// SPDX-License-Identifier: GPL-2.0-only /* * Special handling for DW core on Intel MID platform * * Copyright (c) 2009, 2014 Intel Corporation. */ #include #include #include "spi-dw.h" #ifdef CONFIG_SPI_DW_MID_DMA #include #include #include #include #include #include #include #define WAIT_RETRIES 5 #define RX_BUSY 0 #define RX_BURST_LEVEL 16 #define TX_BUSY 1 #define TX_BURST_LEVEL 16 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param) { struct dw_dma_slave *s = param; if (s->dma_dev != chan->device->dev) return false; chan->private = s; return true; } static void mid_spi_maxburst_init(struct dw_spi *dws) { struct dma_slave_caps caps; u32 max_burst, def_burst; int ret; def_burst = dws->fifo_len / 2; ret = dma_get_slave_caps(dws->rxchan, &caps); if (!ret && caps.max_burst) max_burst = caps.max_burst; else max_burst = RX_BURST_LEVEL; dws->rxburst = min(max_burst, def_burst); ret = dma_get_slave_caps(dws->txchan, &caps); if (!ret && caps.max_burst) max_burst = caps.max_burst; else max_burst = TX_BURST_LEVEL; dws->txburst = min(max_burst, def_burst); } static int mid_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws) { struct dw_dma_slave slave = { .src_id = 0, .dst_id = 0 }; struct pci_dev *dma_dev; dma_cap_mask_t mask; /* * Get pci device for DMA controller, currently it could only * be the DMA controller of Medfield */ dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL); if (!dma_dev) return -ENODEV; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* 1. Init rx channel */ slave.dma_dev = &dma_dev->dev; dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, &slave); if (!dws->rxchan) goto err_exit; /* 2. Init tx channel */ slave.dst_id = 1; dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, &slave); if (!dws->txchan) goto free_rxchan; dws->master->dma_rx = dws->rxchan; dws->master->dma_tx = dws->txchan; init_completion(&dws->dma_completion); mid_spi_maxburst_init(dws); return 0; free_rxchan: dma_release_channel(dws->rxchan); dws->rxchan = NULL; err_exit: return -EBUSY; } static int mid_spi_dma_init_generic(struct device *dev, struct dw_spi *dws) { dws->rxchan = dma_request_slave_channel(dev, "rx"); if (!dws->rxchan) return -ENODEV; dws->txchan = dma_request_slave_channel(dev, "tx"); if (!dws->txchan) { dma_release_channel(dws->rxchan); dws->rxchan = NULL; return -ENODEV; } dws->master->dma_rx = dws->rxchan; dws->master->dma_tx = dws->txchan; init_completion(&dws->dma_completion); mid_spi_maxburst_init(dws); return 0; } static void mid_spi_dma_exit(struct dw_spi *dws) { if (dws->txchan) { dmaengine_terminate_sync(dws->txchan); dma_release_channel(dws->txchan); } if (dws->rxchan) { dmaengine_terminate_sync(dws->rxchan); dma_release_channel(dws->rxchan); } dw_writel(dws, DW_SPI_DMACR, 0); } static irqreturn_t dma_transfer(struct dw_spi *dws) { u16 irq_status = dw_readl(dws, DW_SPI_ISR); if (!irq_status) return IRQ_NONE; dw_readl(dws, DW_SPI_ICR); spi_reset_chip(dws); dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__); dws->master->cur_msg->status = -EIO; complete(&dws->dma_completion); return IRQ_HANDLED; } static bool mid_spi_can_dma(struct spi_controller *master, struct spi_device *spi, struct spi_transfer *xfer) { struct dw_spi *dws = spi_controller_get_devdata(master); return xfer->len > dws->fifo_len; } static enum dma_slave_buswidth convert_dma_width(u8 n_bytes) { if (n_bytes == 1) return DMA_SLAVE_BUSWIDTH_1_BYTE; else if (n_bytes == 2) return DMA_SLAVE_BUSWIDTH_2_BYTES; return DMA_SLAVE_BUSWIDTH_UNDEFINED; } static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer) { unsigned long long ms; ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE; do_div(ms, xfer->effective_speed_hz); ms += ms + 200; if (ms > UINT_MAX) ms = UINT_MAX; ms = wait_for_completion_timeout(&dws->dma_completion, msecs_to_jiffies(ms)); if (ms == 