/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the AF_INET socket handler. * * Version: @(#)sock.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, * Corey Minyard * Florian La Roche * * Fixes: * Alan Cox : Volatiles in skbuff pointers. See * skbuff comments. May be overdone, * better to prove they can be removed * than the reverse. * Alan Cox : Added a zapped field for tcp to note * a socket is reset and must stay shut up * Alan Cox : New fields for options * Pauline Middelink : identd support * Alan Cox : Eliminate low level recv/recvfrom * David S. Miller : New socket lookup architecture. * Steve Whitehouse: Default routines for sock_ops * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made * protinfo be just a void pointer, as the * protocol specific parts were moved to * respective headers and ipv4/v6, etc now * use private slabcaches for its socks * Pedro Hortas : New flags field for socket options */ #ifndef _SOCK_H #define _SOCK_H #include #include #include #include #include #include #include #include #include #include /* struct sk_buff */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This structure really needs to be cleaned up. * Most of it is for TCP, and not used by any of * the other protocols. */ /* Define this to get the SOCK_DBG debugging facility. */ #define SOCK_DEBUGGING #ifdef SOCK_DEBUGGING #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ printk(KERN_DEBUG msg); } while (0) #else /* Validate arguments and do nothing */ static inline __printf(2, 3) void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) { } #endif /* This is the per-socket lock. The spinlock provides a synchronization * between user contexts and software interrupt processing, whereas the * mini-semaphore synchronizes multiple users amongst themselves. */ typedef struct { spinlock_t slock; int owned; wait_queue_head_t wq; /* * We express the mutex-alike socket_lock semantics * to the lock validator by explicitly managing * the slock as a lock variant (in addition to * the slock itself): */ #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } socket_lock_t; struct sock; struct proto; struct net; typedef __u32 __bitwise __portpair; typedef __u64 __bitwise __addrpair; /** * struct sock_common - minimal network layer representation of sockets * @skc_daddr: Foreign IPv4 addr * @skc_rcv_saddr: Bound local IPv4 addr * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr * @skc_hash: hash value used with various protocol lookup tables * @skc_u16hashes: two u16 hash values used by UDP lookup tables * @skc_dport: placeholder for inet_dport/tw_dport * @skc_num: placeholder for inet_num/tw_num * @skc_portpair: __u32 union of @skc_dport & @skc_num * @skc_family: network address family * @skc_state: Connection state * @skc_reuse: %SO_REUSEADDR setting * @skc_reuseport: %SO_REUSEPORT setting * @skc_ipv6only: socket is IPV6 only * @skc_net_refcnt: socket is using net ref counting * @skc_bound_dev_if: bound device index if != 0 * @skc_bind_node: bind hash linkage for various protocol lookup tables * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol * @skc_prot: protocol handlers inside a network family * @skc_net: reference to the network namespace of this socket * @skc_v6_daddr: IPV6 destination address * @skc_v6_rcv_saddr: IPV6 source address * @skc_cookie: socket's cookie value * @skc_node: main hash linkage for various protocol lookup tables * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol * @skc_tx_queue_mapping: tx queue number for this connection * @skc_rx_queue_mapping: rx queue number for this connection * @skc_flags: place holder for sk_flags * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings * @skc_listener: connection request listener socket (aka rsk_listener) * [union with @skc_flags] * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row * [union with @skc_flags] * @skc_incoming_cpu: record/match cpu processing incoming packets * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) * [union with @skc_incoming_cpu] * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number * [union with @skc_incoming_cpu] * @skc_refcnt: reference count * * This is the minimal network layer representation of sockets, the header * for struct sock and struct inet_timewait_sock. */ struct sock_common { /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned * address on 64bit arches : cf INET_MATCH() */ union { __addrpair skc_addrpair; struct { __be32 skc_daddr; __be32 skc_rcv_saddr; }; }; union { unsigned int skc_hash; __u16 skc_u16hashes[2]; }; /* skc_dport && skc_num must be grouped as well */ union { __portpair skc_portpair; struct { __be16 skc_dport; __u16 skc_num; }; }; unsigned short skc_family; volatile unsigned char skc_state; unsigned char skc_reuse:4; unsigned char skc_reuseport:1; unsigned char skc_ipv6only:1; unsigned char skc_net_refcnt:1; int skc_bound_dev_if; union { struct hlist_node skc_bind_node; struct hlist_node skc_portaddr_node; }; struct proto *skc_prot; possible_net_t skc_net; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr skc_v6_daddr; struct in6_addr skc_v6_rcv_saddr; #endif atomic64_t skc_cookie; /* following fields are padding to force * offset(struct sock, sk_refcnt) == 128 on 64bit arches * assuming IPV6 is enabled. We use this padding differently * for different kind of 'sockets' */ union { unsigned long skc_flags; struct sock *skc_listener; /* request_sock */ struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ }; /* * fields between dontcopy_begin/dontcopy_end * are not copied in sock_copy() */ /* private: */ int skc_dontcopy_begin[0]; /* public: */ union { struct hlist_node skc_node; struct hlist_nulls_node skc_nulls_node; }; unsigned short skc_tx_queue_mapping; #ifdef CONFIG_XPS unsigned short skc_rx_queue_mapping; #endif union { int skc_incoming_cpu; u32 skc_rcv_wnd; u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ }; refcount_t skc_refcnt; /* private: */ int skc_dontcopy_end[0]; union { u32 skc_rxhash; u32 