/* * drivers/gpu/drm/omapdrm/omap_gem.c * * Copyright (C) 2011 Texas Instruments * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include #include #include #include "omap_drv.h" #include "omap_dmm_tiler.h" /* * GEM buffer object implementation. */ /* note: we use upper 8 bits of flags for driver-internal flags: */ #define OMAP_BO_DMA 0x01000000 /* actually is physically contiguous */ #define OMAP_BO_EXT_SYNC 0x02000000 /* externally allocated sync object */ #define OMAP_BO_EXT_MEM 0x04000000 /* externally allocated memory */ struct omap_gem_object { struct drm_gem_object base; struct list_head mm_list; uint32_t flags; /** width/height for tiled formats (rounded up to slot boundaries) */ uint16_t width, height; /** roll applied when mapping to DMM */ uint32_t roll; /** * If buffer is allocated physically contiguous, the OMAP_BO_DMA flag * is set and the paddr is valid. Also if the buffer is remapped in * TILER and paddr_cnt > 0, then paddr is valid. But if you are using * the physical address and OMAP_BO_DMA is not set, then you should * be going thru omap_gem_{get,put}_paddr() to ensure the mapping is * not removed from under your feet. * * Note that OMAP_BO_SCANOUT is a hint from userspace that DMA capable * buffer is requested, but doesn't mean that it is. Use the * OMAP_BO_DMA flag to determine if the buffer has a DMA capable * physical address. */ dma_addr_t paddr; /** * # of users of paddr */ uint32_t paddr_cnt; /** * tiler block used when buffer is remapped in DMM/TILER. */ struct tiler_block *block; /** * Array of backing pages, if allocated. Note that pages are never * allocated for buffers originally allocated from contiguous memory */ struct page **pages; /** addresses corresponding to pages in above array */ dma_addr_t *addrs; /** * Virtual address, if mapped. */ void *vaddr; /** * sync-object allocated on demand (if needed) * * Per-buffer sync-object for tracking pending and completed hw/dma * read and write operations. The layout in memory is dictated by * the SGX firmware, which uses this information to stall the command * stream if a surface is not ready yet. * * Note that when buffer is used by SGX, the sync-object needs to be * allocated from a special heap of sync-objects. This way many sync * objects can be packed in a page, and not waste GPU virtual address * space. Because of this we have to have a omap_gem_set_sync_object() * API to allow replacement of the syncobj after it has (potentially) * already been allocated. A bit ugly but I haven't thought of a * better alternative. */ struct { uint32_t write_pending; uint32_t write_complete; uint32_t read_pending; uint32_t read_complete; } *sync; }; #define to_omap_bo(x) container_of(x, struct omap_gem_object, base) /* To deal with userspace mmap'ings of 2d tiled buffers, which (a) are * not necessarily pinned in TILER all the time, and (b) when they are * they are not necessarily page aligned, we reserve one or more small * regions in each of the 2d containers to use as a user-GART where we * can create a second page-aligned mapping of parts of the buffer * being accessed from userspace. * * Note that we could optimize slightly when we know that multiple * tiler containers are backed by the same PAT.. but I'll leave that * for later.. */ #define NUM_USERGART_ENTRIES 2 struct usergart_entry { struct tiler_block *block; /* the reserved tiler block */ dma_addr_t paddr; struct drm_gem_object *obj; /* the current pinned obj */ pgoff_t obj_pgoff; /* page offset of obj currently mapped in */ }; static struct { struct usergart_entry entry[NUM_USERGART_ENTRIES]; int height; /* height in rows */ int height_shift; /* ilog2(height in rows) */ int slot_shift; /* ilog2(width per slot) */ int stride_pfn; /* stride in pages */ int last; /* index of last used entry */ } *usergart; /* ----------------------------------------------------------------------------- * Helpers */ /** get mmap offset */ static uint64_t mmap_offset(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; int ret; size_t size; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); /* Make it mmapable */ size = omap_gem_mmap_size(obj); ret = drm_gem_create_mmap_offset_size(obj, size); if (ret) { dev_err(dev->dev, "could not allocate mmap offset\n"); return 0; } return drm_vma_node_offset_addr(&obj->vma_node); } /* GEM objects can either be allocated from contiguous memory (in which * case obj->filp==NULL), or w/ shmem backing (obj->filp!