0) { dev_err(&dws->master->cur_msg->spi->dev, "DMA transaction timed out\n"); return -ETIMEDOUT; } return 0; } static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws) { return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT); } static int dw_spi_dma_wait_tx_done(struct dw_spi *dws, struct spi_transfer *xfer) { int retry = WAIT_RETRIES; struct spi_delay delay; u32 nents; nents = dw_readl(dws, DW_SPI_TXFLR); delay.unit = SPI_DELAY_UNIT_SCK; delay.value = nents * dws->n_bytes * BITS_PER_BYTE; while (dw_spi_dma_tx_busy(dws) && retry--) spi_delay_exec(&delay, xfer); if (retry < 0) { dev_err(&dws->master->dev, "Tx hanged up\n"); return -EIO; } return 0; } /* * dws->dma_chan_busy is set before the dma transfer starts, callback for tx * channel will clear a corresponding bit. */ static void dw_spi_dma_tx_done(void *arg) { struct dw_spi *dws = arg; clear_bit(TX_BUSY, &dws->dma_chan_busy); if (test_bit(RX_BUSY, &dws->dma_chan_busy)) return; dw_writel(dws, DW_SPI_DMACR, 0); complete(&dws->dma_completion); } static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws, struct spi_transfer *xfer) { struct dma_slave_config txconf; struct dma_async_tx_descriptor *txdesc; if (!xfer->tx_buf) return NULL; memset(&txconf, 0, sizeof(txconf)); txconf.direction = DMA_MEM_TO_DEV; txconf.dst_addr = dws->dma_addr; txconf.dst_maxburst = dws->txburst; txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; txconf.dst_addr_width = convert_dma_width(dws->n_bytes); txconf.device_fc = false; dmaengine_slave_config(dws->txchan, &txconf); txdesc = dmaengine_prep_slave_sg(dws->txchan, xfer->tx_sg.sgl, xfer->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!txdesc) return NULL; txdesc->callback = dw_spi_dma_tx_done; txdesc->callback_param = dws; return txdesc; } static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws) { return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT); } static int dw_spi_dma_wait_rx_done(struct dw_spi *dws) { int retry = WAIT_RETRIES; struct spi_delay delay; unsigned long ns, us; u32 nents; /* * It's unlikely that DMA engine is still doing the data fetching, but * if it's let's give it some reasonable time. The timeout calculation * is based on the synchronous APB/SSI reference clock rate, on a * number of data entries left in the Rx FIFO, times a number of clock * periods normally needed for a single APB read/write transaction * without PREADY signal utilized (which is true for the DW APB SSI * controller). */ nents = dw_readl(dws, DW_SPI_RXFLR); ns = 4U * NSEC_PER_SEC / dws->max_freq * nents; if (ns <= NSEC_PER_USEC) { delay.unit = SPI_DELAY_UNIT_NSECS; delay.value = ns; } else { us = DIV_ROUND_UP(ns, NSEC_PER_USEC); delay.unit = SPI_DELAY_UNIT_USECS; delay.value = clamp_val(us, 0, USHRT_MAX); } while (dw_spi_dma_rx_busy(dws) && retry--) spi_delay_exec(&delay, NULL); if (retry < 0) { dev_err(&dws->master->dev, "Rx hanged up\n"); return -EIO; } return 0; } /* * dws->dma_chan_busy is set before the dma transfer starts, callback for rx * channel will clear a corresponding bit. */ static void dw_spi_dma_rx_done(void *arg) { struct dw_spi *dws = arg; clear_bit(RX_BUSY, &dws->dma_chan_busy); if (test_bit(TX_BUSY, &dws->dma_chan_busy)) return; dw_writel(dws, DW_SPI_DMACR, 0); complete(&dws->dma_completion); } static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws, struct spi_transfer *xfer) { struct dma_slave_config rxconf; struct dma_async_tx_descriptor *rxdesc; if (!xfer->rx_buf) return NULL; memset(&rxconf, 0, sizeof(rxconf)); rxconf.direction = DMA_DEV_TO_MEM; rxconf.src_addr = dws->dma_addr; rxconf.src_maxburst = dws->rxburst; rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; rxconf.src_addr_width = convert_dma_width(dws->n_bytes); rxconf.device_fc = false; dmaengine_slave_config(dws->rxchan, &rxconf); rxdesc = dmaengine_prep_slave_sg(dws->rxchan, xfer->rx_sg.sgl, xfer->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxdesc) return NULL; rxdesc->callback = dw_spi_dma_rx_done; rxdesc->callback_param = dws; return rxdesc; } static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer) { u16 imr = 0, dma_ctrl = 0; dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1); dw_writel(dws, DW_SPI_DMATDLR, dws->fifo_len - dws->txburst); if (xfer->tx_buf) { dma_ctrl |= SPI_DMA_TDMAE; imr |= SPI_INT_TXOI; } if (xfer->rx_buf) { dma_ctrl |= SPI_DMA_RDMAE; imr |= SPI_INT_RXUI | SPI_INT_RXOI; } dw_writel(dws, DW_SPI_DMACR, dma_ctrl); /* Set the interrupt mask */ spi_umask_intr(dws, imr); reinit_completion(&dws->dma_completion); dws->transfer_handler = dma_transfer; return 0; } static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer) { struct dma_async_tx_descriptor *txdesc, *rxdesc; int ret; /* Prepare the TX dma transfer */ txdesc = dw_spi_dma_prepare_tx(dws, xfer); /* Prepare the RX dma transfer */ rxdesc = dw_spi_dma_prepare_rx(dws, xfer); /* rx must be started before tx due to spi instinct */ if (rxdesc) { set_bit(RX_BUSY, &dws->dma_chan_busy); dmaengine_submit(rxdesc); dma_async_issue_pending(dws->rxchan); } if (txdesc) { set_bit(TX_BUSY, &dws->dma_chan_busy); dmaengine_submit(txdesc); dma_async_issue_pending(dws->txchan); } ret = dw_spi_dma_wait(dws, xfer); if (ret) return ret; if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) { ret = dw_spi_dma_wait_tx_done(dws, xfer); if (ret) return ret; } if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS) ret = dw_spi_dma_wait_rx_done(dws); return ret; } static void mid_spi_dma_stop(struct dw_spi *dws) { if (test_bit(TX_BUSY, &dws->dma_chan_busy)) { dmaengine_terminate_sync(dws->txchan); clear_bit(TX_BUSY, &dws->dma_chan_busy); } if (test_bit(RX_BUSY, &dws->dma_chan_busy)) { dmaengine_terminate_sync(dws->rxchan); clear_bit(RX_BUSY, &dws->dma_chan_busy); } dw_writel(dws, DW_SPI_DMACR, 0); } static const struct dw_spi_dma_ops mfld_dma_ops = { .dma_init = mid_spi_dma_init_mfld, .dma_exit = mid_spi_dma_exit, .dma_setup = mid_spi_dma_setup, .can_dma = mid_spi_can_dma, .dma_transfer = mid_spi_dma_transfer, .dma_stop = mid_spi_dma_stop, }; static void dw_spi_mid_setup_dma_mfld(struct dw_spi *dws) { dws->dma_ops = &mfld_dma_ops; } static const struct dw_spi_dma_ops generic_dma_ops = { .dma_init = mid_spi_dma_init_generic, .dma_exit = mid_spi_dma_exit, .dma_setup = mid_spi_dma_setup, .can_dma = mid_spi_can_dma, .dma_transfer = mid_spi_dma_transfer, .dma_stop = mid_spi_dma_stop, }; static void dw_spi_mid_setup_dma_generic(struct dw_spi *dws) { dws->dma_ops = &generic_dma_ops; } #else /* CONFIG_SPI_DW_MID_DMA */ static inline void dw_spi_mid_setup_dma_mfld(struct dw_spi *dws) {} static inline void dw_spi_mid_setup_dma_generic(struct dw_spi *dws) {} #endif /* Some specific info for SPI0 controller on Intel MID */ /* HW info for MRST Clk Control Unit, 32b reg per controller */ #define MRST_SPI_CLK_BASE 100000000 /* 100m */ #define MRST_CLK_SPI_REG 0xff11d86c #define CLK_SPI_BDIV_OFFSET 0 #define CLK_SPI_BDIV_MASK 0x00000007 #define CLK_SPI_CDIV_OFFSET 9 #define CLK_SPI_CDIV_MASK 0x00000e00 #define CLK_SPI_DISABLE_OFFSET 8 int dw_spi_mid_init_mfld(struct dw_spi *dws) { void __iomem *clk_reg; u32 clk_cdiv; clk_reg = ioremap(MRST_CLK_SPI_REG, 16); if (!clk_reg) return -ENOMEM; /* Get SPI controller operating freq info */ clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32)); clk_cdiv &= CLK_SPI_CDIV_MASK; clk_cdiv >>= CLK_SPI_CDIV_OFFSET; dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1); iounmap(clk_reg); /* Register hook to configure CTRLR0 */ dws->update_cr0 = dw_spi_update_cr0; dw_spi_mid_setup_dma_mfld(dws); return 0; } int dw_spi_mid_init_generic(struct dw_spi *dws) { /* Register hook to configure CTRLR0 */ dws->update_cr0 = dw_spi_update_cr0; dw_spi_mid_setup_dma_generic(dws); return 0; }