skc_window_clamp; u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ }; /* public: */ }; struct bpf_sk_storage; /** * struct sock - network layer representation of sockets * @__sk_common: shared layout with inet_timewait_sock * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings * @sk_lock: synchronizer * @sk_kern_sock: True if sock is using kernel lock classes * @sk_rcvbuf: size of receive buffer in bytes * @sk_wq: sock wait queue and async head * @sk_rx_dst: receive input route used by early demux * @sk_dst_cache: destination cache * @sk_dst_pending_confirm: need to confirm neighbour * @sk_policy: flow policy * @sk_rx_skb_cache: cache copy of recently accessed RX skb * @sk_receive_queue: incoming packets * @sk_wmem_alloc: transmit queue bytes committed * @sk_tsq_flags: TCP Small Queues flags * @sk_write_queue: Packet sending queue * @sk_omem_alloc: "o" is "option" or "other" * @sk_wmem_queued: persistent queue size * @sk_forward_alloc: space allocated forward * @sk_napi_id: id of the last napi context to receive data for sk * @sk_ll_usec: usecs to busypoll when there is no data * @sk_allocation: allocation mode * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) * @sk_pacing_status: Pacing status (requested, handled by sch_fq) * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) * @sk_sndbuf: size of send buffer in bytes * @__sk_flags_offset: empty field used to determine location of bitfield * @sk_padding: unused element for alignment * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets * @sk_no_check_rx: allow zero checksum in RX packets * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) * @sk_route_forced_caps: static, forced route capabilities * (set in tcp_init_sock()) * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) * @sk_gso_max_size: Maximum GSO segment size to build * @sk_gso_max_segs: Maximum number of GSO segments * @sk_pacing_shift: scaling factor for TCP Small Queues * @sk_lingertime: %SO_LINGER l_linger setting * @sk_backlog: always used with the per-socket spinlock held * @sk_callback_lock: used with the callbacks in the end of this struct * @sk_error_queue: rarely used * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, * IPV6_ADDRFORM for instance) * @sk_err: last error * @sk_err_soft: errors that don't cause failure but are the cause of a * persistent failure not just 'timed out' * @sk_drops: raw/udp drops counter * @sk_ack_backlog: current listen backlog * @sk_max_ack_backlog: listen backlog set in listen() * @sk_uid: user id of owner * @sk_priority: %SO_PRIORITY setting * @sk_type: socket type (%SOCK_STREAM, etc) * @sk_protocol: which protocol this socket belongs in this network family * @sk_peer_pid: &struct pid for this socket's peer * @sk_peer_cred: %SO_PEERCRED setting * @sk_rcvlowat: %SO_RCVLOWAT setting * @sk_rcvtimeo: %SO_RCVTIMEO setting * @sk_sndtimeo: %SO_SNDTIMEO setting * @sk_txhash: computed flow hash for use on transmit * @sk_filter: socket filtering instructions * @sk_timer: sock cleanup timer * @sk_stamp: time stamp of last packet received * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only * @sk_tsflags: SO_TIMESTAMPING socket options * @sk_tskey: counter to disambiguate concurrent tstamp requests * @sk_zckey: counter to order MSG_ZEROCOPY notifications * @sk_socket: Identd and reporting IO signals * @sk_user_data: RPC layer private data * @sk_frag: cached page frag * @sk_peek_off: current peek_offset value * @sk_send_head: front of stuff to transmit * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] * @sk_tx_skb_cache: cache copy of recently accessed TX skb * @sk_security: used by security modules * @sk_mark: generic packet mark * @sk_cgrp_data: cgroup data for this cgroup * @sk_memcg: this socket's memory cgroup association * @sk_write_pending: a write to stream socket waits to start * @sk_state_change: callback to indicate change in the state of the sock * @sk_data_ready: callback to indicate there is data to be processed * @sk_write_space: callback to indicate there is bf sending space available * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) * @sk_backlog_rcv: callback to process the backlog * @sk_validate_xmit_skb: ptr to an optional validate function * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 * @sk_reuseport_cb: reuseport group container * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage * @sk_rcu: used during RCU grace period * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME * @sk_txtime_report_errors: set report errors mode for SO_TXTIME * @sk_txtime_unused: unused txtime flags */ struct sock { /* * Now struct inet_timewait_sock also uses sock_common, so please just * don't add nothing before this first member (__sk_common) --acme */ struct sock_common __sk_common; #define sk_node __sk_common.skc_node #define sk_nulls_node __sk_common.skc_nulls_node #define sk_refcnt __sk_common.skc_refcnt #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping #ifdef CONFIG_XPS #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping #endif #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin #define sk_dontcopy_end __sk_common.skc_dontcopy_end #define sk_hash __sk_common.skc_hash #define sk_portpair __sk_common.skc_portpair #define sk_num __sk_common.skc_num #define sk_dport __sk_common.skc_dport #define sk_addrpair __sk_common.skc_addrpair #define sk_daddr __sk_common.skc_daddr #define sk_rcv_saddr __sk_common.skc_rcv_saddr #define sk_family __sk_common.skc_family #define sk_state __sk_common.skc_state #define sk_reuse __sk_common.skc_reuse #define sk_reuseport __sk_common.skc_reuseport #define sk_ipv6only __sk_common.skc_ipv6only #define sk_net_refcnt __sk_common.skc_net_refcnt #define sk_bound_dev_if __sk_common.skc_bound_dev_if #define sk_bind_node __sk_common.skc_bind_node #define sk_prot __sk_common.skc_prot #define sk_net __sk_common.skc_net #define sk_v6_daddr __sk_common.skc_v6_daddr #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr #define sk_cookie __sk_common.skc_cookie #define sk_incoming_cpu __sk_common.skc_incoming_cpu #define sk_flags __sk_common.skc_flags #define sk_rxhash __sk_common.skc_rxhash socket_lock_t sk_lock; atomic_t sk_drops; int sk_rcvlowat; struct sk_buff_head sk_error_queue; struct sk_buff *sk_rx_skb_cache; struct sk_buff_head sk_receive_queue; /* * The backlog queue is special, it is always used with * the per-socket spinlock held and requires low latency * access. Therefore we special case it's implementation. * Note : rmem_alloc is in this structure to fill a hole * on 64bit arches, not because its logically part of * backlog. */ struct { atomic_t rmem_alloc; int len; struct sk_buff *head; struct sk_buff *tail; } sk_backlog; #define sk_rmem_alloc sk_backlog.rmem_alloc int sk_forward_alloc; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sk_ll_usec; /* ===== mostly read cache line ===== */ unsigned int sk_napi_id; #endif int sk_rcvbuf; struct sk_filter __rcu *sk_filter; union { struct socket_wq __rcu *sk_wq; /* private: */ struct socket_wq *sk_wq_raw; /* public: */ }; #ifdef CONFIG_XFRM struct xfrm_policy __rcu *sk_policy[2]; #endif struct dst_entry *sk_rx_dst; struct dst_entry __rcu *sk_dst_cache; atomic_t sk_omem_alloc; int sk_sndbuf; /* ===== cache line for TX ===== */ int sk_wmem_queued; refcount_t sk_wmem_alloc; unsigned long sk_tsq_flags; union { struct sk_buff *sk_send_head; struct rb_root tcp_rtx_queue; }; struct sk_buff *sk_tx_skb_cache; struct sk_buff_head sk_write_queue; __s32 sk_peek_off; int sk_write_pending; __u32 sk_dst_pending_confirm; u32 sk_pacing_status; /* see enum sk_pacing */ long sk_sndtimeo; struct timer_list sk_timer; __u32 sk_priority; __u32 sk_mark; unsigned long sk_pacing_rate; /* bytes per second */ unsigned long sk_max_pacing_rate; struct page_frag sk_frag; netdev_features_t sk_route_caps; netdev_features_t sk_route_nocaps; netdev_features_t sk_route_forced_caps; int sk_gso_type; unsigned int sk_gso_max_size; gfp_t sk_allocation; __u32 sk_txhash; /* * Because of non atomicity rules, all * changes are protected by socket lock. */ u8 sk_padding : 1, sk_kern_sock : 1, sk_no_check_tx : 1, sk_no_check_rx : 1, sk_userlocks : 4; u8 sk_pacing_shift; u16 sk_type; u16 sk_protocol; u16 sk_gso_max_segs; unsigned long sk_lingertime; struct proto *sk_prot_creator; rwlock_t sk_callback_lock; int sk_err, sk_err_soft; u32 sk_ack_backlog; u32 sk_max_ack_backlog; kuid_t sk_uid; struct pid *sk_peer_pid; const struct cred *sk_peer_cred; long sk_rcvtimeo; ktime_t sk_stamp; #if BITS_PER_LONG==32 seqlock_t sk_stamp_seq; #endif u16 sk_tsflags; u8 sk_shutdown; u32 sk_tskey; atomic_t sk_zckey; u8 sk_clockid; u8 sk_txtime_deadline_mode : 1, sk_txtime_report_errors : 1, sk_txtime_unused : 6; struct socket *sk_socket; void *sk_user_data; #ifdef CONFIG_SECURITY void *sk_security; #endif struct sock_cgroup_data sk_cgrp_data; struct mem_cgroup *sk_memcg; void (*sk_state_change)(struct sock *sk); void (*sk_data_ready)(struct sock *sk); void (*sk_write_space)(struct sock *sk); void (*sk_error_report)(struct sock *sk); int (*sk_backlog_rcv)(struct sock *sk, struct sk_buff *skb); #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, struct net_device *dev, struct sk_buff *skb); #endif void (*sk_destruct)(struct sock *sk); struct sock_reuseport __rcu *sk_reuseport_cb; #ifdef CONFIG_BPF_SYSCALL struct bpf_sk_storage __rcu *sk_bpf_storage; #endif struct rcu_head sk_rcu; }; enum sk_pacing { SK_PACING_NONE = 0, SK_PACING_NEEDED = 1, SK_PACING_FQ = 2, }; /* Pointer stored in sk_user_data might not be suitable for copying * when cloning the socket. For instance, it can point to a reference * counted object. sk_user_data bottom bit is set if pointer must not * be copied. */ #define SK_USER_DATA_NOCOPY 1UL #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY) /** * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied * @sk: socket */ static inline bool sk_user_data_is_nocopy(const struct sock *sk) { return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); } #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) #define rcu_dereference_sk_user_data(sk) \ ({ \ void *__tmp = rcu_dereference(__sk_user_data((sk))); \ (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ }) #define rcu_assign_sk_user_data(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ }) #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), \ __tmp | SK_USER_DATA_NOCOPY); \ }) /* * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK * or not whether his port will be reused by someone else. SK_FORCE_REUSE * on a socket means that the socket will reuse everybody else's port * without looking at the other's sk_reuse value. */ #define SK_NO_REUSE 0 #define SK_CAN_REUSE 1 #define SK_FORCE_REUSE 2 int sk_set_peek_off(struct sock *sk, int val); static inline int sk_peek_offset(struct sock *sk, int flags) { if (unlikely(flags & MSG_PEEK)) { return READ_ONCE(sk->sk_peek_off); } return 0; } static inline void sk_peek_offset_bwd(struct sock *sk, int val) { s32 off = READ_ONCE(sk->sk_peek_off); if (unlikely(off >= 0)) { off = max_t(s32, off - val, 0); WRITE_ONCE(sk->sk_peek_off, off); } } static inline void sk_peek_offset_fwd(struct sock *sk, int val) { sk_peek_offset_bwd(sk, -val); } /* * Hashed lists helper routines */ static inline struct sock *sk_entry(const struct hlist_node *node) { return hlist_entry(node, struct sock, sk_node); } static inline struct sock *__sk_head(const struct hlist_head *head) { return hlist_entry(head->first, struct sock, sk_node); } static inline struct sock *sk_head(const struct hlist_head *head) { return hlist_empty(head) ? NULL : __sk_head(head); } static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); } static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); } static inline struct sock *sk_next(const struct sock *sk) { return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); } static inline struct sock *sk_nulls_next(const struct sock *sk) { return (!is_a_nulls(sk->sk_nulls_node.next)) ? hlist_nulls_entry(sk->sk_nulls_node.next, struct