=NULL). But non * contiguous buffers can be remapped in TILER/DMM if they need to be * contiguous... but we don't do this all the time to reduce pressure * on TILER/DMM space when we know at allocation time that the buffer * will need to be scanned out. */ static inline bool is_shmem(struct drm_gem_object *obj) { return obj->filp != NULL; } /* ----------------------------------------------------------------------------- * Eviction */ static void evict_entry(struct drm_gem_object *obj, enum tiler_fmt fmt, struct usergart_entry *entry) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int n = usergart[fmt].height; size_t size = PAGE_SIZE * n; loff_t off = mmap_offset(obj) + (entry->obj_pgoff << PAGE_SHIFT); const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE); if (m > 1) { int i; /* if stride > than PAGE_SIZE then sparse mapping: */ for (i = n; i > 0; i--) { unmap_mapping_range(obj->dev->anon_inode->i_mapping, off, PAGE_SIZE, 1); off += PAGE_SIZE * m; } } else { unmap_mapping_range(obj->dev->anon_inode->i_mapping, off, size, 1); } entry->obj = NULL; } /* Evict a buffer from usergart, if it is mapped there */ static void evict(struct drm_gem_object *obj) { struct omap_gem_object *omap_obj = to_omap_bo(obj); if (omap_obj->flags & OMAP_BO_TILED) { enum tiler_fmt fmt = gem2fmt(omap_obj->flags); int i; if (!usergart) return; for (i = 0; i < NUM_USERGART_ENTRIES; i++) { struct usergart_entry *entry = &usergart[fmt].entry[i]; if (entry->obj == obj) evict_entry(obj, fmt, entry); } } } /* ----------------------------------------------------------------------------- * Page Management */ /** ensure backing pages are allocated */ static int omap_gem_attach_pages(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct omap_gem_object *omap_obj = to_omap_bo(obj); struct page **pages; int npages = obj->size >> PAGE_SHIFT; int i, ret; dma_addr_t *addrs; WARN_ON(omap_obj->pages); pages = drm_gem_get_pages(obj); if (IS_ERR(pages)) { dev_err(obj->dev->dev, "could not get pages: %ld\n", PTR_ERR(pages)); return PTR_ERR(pages); } /* for non-cached buffers, ensure the new pages are clean because * DSS, GPU, etc. are not cache coherent: */ if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) { addrs = kmalloc(npages * sizeof(*addrs), GFP_KERNEL); if (!addrs) { ret = -ENOMEM; goto free_pages; } for (i = 0; i < npages; i++) { addrs[i] = dma_map_page(dev->dev, pages[i], 0, PAGE_SIZE, DMA_BIDIRECTIONAL); } } else { addrs = kzalloc(npages * sizeof(*addrs), GFP_KERNEL); if (!addrs) { ret = -ENOMEM; goto free_pages; } } omap_obj->addrs = addrs; omap_obj->pages = pages; return 0; free_pages: drm_gem_put_pages(obj, pages, true, false); return ret; } /* acquire pages when needed (for example, for DMA where physically * contiguous buffer is not required */ static int get_pages(struct drm_gem_object *obj, struct page ***pages) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret = 0; if (is_shmem(obj) && !omap_obj->pages) { ret = omap_gem_attach_pages(obj); if (ret) { dev_err(obj->dev->dev, "could not attach pages\n"); return ret; } } /* TODO: even phys-contig.. we should have a list of pages? */ *pages = omap_obj->pages; return 0; } /** release backing pages */ static void omap_gem_detach_pages(struct drm_gem_object *obj) { struct omap_gem_object *omap_obj = to_omap_bo(obj); /* for non-cached buffers, ensure the new pages are clean because * DSS, GPU, etc. are not cache coherent: */ if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) { int i, npages = obj->size >> PAGE_SHIFT; for (i = 0; i < npages; i++) { dma_unmap_page(obj->dev->dev, omap_obj->addrs[i], PAGE_SIZE, DMA_BIDIRECTIONAL); } } kfree(omap_obj->addrs); omap_obj->addrs = NULL; drm_gem_put_pages(obj, omap_obj->pages, true, false); omap_obj->pages = NULL; } /* get buffer flags */ uint32_t omap_gem_flags(struct drm_gem_object *obj) { return to_omap_bo(obj)->flags; } uint64_t omap_gem_mmap_offset(struct drm_gem_object *obj) { uint64_t offset; mutex_lock(&obj->dev->struct_mutex); offset = mmap_offset(obj); mutex_unlock(&obj->dev->struct_mutex); return offset; } /** get mmap size */ size_t omap_gem_mmap_size(struct drm_gem_object *obj) { struct omap_gem_object *omap_obj = to_omap_bo(obj); size_t size = obj->size; if (omap_obj->flags & OMAP_BO_TILED) { /* for tiled buffers, the virtual size has stride rounded up * to 4kb.. (to hide the fact that row n+1 might start 16kb or * 32kb later!). But we don't back the entire buffer with * pages, only the valid picture part.. so need to adjust for * this in the size used to mmap and generate mmap offset */ size = tiler_vsize(gem2fmt(omap_obj->flags), omap_obj->width, omap_obj->height); } return size; } /* get tiled size, returns -EINVAL if not tiled buffer */ int omap_gem_tiled_size(struct drm_gem_object *obj, uint16_t *w, uint16_t *h) { struct omap_gem_object *omap_obj = to_omap_bo(obj); if (omap_obj->flags & OMAP_BO_TILED) { *w = omap_obj->width; *h = omap_obj->height; return 0; } return -EINVAL; } /* ----------------------------------------------------------------------------- * Fault Handling */ /* Normal handling for the case of faulting in non-tiled buffers */ static int fault_1d(struct drm_gem_object *obj, struct vm_area_struct *vma, struct vm_fault *vmf) { struct omap_gem_object *omap_obj = to_omap_bo(obj); unsigned long pfn; pgoff_t pgoff; /* We don't use vmf->pgoff since that has the fake offset: */ pgoff = ((unsigned long)vmf->virtual_address - vma->vm_start) >> PAGE_SHIFT; if (omap_obj->pages) { omap_gem_cpu_sync(obj, pgoff); pfn = page_to_pfn(omap_obj->pages[pgoff]); } else { BUG_ON(!