOOTING, &intel->flags); return 0; } static int intel_close(struct hci_uart *hu) { struct intel_data *intel = hu->priv; BT_DBG("hu %p", hu); intel_set_power(hu, false); skb_queue_purge(&intel->txq); kfree_skb(intel->rx_skb); kfree(intel); hu->priv = NULL; return 0; } static int intel_flush(struct hci_uart *hu) { struct intel_data *intel = hu->priv; BT_DBG("hu %p", hu); skb_queue_purge(&intel->txq); return 0; } static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) { struct sk_buff *skb; struct hci_event_hdr *hdr; struct hci_ev_cmd_complete *evt; skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC); if (!skb) return -ENOMEM; hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); hdr->evt = HCI_EV_CMD_COMPLETE; hdr->plen = sizeof(*evt) + 1; evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); evt->ncmd = 0x01; evt->opcode = cpu_to_le16(opcode); *skb_put(skb, 1) = 0x00; bt_cb(skb)->pkt_type = HCI_EVENT_PKT; return hci_recv_frame(hdev, skb); } static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed) { struct intel_data *intel = hu->priv; struct hci_dev *hdev = hu->hdev; u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 }; struct sk_buff *skb; int err; /* This can be the first command sent to the chip, check * that the controller is ready. */ err = intel_wait_booting(hu); clear_bit(STATE_BOOTING, &intel->flags); /* In case of timeout, try to continue anyway */ if (err && err != ETIMEDOUT) return err; bt_dev_info(hdev, "Change controller speed to %d", speed); speed_cmd[3] = intel_convert_speed(speed); if (speed_cmd[3] == 0xff) { bt_dev_err(hdev, "Unsupported speed"); return -EINVAL; } /* Device will not accept speed change if Intel version has not been * previously requested. */ skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel version information failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL); if (!skb) { bt_dev_err(hdev, "Failed to alloc memory for baudrate packet"); return -ENOMEM; } memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd)); bt_cb(skb)->pkt_type = HCI_COMMAND_PKT; hci_uart_set_flow_control(hu, true); skb_queue_tail(&intel->txq, skb); hci_uart_tx_wakeup(hu); /* wait 100ms to change baudrate on controller side */ msleep(100); hci_uart_set_baudrate(hu, speed); hci_uart_set_flow_control(hu, false); return 0; } static int intel_setup(struct hci_uart *hu) { static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01, 0x00, 0x08, 0x04, 0x00 }; static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b }; struct intel_data *intel = hu->priv; struct intel_device *idev = NULL; struct hci_dev *hdev = hu->hdev; struct sk_buff *skb; struct intel_version *ver; struct intel_boot_params *params; struct list_head *p; const struct firmware *fw; const u8 *fw_ptr; char fwname[64]; u32 frag_len; ktime_t calltime, delta, rettime; unsigned long long duration; unsigned int init_speed, oper_speed; int speed_change = 0; int err; bt_dev_dbg(hdev, "start intel_setup"); hu->hdev->set_bdaddr = btintel_set_bdaddr; calltime = ktime_get(); if (hu->init_speed) init_speed = hu->init_speed; else init_speed = hu->proto->init_speed; if (hu->oper_speed) oper_speed = hu->oper_speed; else oper_speed = hu->proto->oper_speed; if (oper_speed && init_speed && oper_speed != init_speed) speed_change = 1; /* Check that the controller is ready */ err = intel_wait_booting(hu); clear_bit(STATE_BOOTING, &intel->flags); /* In case of timeout, try to continue anyway */ if (err && err != ETIMEDOUT) return err; set_bit(STATE_BOOTLOADER, &intel->flags); /* Read the Intel version information to determine if the device * is in bootloader mode or if it already has operational firmware * loaded. */ skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel version information failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (skb->len != sizeof(*ver)) { bt_dev_err(hdev, "Intel version event size mismatch"); kfree_skb(skb); return -EILSEQ; } ver = (struct intel_version *)skb->data; if (ver->status) { bt_dev_err(hdev, "Intel version command failure (%02x)", ver->status); err = -bt_to_errno(ver->status); kfree_skb(skb); return err; } /* The hardware platform number has a fixed value of 0x37 and * for now only accept this single value. */ if (ver->hw_platform != 0x37) { bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", ver->hw_platform); kfree_skb(skb); return -EINVAL; } /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is * supported by this firmware loading method. This check has been * put in place to ensure correct forward compatibility options * when newer hardware variants come along. */ if (ver->hw_variant != 0x0b) { bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", ver->hw_variant); kfree_skb(skb); return -EINVAL; } btintel_version_info(hdev, ver); /* The firmware variant determines if the device is in bootloader * mode or is running operational firmware. The value 0x06 identifies * the bootloader and the value 0x23 identifies the operational * firmware. * * When the operational firmware is already present, then only * the check for valid Bluetooth device address is needed. This * determines if the device will be added as configured or * unconfigured controller. * * It is not possible to use the Secure Boot Parameters in this * case since that command is only available in bootloader mode. */ if (ver->fw_variant == 0x23) { kfree_skb(skb); clear_bit(STATE_BOOTLOADER, &intel->flags); btintel_check_bdaddr(hdev); return 0; } /* If the device is not in bootloader mode, then the only possible * choice is to return an error and abort the device initialization. */ if (ver->fw_variant != 0x06) { bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)", ver->fw_variant); kfree_skb(skb); return -ENODEV; } kfree_skb(skb); /* Read the secure boot parameters to identify the operating * details of the bootloader. */ skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (skb->len != sizeof(*params)) { bt_dev_err(hdev, "Intel boot parameters size mismatch"); kfree_skb(skb); return -EILSEQ; } params = (struct intel_boot_params *)skb->data; if (params->status) { bt_dev_err(hdev, "Intel boot parameters command failure (%02x)", params->status); err = -bt_to_errno(params->status); kfree_skb(skb); return err; } bt_dev_info(hdev, "Device revision is %u", le16_to_cpu(params->dev_revid)); bt_dev_info(hdev, "Secure boot is %s", params->secure_boot ? "enabled" : "disabled"); bt_dev_info(hdev, "Minimum firmware build %u week %u %u", params->min_fw_build_nn, params->min_fw_build_cw, 2000 + params->min_fw_build_yy); /* It is required that every single firmware fragment is acknowledged * with a command complete event. If the boot parameters indicate * that this bootloader does not send them, then abort the setup. */ if (params->limited_cce != 0x00) { bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", params->limited_cce); kfree_skb(skb); return -EINVAL; } /* If the OTP has no valid Bluetooth device address, then there will * also be no valid address for the operational firmware. */ if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { bt_dev_info(hdev, "No device address configured"); set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); } /* With this Intel bootloader only the hardware variant and device * revision information are used to select the right firmware. * * Currently this bootloader support is limited to hardware variant * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b). */ snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi", le16_to_cpu(params->dev_revid)); err = request_firmware(&fw, fwname, &hdev->dev); if (err < 0) { bt_dev_err(hdev, "Failed to load Intel firmware file (%d)", err); kfree_skb(skb); return err; } bt_dev_info(hdev, "Found device firmware: %s", fwname); kfree_skb(skb); if (fw->size < 644) { bt_dev_err(hdev, "Invalid size of firmware file (%zu)", fw->size); err = -EBADF; goto done; } set_bit(STATE_DOWNLOADING, &intel->flags); /* Start the firmware download transaction with the Init fragment * represented by the 128 bytes of CSS header. */ err = btintel_secure_send(hdev, 0x00, 128, fw->data); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware header (%d)", err); goto done; } /* Send the 256 bytes of public key information from the firmware * as the PKey fragment. */ err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware public key (%d)", err); goto done; } /* Send the 256 bytes of signature information from the firmware * as the Sign fragment. */ err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); goto done; } fw_ptr = fw->data + 644; frag_len = 0; while (fw_ptr - fw->data < fw->size) { struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); frag_len += sizeof(*cmd) + cmd->plen; bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data), fw->size); /* The parameter length of the secure send command requires * a 4 byte alignment. It happens so that the firmware file * contains proper Intel_NOP commands to align the fragments * as needed. * * Send set of commands with 4 byte alignment from the * firmware data buffer as a single Data fragement. */ if (frag_len % 4) continue; /* Send each command from the firmware data buffer as * a single Data fragment. */ err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware data (%d)", err); goto done; } fw_ptr += frag_len; frag_len = 0; } set_bit(STATE_FIRMWARE_LOADED, &intel->flags); bt_dev_info(hdev, "Waiting for firmware download to complete"); /* Before