sock, sk_nulls_node) : NULL; } static inline bool sk_unhashed(const struct sock *sk) { return hlist_unhashed(&sk->sk_node); } static inline bool sk_hashed(const struct sock *sk) { return !sk_unhashed(sk); } static inline void sk_node_init(struct hlist_node *node) { node->pprev = NULL; } static inline void sk_nulls_node_init(struct hlist_nulls_node *node) { node->pprev = NULL; } static inline void __sk_del_node(struct sock *sk) { __hlist_del(&sk->sk_node); } /* NB: equivalent to hlist_del_init_rcu */ static inline bool __sk_del_node_init(struct sock *sk) { if (sk_hashed(sk)) { __sk_del_node(sk); sk_node_init(&sk->sk_node); return true; } return false; } /* Grab socket reference count. This operation is valid only when sk is ALREADY grabbed f.e. it is found in hash table or a list and the lookup is made under lock preventing hash table modifications. */ static __always_inline void sock_hold(struct sock *sk) { refcount_inc(&sk->sk_refcnt); } /* Ungrab socket in the context, which assumes that socket refcnt cannot hit zero, f.e. it is true in context of any socketcall. */ static __always_inline void __sock_put(struct sock *sk) { refcount_dec(&sk->sk_refcnt); } static inline bool sk_del_node_init(struct sock *sk) { bool rc = __sk_del_node_init(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) { if (sk_hashed(sk)) { hlist_nulls_del_init_rcu(&sk->sk_nulls_node); return true; } return false; } static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) { bool rc = __sk_nulls_del_node_init_rcu(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_node, list); } static inline void sk_add_node(struct sock *sk, struct hlist_head *list) { sock_hold(sk); __sk_add_node(sk, list); } static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && sk->sk_family == AF_INET6) hlist_add_tail_rcu(&sk->sk_node, list); else hlist_add_head_rcu(&sk->sk_node, list); } static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); hlist_add_tail_rcu(&sk->sk_node, list); } static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); } static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); } static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { sock_hold(sk); __sk_nulls_add_node_rcu(sk, list); } static inline void __sk_del_bind_node(struct sock *sk) { __hlist_del(&sk->sk_bind_node); } static inline void sk_add_bind_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_bind_node, list); } #define sk_for_each(__sk, list) \ hlist_for_each_entry(__sk, list, sk_node) #define sk_for_each_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, sk_node) #define sk_nulls_for_each(__sk, node, list) \ hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) #define sk_nulls_for_each_rcu(__sk, node, list) \ hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) #define sk_for_each_from(__sk) \ hlist_for_each_entry_from(__sk, sk_node) #define sk_nulls_for_each_from(__sk, node) \ if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) #define sk_for_each_safe(__sk, tmp, list) \ hlist_for_each_entry_safe(__sk, tmp, list, sk_node) #define sk_for_each_bound(__sk, list) \ hlist_for_each_entry(__sk, list, sk_bind_node) /** * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @offset: offset of hlist_node within the struct. * */ #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos != NULL && \ ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ pos = rcu_dereference(hlist_next_rcu(pos))) static inline struct user_namespace *sk_user_ns(struct sock *sk) { /* Careful only use this in a context where these parameters * can not change and must all be valid, such as recvmsg from * userspace. */ return sk->sk_socket->file->f_cred->user_ns; } /* Sock flags */ enum sock_flags { SOCK_DEAD, SOCK_DONE, SOCK_URGINLINE, SOCK_KEEPOPEN, SOCK_LINGER, SOCK_DESTROY, SOCK_BROADCAST, SOCK_TIMESTAMP, SOCK_ZAPPED, SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ SOCK_DBG, /* %SO_DEBUG setting */ SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ SOCK_MEMALLOC, /* VM depends on this socket for swapping */ SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ SOCK_FASYNC, /* fasync() active */ SOCK_RXQ_OVFL, SOCK_ZEROCOPY, /* buffers from userspace */ SOCK_WIFI_STATUS, /* push wifi status to userspace */ SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. * Will use last 4 bytes of packet sent from * user-space instead. */ SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ SOCK_TXTIME, SOCK_XDP, /* XDP is attached */ SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ }; #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) { nsk->sk_flags = osk->sk_flags; } static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) { __set_bit(flag, &sk->sk_flags); } static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) { __clear_bit(flag, &sk->sk_flags); } static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) { return test_bit(flag, &sk->sk_flags); } #ifdef CONFIG_NET DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); static inline int sk_memalloc_socks(void) { return static_branch_unlikely(&memalloc_socks_key); } #else static inline int sk_memalloc_socks(void) { return 0; } #endif static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) { return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); } static inline void sk_acceptq_removed(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); } static inline void sk_acceptq_added(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); } static inline bool sk_acceptq_is_full(const struct sock *sk) { return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); } /* * Compute minimal free write space needed to queue new packets. */ static inline int sk_stream_min_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_wmem_queued) >> 1; } static inline int sk_stream_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); } static inline void sk_wmem_queued_add(struct sock *sk, int val) { WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); } void