(omap_obj->flags & OMAP_BO_DMA)); pfn = (omap_obj->paddr >> PAGE_SHIFT) + pgoff; } VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address, pfn, pfn << PAGE_SHIFT); return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn); } /* Special handling for the case of faulting in 2d tiled buffers */ static int fault_2d(struct drm_gem_object *obj, struct vm_area_struct *vma, struct vm_fault *vmf) { struct omap_gem_object *omap_obj = to_omap_bo(obj); struct usergart_entry *entry; enum tiler_fmt fmt = gem2fmt(omap_obj->flags); struct page *pages[64]; /* XXX is this too much to have on stack? */ unsigned long pfn; pgoff_t pgoff, base_pgoff; void __user *vaddr; int i, ret, slots; /* * Note the height of the slot is also equal to the number of pages * that need to be mapped in to fill 4kb wide CPU page. If the slot * height is 64, then 64 pages fill a 4kb wide by 64 row region. */ const int n = usergart[fmt].height; const int n_shift = usergart[fmt].height_shift; /* * If buffer width in bytes > PAGE_SIZE then the virtual stride is * rounded up to next multiple of PAGE_SIZE.. this need to be taken * into account in some of the math, so figure out virtual stride * in pages */ const int m = 1 + ((omap_obj->width << fmt) / PAGE_SIZE); /* We don't use vmf->pgoff since that has the fake offset: */ pgoff = ((unsigned long)vmf->virtual_address - vma->vm_start) >> PAGE_SHIFT; /* * Actual address we start mapping at is rounded down to previous slot * boundary in the y direction: */ base_pgoff = round_down(pgoff, m << n_shift); /* figure out buffer width in slots */ slots = omap_obj->width >> usergart[fmt].slot_shift; vaddr = vmf->virtual_address - ((pgoff - base_pgoff) << PAGE_SHIFT); entry = &usergart[fmt].entry[usergart[fmt].last]; /* evict previous buffer using this usergart entry, if any: */ if (entry->obj) evict_entry(entry->obj, fmt, entry); entry->obj = obj; entry->obj_pgoff = base_pgoff; /* now convert base_pgoff to phys offset from virt offset: */ base_pgoff = (base_pgoff >> n_shift) * slots; /* for wider-than 4k.. figure out which part of the slot-row we want: */ if (m > 1) { int off = pgoff % m; entry->obj_pgoff += off; base_pgoff /= m; slots = min(slots - (off << n_shift), n); base_pgoff += off << n_shift; vaddr += off << PAGE_SHIFT; } /* * Map in pages. Beyond the valid pixel part of the buffer, we set * pages[i] to NULL to get a dummy page mapped in.. if someone * reads/writes it they will get random/undefined content, but at * least it won't be corrupting whatever other random page used to * be mapped in, or other undefined behavior. */ memcpy(pages, &omap_obj->pages[base_pgoff], sizeof(struct page *) * slots); memset(pages + slots, 0, sizeof(struct page *) * (n - slots)); ret = tiler_pin(entry->block, pages, ARRAY_SIZE(pages), 0, true); if (ret) { dev_err(obj->dev->dev, "failed to pin: %d\n", ret); return ret; } pfn = entry->paddr >> PAGE_SHIFT; VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address, pfn, pfn << PAGE_SHIFT); for (i = n; i > 0; i--) { vm_insert_mixed(vma, (unsigned long)vaddr, pfn); pfn += usergart[fmt].stride_pfn; vaddr += PAGE_SIZE * m; } /* simple round-robin: */ usergart[fmt].last = (usergart[fmt].last + 1) % NUM_USERGART_ENTRIES; return 0; } /** * omap_gem_fault - pagefault handler for GEM objects * @vma: the VMA of the GEM object * @vmf: fault detail * * Invoked when a fault occurs on an mmap of a GEM managed area. GEM * does most of the work for us including the actual map/unmap calls * but we need to do the actual page work. * * The VMA was set up by GEM. In doing so it also ensured that the * vma->vm_private_data points to the GEM object that is backing this * mapping. */ int omap_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct drm_gem_object *obj = vma->vm_private_data; struct omap_gem_object *omap_obj = to_omap_bo(obj); struct drm_device *dev = obj->dev; struct page **pages; int ret; /* Make sure we don't parallel update on a fault, nor move or remove * something from beneath our feet */ mutex_lock(&dev->struct_mutex); /* if a shmem backed object, make sure we have pages attached now */ ret = get_pages(obj, &pages); if (ret) goto fail; /* where should we do corresponding put_pages().. we are mapping * the original page, rather than thru a GART, so we can't rely * on eviction to trigger this. But munmap() or all mappings should * probably trigger put_pages()? */ if (omap_obj->flags & OMAP_BO_TILED) ret = fault_2d(obj, vma, vmf); else ret = fault_1d(obj, vma, vmf); fail: mutex_unlock(&dev->struct_mutex); switch (ret) { case 0: case -ERESTARTSYS: case -EINTR: return VM_FAULT_NOPAGE; case -ENOMEM: return VM_FAULT_OOM; default: return VM_FAULT_SIGBUS; } } /** We override mainly to fix up some of the vm mapping flags.. */ int omap_gem_mmap(struct file *filp, struct vm_area_struct *vma) { int ret; ret = drm_gem_mmap(filp, vma); if (ret) { DBG("mmap failed: %d", ret); return ret; } return omap_gem_mmap_obj(vma->vm_private_data, vma); } int omap_gem_mmap_obj(struct drm_gem_object *obj, struct vm_area_struct *vma) { struct omap_gem_object *omap_obj = to_omap_bo(obj); vma->vm_flags &= ~VM_PFNMAP; vma->vm_flags |= VM_MIXEDMAP; if (omap_obj->flags & OMAP_BO_WC) { vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); } else if (omap_obj->flags & OMAP_BO_UNCACHED) { vma->vm_page_prot = pgprot_noncached(vm_get_page_prot(vma->vm_flags)); } else { /* * We do have some private objects, at least for scanout buffers * on hardware without DMM/TILER. But these are allocated write- * combine */ if (WARN_ON(!obj->filp)) return -EINVAL; /* * Shunt off cached objs to shmem file so they have their own * address_space (so unmap_mapping_range does what we want, * in particular in the case of mmap'd dmabufs) */ fput(vma->vm_file); vma->vm_pgoff = 0; vma->vm_file = get_file(obj->filp); vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); } return 0; } /* ----------------------------------------------------------------------------- * Dumb Buffers */ /** * omap_gem_dumb_create - create a dumb buffer * @drm_file: our client file * @dev: our device * @args: the requested arguments copied from userspace * * Allocate a buffer suitable for use for a frame buffer of the * form described by user space. Give userspace a handle by which * to reference it. */ int omap_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { union omap_gem_size gsize; args->pitch = align_pitch(0, args->width, args->bpp); args->size = PAGE_ALIGN(args->pitch * args->height); gsize = (union omap_gem_size){ .bytes = args->size, }; return omap_gem_new_handle(dev, file, gsize, OMAP_BO_SCANOUT | OMAP_BO_WC, &args->handle); } /** * omap_gem_dumb_map - buffer mapping for dumb interface * @file: our drm client file * @dev: drm device * @handle: GEM handle to the object (from dumb_create) * * Do the necessary setup to allow the mapping of the frame buffer * into user memory. We don't have to do much here at the moment. */ int omap_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev, uint32_t handle, uint64_t *offset) { struct drm_gem_object *obj; int ret = 0; /* GEM does all our handle to object mapping */ obj = drm_gem_object_lookup(dev, file, handle); if (obj == NULL) { ret = -ENOENT; goto fail; } *offset = omap_gem_mmap_offset(obj); drm_gem_object_unreference_unlocked(obj); fail: return ret; } #ifdef CONFIG_DRM_FBDEV_EMULATION /* Set scrolling position. This allows us to implement fast scrolling * for console. * * Call only from non-atomic contexts. */ int omap_gem_roll(struct drm_gem_object *obj, uint32_t roll) { struct omap_gem_object *omap_obj = to_omap_bo(obj); uint32_t npages = obj->size >> PAGE_SHIFT; int ret = 0; if (roll > npages) { dev_err(obj->dev->dev, "invalid roll: %d\n", roll); return -EINVAL; } omap_obj->roll = roll; mutex_lock(&obj->dev->struct_mutex); /* if we aren't mapped yet, we don't need to do anything */ if (omap_obj->block) { struct page **pages; ret = get_pages(obj, &pages); if (ret) goto fail; ret = tiler_pin(omap_obj->block, pages, npages, roll, true); if (ret) dev_err(obj->dev->dev, "could not repin: %d\n", ret); } fail: mutex_unlock(&obj->dev->struct_mutex); return ret; } #endif /* ----------------------------------------------------------------------------- * Memory Management & DMA Sync */ /** * shmem buffers that are mapped cached can simulate coherency via using * page faulting to keep track of dirty pages */ static inline bool is_cached_coherent(struct drm_gem_object *obj) { struct omap_gem_object *omap_obj = to_omap_bo(obj); return is_shmem(obj) && ((omap_obj->flags & OMAP_BO_CACHE_MASK) == OMAP_BO_CACHED); } /* Sync the buffer for CPU access.. note pages should already be * attached, ie. omap_gem_get_pages() */ void omap_gem_cpu_sync(struct drm_gem_object *obj, int pgoff) { struct drm_device *dev = obj->dev; struct omap_gem_object *omap_obj = to_omap_bo(obj); if (is_cached_coherent(obj) && omap_obj->addrs[pgoff]) { dma_unmap_page(dev->dev, omap_obj->addrs[pgoff], PAGE_SIZE, DMA_BIDIRECTIONAL); omap_obj->addrs[pgoff] = 