// SPDX-License-Identifier: GPL-2.0 /* * Moving/copying garbage collector * * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_iter.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "disk_groups.h" #include "errcode.h" #include "error.h" #include "extents.h" #include "eytzinger.h" #include "io.h" #include "keylist.h" #include "move.h" #include "movinggc.h" #include "super-io.h" #include "trace.h" #include #include #include #include #include #include static int bucket_offset_cmp(const void *_l, const void *_r, size_t size) { const struct copygc_heap_entry *l = _l; const struct copygc_heap_entry *r = _r; return cmp_int(l->dev, r->dev) ?: cmp_int(l->offset, r->offset); } static bool copygc_pred(struct bch_fs *c, void *arg, struct bkey_s_c k, struct bch_io_opts *io_opts, struct data_update_opts *data_opts) { copygc_heap *h = &c->copygc_heap; struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p = { 0 }; unsigned i = 0; /* * We need to use the journal reserve here, because * - journal reclaim depends on btree key cache * flushing to make forward progress, * - which has to make forward progress when the * journal is pre-reservation full, * - and depends on allocation - meaning allocator and * copygc */ data_opts->rewrite_ptrs = 0; data_opts->target = io_opts->background_target; data_opts->extra_replicas = 0; data_opts->btree_insert_flags = BTREE_INSERT_USE_RESERVE| JOURNAL_WATERMARK_copygc; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); struct copygc_heap_entry search = { .dev = p.ptr.dev, .offset = p.ptr.offset, }; ssize_t eytz; if (p.ptr.cached) continue; eytz = eytzinger0_find_le(h->data, h->used, sizeof(h->data[0]), bucket_offset_cmp, &search); #if 0 /* eytzinger search verify code: */ ssize_t j = -1, k; for (k = 0; k < h->used; k++) if (h->data[k].offset <= ptr->offset && (j < 0 || h->data[k].offset > h->data[j].offset)) j = k; BUG_ON(i != j); #endif if (eytz >= 0 && p.ptr.dev == h->data[eytz].dev && p.ptr.offset < h->data[eytz].offset + ca->mi.bucket_size && p.ptr.gen == h->data[eytz].gen) data_opts->rewrite_ptrs |= 1U << i; i++; } return data_opts->rewrite_ptrs != 0; } static inline int fragmentation_cmp(copygc_heap *heap, struct copygc_heap_entry l, struct copygc_heap_entry r) { return cmp_int(l.fragmentation, r.fragmentation); } static int walk_buckets_to_copygc(struct bch_fs *c) { copygc_heap *h = &c->copygc_heap; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct bch_alloc_v4 a; int ret; bch2_trans_init(&trans, c, 0, 0); for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_PREFETCH, k, ret) { struct bch_dev *ca = bch_dev_bkey_exists(c, iter.pos.inode); struct copygc_heap_entry e; bch2_alloc_to_v4(k, &a); if (a.data_type != BCH_DATA_user || a.dirty_sectors >= ca->mi.bucket_size || bch2_bucket_is_open(c, iter.pos.inode, iter.pos.offset)) continue; e = (struct copygc_heap_entry) { .dev = iter.pos.inode, .gen = a.gen, .replicas = 1 + a.stripe_redundancy, .fragmentation = div_u64((u64) a.dirty_sectors * (1ULL << 31), ca->mi.bucket_size), .sectors = a.dirty_sectors, .offset = bucket_to_sector(ca, iter.pos.offset), }; heap_add_or_replace(h, e, -fragmentation_cmp, NULL); } bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); return ret; } static int bucket_inorder_cmp(const void *_l, const void *_r) { const struct copygc_heap_entry *l = _l; const struct copygc_heap_entry *r = _r; return cmp_int(l->dev, r->dev) ?: cmp_int(l->offset, r->offset); } static int check_copygc_was_done(struct bch_fs *c, u64 *sectors_not_moved, u64 *buckets_not_moved) { copygc_heap *h = &c->copygc_heap; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct bch_alloc_v4 a; struct copygc_heap_entry *i; int ret = 0; sort(h->data, h->used, sizeof(h->data[0]), bucket_inorder_cmp, NULL); bch2_trans_init(&trans, c, 0, 0); bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN, 0); for (i = h->data; i < h->data + h->used; i++) { struct bch_dev *ca = bch_dev_bkey_exists(c, i->dev); bch2_btree_iter_set_pos(&iter, POS(i->dev, sector_to_bucket(ca, i->offset))); ret = lockrestart_do(&trans, bkey_err(k = bch2_btree_iter_peek_slot(&iter))); if (ret) break; bch2_alloc_to_v4(k, &a); if (a.gen == i->gen && a.dirty_sectors) { *sectors_not_moved += a.dirty_sectors; *buckets_not_moved += 1; } } bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); return ret; } static int bch2_copygc(struct bch_fs *c) { copygc_heap *h = &c->copygc_heap; struct copygc_heap_entry e, *i; struct bch_move_stats move_stats; u64 sectors_to_move = 0, sectors_to_write = 0, sectors_not_moved = 0; u64 sectors_reserved = 0; u64 buckets_to_move, buckets_not_moved = 0; struct bch_dev *ca; unsigned dev_idx; size_t heap_size = 0; int ret; bch2_move_stats_init(&move_stats, "copygc"); /* * Find buckets with lowest sector counts, skipping completely * empty buckets, by building a maxheap sorted by sector count, * and repeatedly replacing the maximum element until all * buckets have been visited. */ h->used = 0; for_each_rw_member(ca, c, dev_idx) heap_size += ca->mi.nbuckets >> 7; if (h->size < heap_size) { free_heap(&c->copygc_heap); if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) { bch_err(c, "error allocating copygc heap"); return 0; } } for_each_rw_member(ca, c, dev_idx) { struct bch_dev_usage usage = bch2_dev_usage_read(ca); u64 avail = max_t(s64, 0, usage.d[BCH_DATA_free].buckets + usage.d[BCH_DATA_need_discard].buckets - ca->nr_open_buckets - bch2_dev_buckets_reserved(ca, RESERVE_movinggc)); avail = min(avail, ca->mi.nbuckets >> 6); sectors_reserved += avail * ca->mi.bucket_size; } ret = walk_buckets_to_copygc(c); if (ret) { bch2_fs_fatal_error(c, "error walking buckets to copygc!"); return ret; } if (!h->used) { s64 wait = S64_MAX, dev_wait; u64 dev_min_wait_fragmented = 0; u64 dev_min_wait_allowed = 0; int dev_min_wait = -1; for_each_rw_member(ca, c, dev_idx) { struct bch_dev_usage usage = bch2_dev_usage_read(ca); s64 allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) * ca->mi.bucket_size) >> 1); s64 fragmented = usage.d[BCH_DATA_user].fragmented; dev_wait = max(0LL, allowed - fragmented); if (dev_min_wait < 0 || dev_wait < wait) { dev_min_wait = dev_idx; dev_min_wait_fragmented = fragmented; dev_min_wait_allowed = allowed; } } bch_err_ratelimited(c, "copygc requested to run but found no buckets to move! dev %u fragmented %llu allowed %llu", dev_min_wait, dev_min_wait_fragmented, dev_min_wait_allowed); return 0; } /* * Our btree node allocations also come out of RESERVE_movingc: */ sectors_reserved = (sectors_reserved * 3) / 4; if (!sectors_reserved) { bch2_fs_fatal_error(c, "stuck, ran out of copygc reserve!"); return -1; } for (i = h->data; i < h->data + h->used; i++) { sectors_to_move += i->sectors; sectors_to_write += i->sectors * i->replicas; } while (sectors_to_write > sectors_reserved) { BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL)); sectors_to_write -= e.sectors * e.replicas; } buckets_to_move = h->used; if (!buckets_to_move) { bch_err_ratelimited(c, "copygc cannot run - sectors_reserved %llu!", sectors_reserved); return 