sk_stream_write_space(struct sock *sk); /* OOB backlog add */ static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) { /* dont let skb dst not refcounted, we are going to leave rcu lock */ skb_dst_force(skb); if (!sk->sk_backlog.tail) WRITE_ONCE(sk->sk_backlog.head, skb); else sk->sk_backlog.tail->next = skb; WRITE_ONCE(sk->sk_backlog.tail, skb); skb->next = NULL; } /* * Take into account size of receive queue and backlog queue * Do not take into account this skb truesize, * to allow even a single big packet to come. */ static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) { unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); return qsize > limit; } /* The per-socket spinlock must be held here. */ static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, unsigned int limit) { if (sk_rcvqueues_full(sk, limit)) return -ENOBUFS; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) return -ENOMEM; __sk_add_backlog(sk, skb); sk->sk_backlog.len += skb->truesize; return 0; } int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { if (sk_memalloc_socks() && skb_pfmemalloc(skb)) return __sk_backlog_rcv(sk, skb); return sk->sk_backlog_rcv(sk, skb); } static inline void sk_incoming_cpu_update(struct sock *sk) { int cpu = raw_smp_processor_id(); if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) WRITE_ONCE(sk->sk_incoming_cpu, cpu); } static inline void sock_rps_record_flow_hash(__u32 hash) { #ifdef CONFIG_RPS struct rps_sock_flow_table *sock_flow_table; rcu_read_lock(); sock_flow_table = rcu_dereference(rps_sock_flow_table); rps_record_sock_flow(sock_flow_table, hash); rcu_read_unlock(); #endif } static inline void sock_rps_record_flow(const struct sock *sk) { #ifdef CONFIG_RPS if (static_branch_unlikely(&rfs_needed)) { /* Reading sk->sk_rxhash might incur an expensive cache line * miss. * * TCP_ESTABLISHED does cover almost all states where RFS * might be useful, and is cheaper [1] than testing : * IPv4: inet_sk(sk)->inet_daddr * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) * OR an additional socket flag * [1] : sk_state and sk_prot are in the same cache line. */ if (sk->sk_state == TCP_ESTABLISHED) sock_rps_record_flow_hash(sk->sk_rxhash); } #endif } static inline void sock_rps_save_rxhash(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_RPS if (unlikely(sk->sk_rxhash != skb->hash)) sk->sk_rxhash = skb->hash; #endif } static inline void sock_rps_reset_rxhash(struct sock *sk) { #ifdef CONFIG_RPS sk->sk_rxhash = 0; #endif } #define sk_wait_event(__sk, __timeo, __condition, __wait) \ ({ int __rc; \ release_sock(__sk); \ __rc = __condition; \ if (!__rc) { \ *(__timeo) = wait_woken(__wait, \ TASK_INTERRUPTIBLE, \ *(__timeo)); \ } \ sched_annotate_sleep(); \ lock_sock(__sk); \ __rc = __condition; \ __rc; \ }) int sk_stream_wait_connect(struct sock *sk, long *timeo_p); int sk_stream_wait_memory(struct sock *sk, long *timeo_p); void sk_stream_wait_close(struct sock *sk, long timeo_p); int sk_stream_error(struct sock *sk, int flags, int err); void sk_stream_kill_queues(struct sock *sk); void sk_set_memalloc(struct sock *sk); void sk_clear_memalloc(struct sock *sk); void __sk_flush_backlog(struct sock *sk); static inline bool sk_flush_backlog(struct sock *sk) { if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { __sk_flush_backlog(sk); return true; } return false; } int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct smc_hashinfo; struct module; /* * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes * un-modified. Special care is taken when initializing object to zero. */ static inline void sk_prot_clear_nulls(struct sock *sk, int size) { if (offsetof(struct sock, sk_node.next) != 0) memset(sk, 0, offsetof(struct sock, sk_node.next)); memset(&sk->sk_node.pprev, 0, size - offsetof(struct sock, sk_node.pprev)); } /* Networking protocol blocks we attach to sockets. * socket layer -> transport layer interface */ struct proto { void (*close)(struct sock *sk, long timeout); int (*pre_connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*disconnect)(struct sock *sk, int flags); struct sock * (*accept)(struct sock *sk, int flags, int *err, bool kern); int (*ioctl)(struct sock *sk, int cmd, unsigned long arg); int (*init)(struct sock *sk); void (*destroy)(struct sock *sk); void (*shutdown)(struct sock *sk, int how); int (*setsockopt)(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); void (*keepalive)(struct sock *sk, int valbool); #ifdef CONFIG_COMPAT int (*compat_setsockopt)(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen); int (*compat_getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); int (*compat_ioctl)(struct sock *sk, unsigned int cmd, unsigned long arg); #endif int (*sendmsg)(struct sock *sk, struct msghdr *msg, size_t len); int (*recvmsg)(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len); int (*sendpage)(struct sock *sk, struct page *page, int offset, size_t size, int flags); int (*bind)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*backlog_rcv) (struct sock *sk, struct sk_buff *skb); void (*release_cb)(struct sock *sk); /* Keeping track of sk's, looking them up, and port selection methods. */ int (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); void (*rehash)(struct sock *sk); int (*get_port)(struct sock *sk, unsigned short snum); /* Keeping track of sockets in use */ #ifdef CONFIG_PROC_FS unsigned int inuse_idx; #endif bool (*stream_memory_free)(const struct sock *sk, int wake); bool (*stream_memory_read)(const struct sock *sk); /* Memory pressure */ void (*enter_memory_pressure)(struct sock *sk); void (*leave_memory_pressure)(struct sock *sk); atomic_long_t *memory_allocated; /* Current allocated memory. */ struct percpu_counter *sockets_allocated; /* Current number of sockets. */ /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long *memory_pressure; long *sysctl_mem; int *sysctl_wmem; int *sysctl_rmem; u32 sysctl_wmem_offset; u32 sysctl_rmem_offset; int max_header; bool