0; } } /* sync the buffer for DMA access */ void omap_gem_dma_sync(struct drm_gem_object *obj, enum dma_data_direction dir) { struct drm_device *dev = obj->dev; struct omap_gem_object *omap_obj = to_omap_bo(obj); if (is_cached_coherent(obj)) { int i, npages = obj->size >> PAGE_SHIFT; struct page **pages = omap_obj->pages; bool dirty = false; for (i = 0; i < npages; i++) { if (!omap_obj->addrs[i]) { omap_obj->addrs[i] = dma_map_page(dev->dev, pages[i], 0, PAGE_SIZE, DMA_BIDIRECTIONAL); dirty = true; } } if (dirty) { unmap_mapping_range(obj->filp->f_mapping, 0, omap_gem_mmap_size(obj), 1); } } } /* Get physical address for DMA.. if 'remap' is true, and the buffer is not * already contiguous, remap it to pin in physically contiguous memory.. (ie. * map in TILER) */ int omap_gem_get_paddr(struct drm_gem_object *obj, dma_addr_t *paddr, bool remap) { struct omap_drm_private *priv = obj->dev->dev_private; struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret = 0; mutex_lock(&obj->dev->struct_mutex); if (remap && is_shmem(obj) && priv->has_dmm) { if (omap_obj->paddr_cnt == 0) { struct page **pages; uint32_t npages = obj->size >> PAGE_SHIFT; enum tiler_fmt fmt = gem2fmt(omap_obj->flags); struct tiler_block *block; BUG_ON(omap_obj->block); ret = get_pages(obj, &pages); if (ret) goto fail; if (omap_obj->flags & OMAP_BO_TILED) { block = tiler_reserve_2d(fmt, omap_obj->width, omap_obj->height, 0); } else { block = tiler_reserve_1d(obj->size); } if (IS_ERR(block)) { ret = PTR_ERR(block); dev_err(obj->dev->dev, "could not remap: %d (%d)\n", ret, fmt); goto fail; } /* TODO: enable async refill.. */ ret = tiler_pin(block, pages, npages, omap_obj->roll, true); if (ret) { tiler_release(block); dev_err(obj->dev->dev, "could not pin: %d\n", ret); goto fail; } omap_obj->paddr = tiler_ssptr(block); omap_obj->block = block; DBG("got paddr: %pad", &omap_obj->paddr); } omap_obj->paddr_cnt++; *paddr = omap_obj->paddr; } else if (omap_obj->flags & OMAP_BO_DMA) { *paddr = omap_obj->paddr; } else { ret = -EINVAL; goto fail; } fail: mutex_unlock(&obj->dev->struct_mutex); return ret; } /* Release physical address, when DMA is no longer being performed.. this * could potentially unpin and unmap buffers from TILER */ void omap_gem_put_paddr(struct drm_gem_object *obj) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret; mutex_lock(&obj->dev->struct_mutex); if (omap_obj->paddr_cnt > 0) { omap_obj->paddr_cnt--; if (omap_obj->paddr_cnt == 0) { ret = tiler_unpin(omap_obj->block); if (ret) { dev_err(obj->dev->dev, "could not unpin pages: %d\n", ret); } ret = tiler_release(omap_obj->block); if (ret) { dev_err(obj->dev->dev, "could not release unmap: %d\n", ret); } omap_obj->paddr = 0; omap_obj->block = NULL; } } mutex_unlock(&obj->dev->struct_mutex); } /* Get rotated scanout address (only valid if already pinned), at the * specified orientation and x,y offset from top-left corner of buffer * (only valid for tiled 2d buffers) */ int omap_gem_rotated_paddr(struct drm_gem_object *obj, uint32_t orient, int x, int y, dma_addr_t *paddr) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret = -EINVAL; mutex_lock(&obj->dev->struct_mutex); if ((omap_obj->paddr_cnt > 0) && omap_obj->block && (omap_obj->flags & OMAP_BO_TILED)) { *paddr = tiler_tsptr(omap_obj->block, orient, x, y); ret = 0; } mutex_unlock(&obj->dev->struct_mutex); return ret; } /* Get tiler stride for the buffer (only valid for 2d tiled buffers) */ int omap_gem_tiled_stride(struct drm_gem_object *obj, uint32_t orient) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret = -EINVAL; if (omap_obj->flags & OMAP_BO_TILED) ret = tiler_stride(gem2fmt(omap_obj->flags), orient); return ret; } /* if !remap, and we don't have pages backing, then fail, rather than * increasing the pin count (which we don't really do yet anyways, * because we don't support swapping pages back out). And 'remap' * might not be quite the right name, but I wanted to keep it working * similarly to omap_gem_get_paddr(). Note though that mutex is not * aquired if !remap (because this can be called in atomic ctxt), * but probably omap_gem_get_paddr() should be changed to work in the * same way. If !remap, a matching omap_gem_put_pages() call is not * required (and should not be made). */ int omap_gem_get_pages(struct drm_gem_object *obj, struct page ***pages, bool remap) { int ret; if (!remap) { struct omap_gem_object *omap_obj = to_omap_bo(obj); if (!omap_obj->pages) return -ENOMEM; *pages = omap_obj->pages; return 0; } mutex_lock(&obj->dev->struct_mutex); ret = get_pages(obj, pages); mutex_unlock(&obj->dev->struct_mutex); return ret; } /* release pages when DMA no longer being performed */ int omap_gem_put_pages(struct