0; } eytzinger0_sort(h->data, h->used, sizeof(h->data[0]), bucket_offset_cmp, NULL); ret = bch2_move_data(c, 0, POS_MIN, BTREE_ID_NR, POS_MAX, NULL, &move_stats, writepoint_ptr(&c->copygc_write_point), false, copygc_pred, NULL); if (ret < 0 && !bch2_err_matches(ret, EROFS)) bch_err(c, "error from bch2_move_data() in copygc: %s", bch2_err_str(ret)); if (ret) return ret; ret = check_copygc_was_done(c, §ors_not_moved, &buckets_not_moved); if (ret) { bch_err(c, "error %i from check_copygc_was_done()", ret); return ret; } if (sectors_not_moved) bch_warn_ratelimited(c, "copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved (move stats: moved %llu sectors, raced %llu keys, %llu sectors)", sectors_not_moved, sectors_to_move, buckets_not_moved, buckets_to_move, atomic64_read(&move_stats.sectors_moved), atomic64_read(&move_stats.keys_raced), atomic64_read(&move_stats.sectors_raced)); trace_and_count(c, copygc, c, atomic64_read(&move_stats.sectors_moved), sectors_not_moved, buckets_to_move, buckets_not_moved); return 0; } /* * Copygc runs when the amount of fragmented data is above some arbitrary * threshold: * * The threshold at the limit - when the device is full - is the amount of space * we reserved in bch2_recalc_capacity; we can't have more than that amount of * disk space stranded due to fragmentation and store everything we have * promised to store. * * But we don't want to be running copygc unnecessarily when the device still * has plenty of free space - rather, we want copygc to smoothly run every so * often and continually reduce the amount of fragmented space as the device * fills up. So, we increase the threshold by half the current free space. */ unsigned long bch2_copygc_wait_amount(struct bch_fs *c) { struct bch_dev *ca; unsigned dev_idx; s64 wait = S64_MAX, fragmented_allowed, fragmented; for_each_rw_member(ca, c, dev_idx) { struct bch_dev_usage usage = bch2_dev_usage_read(ca); fragmented_allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) * ca->mi.bucket_size) >> 1); fragmented = usage.d[BCH_DATA_user].fragmented; wait = min(wait, max(0LL, fragmented_allowed - fragmented)); } return wait; } static int bch2_copygc_thread(void *arg) { struct bch_fs *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; u64 last, wait; int ret = 0; set_freezable(); while (!ret && !kthread_should_stop()) { cond_resched(); if (kthread_wait_freezable(c->copy_gc_enabled)) break; last = atomic64_read(&clock->now); wait = bch2_copygc_wait_amount(c); if (wait > clock->max_slop) { trace_and_count(c, copygc_wait, c, wait, last + wait); c->copygc_wait = last + wait; bch2_kthread_io_clock_wait(clock, last + wait, MAX_SCHEDULE_TIMEOUT); continue; } c->copygc_wait = 0; c->copygc_running = true; ret = bch2_copygc(c); c->copygc_running = false; wake_up(&c->copygc_running_wq); } return 0; } void bch2_copygc_stop(struct bch_fs *c) { if (c->copygc_thread) { kthread_stop(c->copygc_thread); put_task_struct(c->copygc_thread); } c->copygc_thread = NULL; } int bch2_copygc_start(struct bch_fs *c) { struct task_struct *t; int ret; if (c->copygc_thread) return 0; if (c->opts.nochanges) return 0; if (bch2_fs_init_fault("copygc_start")) return -ENOMEM; t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name); ret = PTR_ERR_OR_ZERO(t); if (ret) { bch_err(c, "error creating copygc thread: %s", bch2_err_str(ret)); return ret; } get_task_struct(t); c->copygc_thread = t; wake_up_process(c->copygc_thread); return 0; } void bch2_fs_copygc_init(struct bch_fs *c) { init_waitqueue_head(&c->copygc_running_wq); c->copygc_running = false; }