no_autobind; struct kmem_cache *slab; unsigned int obj_size; slab_flags_t slab_flags; unsigned int useroffset; /* Usercopy region offset */ unsigned int usersize; /* Usercopy region size */ struct percpu_counter *orphan_count; struct request_sock_ops *rsk_prot; struct timewait_sock_ops *twsk_prot; union { struct inet_hashinfo *hashinfo; struct udp_table *udp_table; struct raw_hashinfo *raw_hash; struct smc_hashinfo *smc_hash; } h; struct module *owner; char name[32]; struct list_head node; #ifdef SOCK_REFCNT_DEBUG atomic_t socks; #endif int (*diag_destroy)(struct sock *sk, int err); } __randomize_layout; int proto_register(struct proto *prot, int alloc_slab); void proto_unregister(struct proto *prot); int sock_load_diag_module(int family, int protocol); #ifdef SOCK_REFCNT_DEBUG static inline void sk_refcnt_debug_inc(struct sock *sk) { atomic_inc(&sk->sk_prot->socks); } static inline void sk_refcnt_debug_dec(struct sock *sk) { atomic_dec(&sk->sk_prot->socks); printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); } static inline void sk_refcnt_debug_release(const struct sock *sk) { if (refcount_read(&sk->sk_refcnt) != 1) printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); } #else /* SOCK_REFCNT_DEBUG */ #define sk_refcnt_debug_inc(sk) do { } while (0) #define sk_refcnt_debug_dec(sk) do { } while (0) #define sk_refcnt_debug_release(sk) do { } while (0) #endif /* SOCK_REFCNT_DEBUG */ static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) { if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) return false; return sk->sk_prot->stream_memory_free ? sk->sk_prot->stream_memory_free(sk, wake) : true; } static inline bool sk_stream_memory_free(const struct sock *sk) { return __sk_stream_memory_free(sk, 0); } static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) { return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && __sk_stream_memory_free(sk, wake); } static inline bool sk_stream_is_writeable(const struct sock *sk) { return __sk_stream_is_writeable(sk, 0); } static inline int sk_under_cgroup_hierarchy(struct sock *sk, struct cgroup *ancestor) { #ifdef CONFIG_SOCK_CGROUP_DATA return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), ancestor); #else return -ENOTSUPP; #endif } static inline bool sk_has_memory_pressure(const struct sock *sk) { return sk->sk_prot->memory_pressure != NULL; } static inline bool sk_under_memory_pressure(const struct sock *sk) { if (!sk->sk_prot->memory_pressure) return false; if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return !!*sk->sk_prot->memory_pressure; } static inline long sk_memory_allocated(const struct sock *sk) { return atomic_long_read(sk->sk_prot->memory_allocated); } static inline long sk_memory_allocated_add(struct sock *sk, int amt) { return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); } static inline void sk_memory_allocated_sub(struct sock *sk, int amt) { atomic_long_sub(amt, sk->sk_prot->memory_allocated); } static inline void sk_sockets_allocated_dec(struct sock *sk) { percpu_counter_dec(sk->sk_prot->sockets_allocated); } static inline void sk_sockets_allocated_inc(struct sock *sk) { percpu_counter_inc(sk->sk_prot->sockets_allocated); } static inline u64 sk_sockets_allocated_read_positive(struct sock *sk) { return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); } static inline int proto_sockets_allocated_sum_positive(struct proto *prot) { return percpu_counter_sum_positive(prot->sockets_allocated); } static inline long proto_memory_allocated(struct proto *prot) { return atomic_long_read(prot->memory_allocated); } static inline bool proto_memory_pressure(struct proto *prot) { if (!prot->memory_pressure) return false; return !!*prot->memory_pressure; } #ifdef CONFIG_PROC_FS /* Called with local bh disabled */ void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); int sock_prot_inuse_get(struct net *net, struct proto *proto); int sock_inuse_get(struct net *net); #else static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc) { } #endif /* With per-bucket locks this operation is not-atomic, so that * this version is not worse. */ static inline int __sk_prot_rehash(struct sock *sk) { sk->sk_prot->unhash(sk); return sk->sk_prot->hash(sk); } /* About 10 seconds */ #define SOCK_DESTROY_TIME (10*HZ) /* Sockets 0-1023 can't be bound to unless you are superuser */ #define PROT_SOCK 1024 #define SHUTDOWN_MASK 3 #define RCV_SHUTDOWN 1 #define SEND_SHUTDOWN 2 #define SOCK_SNDBUF_LOCK 1 #define SOCK_RCVBUF_LOCK 2 #define SOCK_BINDADDR_LOCK 4 #define SOCK_BINDPORT_LOCK 8 struct socket_alloc { struct socket socket; struct inode vfs_inode; }; static inline struct socket *SOCKET_I(struct inode *inode) { return &container_of(inode, struct socket_alloc, vfs_inode)->socket; } static inline struct inode *SOCK_INODE(struct socket *socket) { return &container_of(socket, struct socket_alloc, socket)->vfs_inode; } /* * Functions for memory accounting */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); int __sk_mem_schedule(struct sock *sk, int size, int kind); void __sk_mem_reduce_allocated(struct sock *sk, int amount); void __sk_mem_reclaim(struct sock *sk, int amount); /* We used to have PAGE_SIZE here, but systems with 64KB pages * do not necessarily have 16x time more memory than 4KB ones. */ #define SK_MEM_QUANTUM 4096 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) #define SK_MEM_SEND 0 #define SK_MEM_RECV 1 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ static inline long sk_prot_mem_limits(const struct sock *sk, int index) { long val = sk->sk_prot->sysctl_mem[index]; #if PAGE_SIZE > SK_MEM_QUANTUM val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; #elif PAGE_SIZE < SK_MEM_QUANTUM val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; #endif return val; } static inline int sk_mem_pages(int amt) { return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; } static inline bool sk_has_account(struct sock *sk) { /* return true if protocol supports memory