drm_gem_object *obj) { /* do something here if we dynamically attach/detach pages.. at * least they would no longer need to be pinned if everyone has * released the pages.. */ return 0; } #ifdef CONFIG_DRM_FBDEV_EMULATION /* Get kernel virtual address for CPU access.. this more or less only * exists for omap_fbdev. This should be called with struct_mutex * held. */ void *omap_gem_vaddr(struct drm_gem_object *obj) { struct omap_gem_object *omap_obj = to_omap_bo(obj); WARN_ON(!mutex_is_locked(&obj->dev->struct_mutex)); if (!omap_obj->vaddr) { struct page **pages; int ret = get_pages(obj, &pages); if (ret) return ERR_PTR(ret); omap_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT, VM_MAP, pgprot_writecombine(PAGE_KERNEL)); } return omap_obj->vaddr; } #endif /* ----------------------------------------------------------------------------- * Power Management */ #ifdef CONFIG_PM /* re-pin objects in DMM in resume path: */ int omap_gem_resume(struct device *dev) { struct drm_device *drm_dev = dev_get_drvdata(dev); struct omap_drm_private *priv = drm_dev->dev_private; struct omap_gem_object *omap_obj; int ret = 0; list_for_each_entry(omap_obj, &priv->obj_list, mm_list) { if (omap_obj->block) { struct drm_gem_object *obj = &omap_obj->base; uint32_t npages = obj->size >> PAGE_SHIFT; WARN_ON(!omap_obj->pages); /* this can't happen */ ret = tiler_pin(omap_obj->block, omap_obj->pages, npages, omap_obj->roll, true); if (ret) { dev_err(dev, "could not repin: %d\n", ret); return ret; } } } return 0; } #endif /* ----------------------------------------------------------------------------- * DebugFS */ #ifdef CONFIG_DEBUG_FS void omap_gem_describe(struct drm_gem_object *obj, struct seq_file *m) { struct omap_gem_object *omap_obj = to_omap_bo(obj); uint64_t off; off = drm_vma_node_start(&obj->vma_node); seq_printf(m, "%08x: %2d (%2d) %08llx %pad (%2d) %p %4d", omap_obj->flags, obj->name, obj->refcount.refcount.counter, off, &omap_obj->paddr, omap_obj->paddr_cnt, omap_obj->vaddr, omap_obj->roll); if (omap_obj->flags & OMAP_BO_TILED) { seq_printf(m, " %dx%d", omap_obj->width, omap_obj->height); if (omap_obj->block) { struct tcm_area *area = &omap_obj->block->area; seq_printf(m, " (%dx%d, %dx%d)", area->p0.x, area->p0.y, area->p1.x, area->p1.y); } } else { seq_printf(m, " %d", obj->size); } seq_printf(m, "\n"); } void omap_gem_describe_objects(struct list_head *list, struct seq_file *m) { struct omap_gem_object *omap_obj; int count = 0; size_t size = 0; list_for_each_entry(omap_obj, list, mm_list) { struct drm_gem_object *obj = &omap_obj->base; seq_printf(m, " "); omap_gem_describe(obj, m); count++; size += obj->size; } seq_printf(m, "Total %d objects, %zu bytes\n", count, size); } #endif /* ----------------------------------------------------------------------------- * Buffer Synchronization */ static DEFINE_SPINLOCK(sync_lock); struct omap_gem_sync_waiter { struct list_head list; struct omap_gem_object *omap_obj; enum omap_gem_op op; uint32_t read_target, write_target; /* notify called w/ sync_lock held */ void (*notify)(void *arg); void *arg; }; /* list of omap_gem_sync_waiter.. the notify fxn gets called back when * the read and/or write target count is achieved which can call a user * callback (ex. to kick 3d and/or 2d), wakeup blocked task (prep for * cpu access), etc. */ static LIST_HEAD(waiters); static inline bool is_waiting(struct omap_gem_sync_waiter *waiter) { struct omap_gem_object *omap_obj = waiter->omap_obj; if ((waiter->op & OMAP_GEM_READ) && (omap_obj->sync->write_complete < waiter->write_target)) return true; if ((waiter->op & OMAP_GEM_WRITE) && (omap_obj->sync->read_complete < waiter->read_target)) return true; return false; } /* macro for sync debug.. */ #define SYNCDBG 0 #define SYNC(fmt, ...) do { if (SYNCDBG) \ printk(KERN_ERR "%s:%d: "fmt"\n", \ __func__, __LINE__, ##__VA_ARGS__); \ } while (0) static void sync_op_update(void) { struct omap_gem_sync_waiter *waiter, *n; list_for_each_entry_safe(waiter, n, &waiters, list) { if (!is_waiting(waiter)) { list_del(&waiter->list); SYNC("notify: %p", waiter); waiter->notify(waiter->arg); kfree(waiter); } } } static inline int sync_op(struct drm_gem_object *obj, enum omap_gem_op op, bool start) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret = 0; spin_lock(&sync_lock); if (!omap_obj->sync) { omap_obj->sync = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC); if (!omap_obj->sync) { ret = -ENOMEM; goto unlock; } } if (start) { if (op & OMAP_GEM_READ) omap_obj->sync->read_pending++; if (op & OMAP_GEM_WRITE) omap_obj->sync->write_pending++; } else { if (op & OMAP_GEM_READ) omap_obj->sync->read_complete++; if (op & OMAP_GEM_WRITE) omap_obj->sync->write_complete++; sync_op_update(); } unlock: spin_unlock(&sync_lock); return ret; } /* it is a bit lame to handle updates in this sort of polling way, but * in case of PVR, the GPU can directly update read/write complete * values, and not really tell us which ones it updated.. this also * means that sync_lock is not quite sufficient. So we'll need to * do something a bit better when it comes time to add support for * separate 2d hw.. */ void omap_gem_op_update(void) { spin_lock(&sync_lock); sync_op_update(); spin_unlock(&sync_lock); } /* mark the start of read and/or write operation */ int omap_gem_op_start(struct drm_gem_object *obj, enum omap_gem_op op) { return sync_op(obj, op, true); } int omap_gem_op_finish(struct drm_gem_object *obj, enum omap_gem_op op) { return sync_op(obj, op, false); } static DECLARE_WAIT_QUEUE_HEAD(sync_event); static void sync_notify(void *arg) { struct task_struct **waiter_task = arg; *waiter_task = NULL; wake_up_all(&sync_event); } int omap_gem_op_sync(struct drm_gem_object *obj, enum omap_gem_op op) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret = 0; if (omap_obj->sync) { struct task_struct *waiter_task = current; struct omap_gem_sync_waiter *waiter = kzalloc(sizeof(*waiter), GFP_KERNEL); if (!waiter) return -ENOMEM; waiter->omap_obj = omap_obj; waiter->op = op; waiter->read_target = omap_obj->sync->read_pending; waiter->write_target = omap_obj->sync->write_pending; waiter->notify = sync_notify; waiter->arg = &waiter_task; spin_lock(&sync_lock); if (is_waiting(waiter)) { SYNC("waited: %p", waiter); list_add_tail(&waiter->list, &waiters); spin_unlock(&sync_lock); ret = wait_event_interruptible(sync_event, (waiter_task == NULL)); spin_lock(&sync_lock); if (waiter_task) { SYNC("interrupted: %p", waiter); /* we were interrupted */ list_del(&waiter->list); waiter_task = NULL; } else { /* freed in sync_op_update() */ waiter = NULL; } } spin_unlock(&sync_lock); kfree(waiter); } return ret; } /* call fxn(arg), either synchronously or asynchronously if the op * is currently blocked.. fxn() can be called from any context * * (TODO for now fxn is called back from whichever context calls * omap_gem_op_update().. but this could be better defined later * if needed) * * TODO more code in common w/ _sync().. */ int omap_gem_op_async(struct drm_gem_object *obj, enum omap_gem_op op, void (*fxn)(void *arg), void *arg) { struct omap_gem_object *omap_obj = to_omap_bo(obj); if (omap_obj->sync) { struct omap_gem_sync_waiter *waiter = kzalloc(sizeof(*waiter), GFP_ATOMIC); if (!waiter) return -ENOMEM; waiter->omap_obj = omap_obj; waiter->op = op; waiter->read_target = omap_obj->sync->read_pending; waiter->write_target = omap_obj->sync->write_pending; waiter->notify = fxn; waiter->arg = arg; spin_lock(&sync_lock); if (is_waiting(waiter)) { SYNC("waited: %p", waiter); list_add_tail(&waiter->list, &waiters); spin_unlock(&sync_lock); return 0; } spin_unlock(&sync_lock); kfree(waiter); } /* no waiting.. */ fxn(arg); return 0; } /* special API so PVR can update the buffer to use a sync-object allocated * from it's sync-obj heap. Only used for a newly allocated (from PVR's * perspective) sync-object, so we overwrite the new syncobj w/ values * from the already allocated syncobj (if there is one) */ int omap_gem_set_sync_object(struct drm_gem_object *obj, void *syncobj) { struct omap_gem_object *omap_obj = to_omap_bo(obj); int ret = 0; spin_lock(&sync_lock); if ((omap_obj->flags & OMAP_BO_EXT_SYNC) && !syncobj) { /* clearing a previously set syncobj */ syncobj = kmemdup(omap_obj->sync, sizeof(*omap_obj->sync), GFP_ATOMIC); if (!syncobj) { ret = -ENOMEM; goto unlock; } omap_obj->flags &= ~OMAP_BO_EXT_SYNC; omap_obj->sync = syncobj; } else if (syncobj && !(omap_obj->flags & OMAP_BO_EXT_SYNC)) { /* replacing an existing syncobj */ if (omap_obj->sync) { memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync)); kfree(omap_obj->sync); } omap_obj->flags |= OMAP_BO_EXT_SYNC; omap_obj->sync = syncobj; } unlock: spin_unlock(&sync_lock); return ret; } /* ----------------------------------------------------------------------------- * Constructor & Destructor */ /* don't call directly.. called from GEM core when it is time to actually * free the object.. */ void omap_gem_free_object(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct omap_drm_private *priv = dev->dev_private; struct omap_gem_object *omap_obj = to_omap_bo(obj); evict(obj); WARN_ON(!mutex_is_locked(&dev->struct_mutex)); spin_lock(&priv->list_lock); list_del(&omap_obj->mm_list); spin_unlock(&priv->list_lock); drm_gem_free_mmap_offset(obj); /* this means the object is still pinned.. which really should * not happen. I think.. */ WARN_ON(omap_obj->paddr_cnt > 0); /* don't free externally allocated backing memory */ if (!