switching the device into operational mode and with that * booting the loaded firmware, wait for the bootloader notification * that all fragments have been successfully received. * * When the event processing receives the notification, then the * STATE_DOWNLOADING flag will be cleared. * * The firmware loading should not take longer than 5 seconds * and thus just timeout if that happens and fail the setup * of this device. */ err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING, TASK_INTERRUPTIBLE, msecs_to_jiffies(5000)); if (err == 1) { bt_dev_err(hdev, "Firmware loading interrupted"); err = -EINTR; goto done; } if (err) { bt_dev_err(hdev, "Firmware loading timeout"); err = -ETIMEDOUT; goto done; } if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) { bt_dev_err(hdev, "Firmware loading failed"); err = -ENOEXEC; goto done; } rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); done: release_firmware(fw); if (err < 0) return err; /* We need to restore the default speed before Intel reset */ if (speed_change) { err = intel_set_baudrate(hu, init_speed); if (err) return err; } calltime = ktime_get(); set_bit(STATE_BOOTING, &intel->flags); skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) return PTR_ERR(skb); kfree_skb(skb); /* The bootloader will not indicate when the device is ready. This * is done by the operational firmware sending bootup notification. * * Booting into operational firmware should not take longer than * 1 second. However if that happens, then just fail the setup * since something went wrong. */ bt_dev_info(hdev, "Waiting for device to boot"); err = intel_wait_booting(hu); if (err) return err; clear_bit(STATE_BOOTING, &intel->flags); rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; bt_dev_info(hdev, "Device booted in %llu usecs", duration); /* Enable LPM if matching pdev with wakeup enabled */ mutex_lock(&intel_device_list_lock); list_for_each(p, &intel_device_list) { struct intel_device *dev = list_entry(p, struct intel_device, list); if (hu->tty->dev->parent == dev->pdev->dev.parent) { if (device_may_wakeup(&dev->pdev->dev)) idev = dev; break; } } mutex_unlock(&intel_device_list_lock); if (!idev) goto no_lpm; bt_dev_info(hdev, "Enabling LPM"); skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Failed to enable LPM"); goto no_lpm; } kfree_skb(skb); set_bit(STATE_LPM_ENABLED, &intel->flags); no_lpm: skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) return PTR_ERR(skb); kfree_skb(skb); if (speed_change) { err = intel_set_baudrate(hu, oper_speed); if (err) return err; } bt_dev_info(hdev, "Setup complete"); clear_bit(STATE_BOOTLOADER, &intel->flags); return 0; } static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); struct intel_data *intel = hu->priv; struct hci_event_hdr *hdr; if (!test_bit(STATE_BOOTLOADER, &intel->flags) && !test_bit(STATE_BOOTING, &intel->flags)) goto recv; hdr = (void *)skb->data; /* When the firmware loading completes the device sends * out a vendor specific event indicating the result of * the firmware loading. */ if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 && skb->data[2] == 0x06) { if (skb->data[3] != 0x00) set_bit(STATE_FIRMWARE_FAILED, &intel->flags); if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) && test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) { smp_mb__after_atomic(); wake_up_bit(&intel->flags, STATE_DOWNLOADING); } /* When switching to the operational firmware the device * sends a vendor specific event indicating that the bootup * completed. */ } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 && skb->data[2] == 0x02) { if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) { smp_mb__after_atomic(); wake_up_bit(&intel->flags, STATE_BOOTING); } } recv: return hci_recv_frame(hdev, skb); } static void intel_recv_lpm_notify(struct hci_dev *hdev, int value) { struct hci_uart *hu = hci_get_drvdata(hdev); struct intel_data *intel = hu->priv; bt_dev_dbg(hdev, "TX idle notification (%d)", value); if (value) set_bit(STATE_TX_ACTIVE, &intel->flags); else clear_bit(STATE_TX_ACTIVE, &intel->flags); } static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_lpm_pkt *lpm = (void *)skb->data; struct hci_uart *hu = hci_get_drvdata(hdev); struct intel_data *intel = hu->priv; switch (lpm->opcode) { case LPM_OP_TX_NOTIFY: if (lpm->dlen) intel_recv_lpm_notify(hdev, lpm->data[0]); break; case LPM_OP_SUSPEND_ACK: set_bit(STATE_SUSPENDED, &intel->flags); if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { smp_mb__after_atomic(); wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); } break; case LPM_OP_RESUME_ACK: clear_bit(STATE_SUSPENDED, &intel->flags); if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { smp_mb__after_atomic(); wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); } break; default: bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode); break; } kfree_skb(skb); return 0; } #define INTEL_RECV_LPM \ .type = HCI_LPM_PKT, \ .hlen = HCI_LPM_HDR_SIZE, \ .loff = 1, \ .lsize = 1, \ .maxlen = HCI_LPM_MAX_SIZE static const struct h4_recv_pkt intel_recv_pkts[] = { { H4_RECV_ACL, .recv = hci_recv_frame }, { H4_RECV_SCO, .recv = hci_recv_frame }, { H4_RECV_EVENT, .recv = intel_recv_event }, { INTEL_RECV_LPM, .recv = intel_recv_lpm }, }; static int intel_recv(struct hci_uart *hu, const void *data, int count) { struct intel_data *intel = hu->priv; if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) return -EUNATCH; intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count, intel_recv_pkts, ARRAY_SIZE(intel_recv_pkts)); if (IS_ERR(intel->rx_skb)) { int err = PTR_ERR(intel->rx_skb); bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); intel->rx_skb = NULL; return err; } return count; } static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb) { struct intel_data *intel = hu->priv; BT_DBG("hu %p skb %p", hu, skb); skb_queue_tail(&intel->txq, skb); return 0; } static struct sk_buff *intel_dequeue(struct hci_uart *hu) { struct intel_data *intel = hu->priv; struct sk_buff *skb; skb = skb_dequeue(&intel->txq); if (!skb) return skb; if (test_bit(STATE_BOOTLOADER, &intel->flags) && (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) { struct hci_command_hdr *cmd = (void *)skb->data; __u16 opcode = le16_to_cpu(cmd->opcode); /* When the 0xfc01 command is issued to boot into * the operational firmware, it will actually not * send a command complete event. To keep the flow * control working inject that event here. */ if (opcode == 0xfc01) inject_cmd_complete(hu->hdev, opcode); } /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1); return skb; } static const struct hci_uart_proto intel_proto = { .id = HCI_UART_INTEL, .name = "Intel", .init_speed = 115200, .oper_speed = 3000000, .open = intel_open, .close = intel_close, .flush = intel_flush, .setup = intel_setup, .set_baudrate = intel_set_baudrate, .recv = intel_recv, .enqueue = intel_enqueue, .dequeue = intel_dequeue, }; #ifdef CONFIG_ACPI static const struct acpi_device_id intel_acpi_match[] = { { "INT33E1", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, intel_acpi_match); static int intel_acpi_probe(struct intel_device *idev) { const struct acpi_device_id *id; id = acpi_match_device(intel_acpi_match, &idev->pdev->dev); if (!id) return -ENODEV; return 0; } #else static int intel_acpi_probe(struct intel_device *idev) { return -ENODEV; } #endif static int intel_probe(struct platform_device *pdev) { struct intel_device *idev; idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); if (!idev) return -ENOMEM; idev->pdev = pdev; if (ACPI_HANDLE(&pdev->dev)) { int err = intel_acpi_probe(idev); if (err) return err; } else { return -ENODEV; } idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(idev->reset)) { dev_err(&pdev->dev, "Unable to retrieve gpio\n"); return PTR_ERR(idev->reset); } idev->irq = platform_get_irq(pdev, 0); if (idev->irq < 0) { struct gpio_desc *host_wake; dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n"); host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake", GPIOD_IN); if (IS_ERR(host_wake)) { dev_err(&pdev->dev, "Unable to retrieve IRQ\n"); goto no_irq; } idev->irq = gpiod_to_irq(host_wake); if (idev->irq < 0) { dev_err(&pdev->dev, "No corresponding irq for gpio\n"); goto no_irq; } } /* Only enable wake-up/irq when controller is powered */ device_set_wakeup_capable(&pdev->dev, true); device_wakeup_disable(&pdev->dev); no_irq: platform_set_drvdata(pdev, idev); /* Place this instance on the device list */ mutex_lock(&intel_device_list_lock); list_add_tail(&idev->list, &intel_device_list); mutex_unlock(&intel_device_list_lock); dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n", desc_to_gpio(idev->reset), idev->irq); return 0; } static int intel_remove(struct platform_device *pdev) { struct intel_device *idev = platform_get_drvdata(pdev); device_wakeup_disable(&pdev->dev); mutex_lock(&intel_device_list_lock); list_del(&idev->list); mutex_unlock(&intel_device_list_lock); dev_info(&pdev->dev, "unregistered.\n"); return 0; } static struct platform_driver intel_driver = { .probe = intel_probe, .remove = intel_remove, .driver = { .name = "hci_intel", .acpi_match_table = ACPI_PTR(intel_acpi_match), }, }; int __init intel_init(void) { platform_driver_register(&intel_driver); return hci_uart_register_proto(&intel_proto); } int __exit intel_deinit(void) { platform_driver_unregister(&intel_driver); return hci_uart_unregister_proto(&intel_proto); }