accounting */ return !!sk->sk_prot->memory_allocated; } static inline bool sk_wmem_schedule(struct sock *sk, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_SEND); } static inline bool sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) { if (!sk_has_account(sk)) return true; return size<= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_RECV) || skb_pfmemalloc(skb); } static inline void sk_mem_reclaim(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc); } static inline void sk_mem_reclaim_partial(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc > SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); } static inline void sk_mem_charge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc -= size; } static inline void sk_mem_uncharge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc += size; /* Avoid a possible overflow. * TCP send queues can make this happen, if sk_mem_reclaim() * is not called and more than 2 GBytes are released at once. * * If we reach 2 MBytes, reclaim 1 MBytes right now, there is * no need to hold that much forward allocation anyway. */ if (unlikely(sk->sk_forward_alloc >= 1 << 21)) __sk_mem_reclaim(sk, 1 << 20); } DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) { sock_set_flag(sk, SOCK_QUEUE_SHRUNK); sk_wmem_queued_add(sk, -skb->truesize); sk_mem_uncharge(sk, skb->truesize); if (static_branch_unlikely(&tcp_tx_skb_cache_key) && !sk->sk_tx_skb_cache && !skb_cloned(skb)) { skb_ext_reset(skb); skb_zcopy_clear(skb, true); sk->sk_tx_skb_cache = skb; return; } __kfree_skb(skb); } static inline void sock_release_ownership(struct sock *sk) { if (sk->sk_lock.owned) { sk->sk_lock.owned = 0; /* The sk_lock has mutex_unlock() semantics: */ mutex_release(&sk->sk_lock.dep_map, _RET_IP_); } } /* * Macro so as to not evaluate some arguments when * lockdep is not enabled. * * Mark both the sk_lock and the sk_lock.slock as a * per-address-family lock class. */ #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ do { \ sk->sk_lock.owned = 0; \ init_waitqueue_head(&sk->sk_lock.wq); \ spin_lock_init(&(sk)->sk_lock.slock); \ debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ sizeof((sk)->sk_lock)); \ lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ (skey), (sname)); \ lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ } while (0) #ifdef CONFIG_LOCKDEP static inline bool lockdep_sock_is_held(const struct sock *sk) { return lockdep_is_held(&sk->sk_lock) || lockdep_is_held(&sk->sk_lock.slock); } #endif void lock_sock_nested(struct sock *sk, int subclass); static inline void lock_sock(struct sock *sk) { lock_sock_nested(sk, 0); } void __release_sock(struct sock *sk); void release_sock(struct sock *sk); /* BH context may only use the following locking interface. */ #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) #define bh_lock_sock_nested(__sk) \ spin_lock_nested(&((__sk)->sk_lock.slock), \ SINGLE_DEPTH_NESTING) #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) bool lock_sock_fast(struct sock *sk); /** * unlock_sock_fast - complement of lock_sock_fast * @sk: socket * @slow: slow mode * * fast unlock socket for user context. * If slow mode is on, we call regular release_sock() */ static inline void unlock_sock_fast(struct sock *sk, bool slow) { if (slow) release_sock(sk); else spin_unlock_bh(&sk->sk_lock.slock); } /* Used by processes to "lock" a socket state, so that * interrupts and bottom half handlers won't change it * from under us. It essentially blocks any incoming * packets, so that we won't get any new data or any * packets that change the state of the socket. * * While locked, BH processing will add new packets to * the backlog queue. This queue is processed by the * owner of the socket lock right before it is released. * * Since ~2.3.5 it is also exclusive sleep lock serializing * accesses from user process context. */ static inline void sock_owned_by_me(const struct sock *sk) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); #endif } static inline bool sock_owned_by_user(const struct sock *sk) { sock_owned_by_me(sk); return sk->sk_lock.owned; } static inline bool sock_owned_by_user_nocheck(const struct sock *sk) { return sk->sk_lock.owned; } /* no reclassification while locks are held */ static inline bool sock_allow_reclassification(const struct sock *csk) { struct sock *sk = (struct sock *)csk; return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); } struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern); void sk_free(struct sock *sk); void sk_destruct(struct sock *sk); struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); void sk_free_unlock_clone(struct sock *sk); struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority); void __sock_wfree(struct sk_buff *skb); void sock_wfree(struct sk_buff *skb); struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority); void skb_orphan_partial(struct sk_buff *skb); void sock_rfree(struct sk_buff *skb); void sock_efree(struct sk_buff *skb); #ifdef CONFIG_INET void sock_edemux(struct sk_buff *skb); void sock_pfree(struct sk_buff *skb); #else #define sock_edemux sock_efree #endif int sock_setsockopt(struct socket *sock, int level, int op, char __user *optval, unsigned int optlen); int sock_getsockopt(struct socket *sock, int level, int op, char __user *optval, int __user *optlen); int sock_gettstamp(struct socket *sock, void __user *userstamp, bool timeval, bool time32); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode); struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order); void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); void sock_kfree_s(struct sock *sk, void *mem, int size); void sock_kzfree_s(struct sock *sk, void *mem, int size); void sk_send_sigurg(struct sock *sk); struct sockcm_cookie { u64 transmit_time; u32 mark; u16 tsflags; }; static inline void sockcm_init(struct sockcm_cookie *sockc, const struct sock *sk) { *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; } int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, struct