(omap_obj->flags & OMAP_BO_EXT_MEM)) { if (omap_obj->pages) omap_gem_detach_pages(obj); if (!is_shmem(obj)) { dma_free_writecombine(dev->dev, obj->size, omap_obj->vaddr, omap_obj->paddr); } else if (omap_obj->vaddr) { vunmap(omap_obj->vaddr); } } /* don't free externally allocated syncobj */ if (!(omap_obj->flags & OMAP_BO_EXT_SYNC)) kfree(omap_obj->sync); drm_gem_object_release(obj); kfree(obj); } /* GEM buffer object constructor */ struct drm_gem_object *omap_gem_new(struct drm_device *dev, union omap_gem_size gsize, uint32_t flags) { struct omap_drm_private *priv = dev->dev_private; struct omap_gem_object *omap_obj; struct drm_gem_object *obj = NULL; struct address_space *mapping; size_t size; int ret; if (flags & OMAP_BO_TILED) { if (!usergart) { dev_err(dev->dev, "Tiled buffers require DMM\n"); goto fail; } /* tiled buffers are always shmem paged backed.. when they are * scanned out, they are remapped into DMM/TILER */ flags &= ~OMAP_BO_SCANOUT; /* currently don't allow cached buffers.. there is some caching * stuff that needs to be handled better */ flags &= ~(OMAP_BO_CACHED|OMAP_BO_WC|OMAP_BO_UNCACHED); flags |= tiler_get_cpu_cache_flags(); /* align dimensions to slot boundaries... */ tiler_align(gem2fmt(flags), &gsize.tiled.width, &gsize.tiled.height); /* ...and calculate size based on aligned dimensions */ size = tiler_size(gem2fmt(flags), gsize.tiled.width, gsize.tiled.height); } else { size = PAGE_ALIGN(gsize.bytes); } omap_obj = kzalloc(sizeof(*omap_obj), GFP_KERNEL); if (!omap_obj) return NULL; obj = &omap_obj->base; if ((flags & OMAP_BO_SCANOUT) && !priv->has_dmm) { /* attempt to allocate contiguous memory if we don't * have DMM for remappign discontiguous buffers */ omap_obj->vaddr = dma_alloc_writecombine(dev->dev, size, &omap_obj->paddr, GFP_KERNEL); if (!omap_obj->vaddr) { kfree(omap_obj); return NULL; } flags |= OMAP_BO_DMA; } spin_lock(&priv->list_lock); list_add(&omap_obj->mm_list, &priv->obj_list); spin_unlock(&priv->list_lock); omap_obj->flags = flags; if (flags & OMAP_BO_TILED) { omap_obj->width = gsize.tiled.width; omap_obj->height = gsize.tiled.height; } if (flags & (OMAP_BO_DMA|OMAP_BO_EXT_MEM)) { drm_gem_private_object_init(dev, obj, size); } else { ret = drm_gem_object_init(dev, obj, size); if (ret) goto fail; mapping = file_inode(obj->filp)->i_mapping; mapping_set_gfp_mask(mapping, GFP_USER | __GFP_DMA32); } return obj; fail: if (obj) omap_gem_free_object(obj); return NULL; } /* convenience method to construct a GEM buffer object, and userspace handle */ int omap_gem_new_handle(struct drm_device *dev, struct drm_file *file, union omap_gem_size gsize, uint32_t flags, uint32_t *handle) { struct drm_gem_object *obj; int ret; obj = omap_gem_new(dev, gsize, flags); if (!obj) return -ENOMEM; ret = drm_gem_handle_create(file, obj, handle); if (ret) { drm_gem_object_release(obj); kfree(obj); /* TODO isn't there a dtor to call? just copying i915 */ return ret; } /* drop reference from allocate - handle holds it now */ drm_gem_object_unreference_unlocked(obj); return 0; } /* ----------------------------------------------------------------------------- * Init & Cleanup */ /* If DMM is used, we need to set some stuff up.. */ void omap_gem_init(struct drm_device *dev) { struct omap_drm_private *priv = dev->dev_private; const enum tiler_fmt fmts[] = { TILFMT_8BIT, TILFMT_16BIT, TILFMT_32BIT }; int i, j; if (!dmm_is_available()) { /* DMM only supported on OMAP4 and later, so this isn't fatal */ dev_warn(dev->dev, "DMM not available, disable DMM support\n"); return; } usergart = kcalloc(3, sizeof(*usergart), GFP_KERNEL); if (!usergart) return; /* reserve 4k aligned/wide regions for userspace mappings: */ for (i = 0; i < ARRAY_SIZE(fmts); i++) { uint16_t h = 1, w = PAGE_SIZE >> i; tiler_align(fmts[i], &w, &h); /* note: since each region is 1 4kb page wide, and minimum * number of rows, the height ends up being the same as the * # of pages in the region */ usergart[i].height = h; usergart[i].height_shift = ilog2(h); usergart[i].stride_pfn = tiler_stride(fmts[i], 0) >> PAGE_SHIFT; usergart[i].slot_shift = ilog2((PAGE_SIZE / h) >> i); for (j = 0; j < NUM_USERGART_ENTRIES; j++) { struct usergart_entry *entry = &usergart[i].entry[j]; struct tiler_block *block = tiler_reserve_2d(fmts[i], w, h, PAGE_SIZE); if (IS_ERR(block)) { dev_err(dev->dev, "reserve failed: %d, %d, %ld\n", i, j, PTR_ERR(block)); return; } entry->paddr = tiler_ssptr(block); entry->block = block; DBG("%d:%d: %dx%d: paddr=%pad stride=%d", i, j, w, h, &entry->paddr, usergart[i].stride_pfn << PAGE_SHIFT); } } priv->has_dmm = true; } void omap_gem_deinit(struct drm_device *dev) { /* I believe we can rely on there being no more outstanding GEM * objects which could depend on usergart/dmm at this point. */ kfree(usergart); }