sockcm_cookie *sockc); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc); /* * Functions to fill in entries in struct proto_ops when a protocol * does not implement a particular function. */ int sock_no_bind(struct socket *, struct sockaddr *, int); int sock_no_connect(struct socket *, struct sockaddr *, int, int); int sock_no_socketpair(struct socket *, struct socket *); int sock_no_accept(struct socket *, struct socket *, int, bool); int sock_no_getname(struct socket *, struct sockaddr *, int); int sock_no_ioctl(struct socket *, unsigned int, unsigned long); int sock_no_listen(struct socket *, int); int sock_no_shutdown(struct socket *, int); int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags); ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags); /* * Functions to fill in entries in struct proto_ops when a protocol * uses the inet style. */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags); int sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen); int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen); void sk_common_release(struct sock *sk); /* * Default socket callbacks and setup code */ /* Initialise core socket variables */ void sock_init_data(struct socket *sock, struct sock *sk); /* * Socket reference counting postulates. * * * Each user of socket SHOULD hold a reference count. * * Each access point to socket (an hash table bucket, reference from a list, * running timer, skb in flight MUST hold a reference count. * * When reference count hits 0, it means it will never increase back. * * When reference count hits 0, it means that no references from * outside exist to this socket and current process on current CPU * is last user and may/should destroy this socket. * * sk_free is called from any context: process, BH, IRQ. When * it is called, socket has no references from outside -> sk_free * may release descendant resources allocated by the socket, but * to the time when it is called, socket is NOT referenced by any * hash tables, lists etc. * * Packets, delivered from outside (from network or from another process) * and enqueued on receive/error queues SHOULD NOT grab reference count, * when they sit in queue. Otherwise, packets will leak to hole, when * socket is looked up by one cpu and unhasing is made by another CPU. * It is true for udp/raw, netlink (leak to receive and error queues), tcp * (leak to backlog). Packet socket does all the processing inside * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets * use separate SMP lock, so that they are prone too. */ /* Ungrab socket and destroy it, if it was the last reference. */ static inline void sock_put(struct sock *sk) { if (refcount_dec_and_test(&sk->sk_refcnt)) sk_free(sk); } /* Generic version of sock_put(), dealing with all sockets * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) */ void sock_gen_put(struct sock *sk); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted); static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) { return __sk_receive_skb(sk, skb, nested, 1, true); } static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) { /* sk_tx_queue_mapping accept only upto a 16-bit value */ if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) return; sk->sk_tx_queue_mapping = tx_queue; } #define NO_QUEUE_MAPPING USHRT_MAX static inline void sk_tx_queue_clear(struct sock *sk) { sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; } static inline int sk_tx_queue_get(const struct sock *sk) { if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_tx_queue_mapping; return -1; } static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_XPS if (skb_rx_queue_recorded(skb)) { u16 rx_queue = skb_get_rx_queue(skb); if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) return; sk->sk_rx_queue_mapping = rx_queue; } #endif } static inline void sk_rx_queue_clear(struct sock *sk) { #ifdef CONFIG_XPS sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; #endif } #ifdef CONFIG_XPS static inline int sk_rx_queue_get(const struct sock *sk) { if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_rx_queue_mapping; return -1; } #endif static inline void sk_set_socket(struct sock *sk, struct socket *sock) { sk_tx_queue_clear(sk); sk->sk_socket = sock; } static inline wait_queue_head_t *sk_sleep(struct sock *sk) { BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); return &rcu_dereference_raw(sk->sk_wq)->wait; } /* Detach socket from process context. * Announce socket dead, detach it from wait queue and inode. * Note that parent inode held reference count on this struct sock, * we do not release it in this function, because protocol * probably wants some additional cleanups or even continuing * to work with this socket (TCP). */ static inline void sock_orphan(struct sock *sk) { write_lock_bh(&sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, NULL); sk->sk_wq = NULL; write_unlock_bh(&sk->sk_callback_lock); } static inline void sock_graft(struct sock *sk, struct socket *parent) { WARN_ON(parent->sk); write_lock_bh(&sk->sk_callback_lock); rcu_assign_pointer(sk->sk_wq, &parent->wq); parent->sk = sk; sk_set_socket(sk, parent); sk->sk_uid = SOCK_INODE(parent)->i_uid; security_sock_graft(sk, parent); write_unlock_bh(&sk->sk_callback_lock); } kuid_t sock_i_uid(struct sock *sk); unsigned long sock_i_ino(struct sock *sk); static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) { return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); } static inline u32 net_tx_rndhash(void) { u32 v = prandom_u32(); return v ?: 1; } static inline void sk_set_txhash(struct sock *sk) { sk->sk_txhash = net_tx_rndhash(); } static inline void sk_rethink_txhash(struct sock *sk) { if (sk->sk_txhash) sk_set_txhash(sk); } static inline struct dst_entry * __sk_dst_get(struct sock *sk) { return rcu_dereference_check(sk->sk_dst_cache, lockdep_sock_is_held(sk)); } static inline struct dst_entry * sk_dst_get(struct sock *sk) { struct dst_entry *dst; rcu_read_lock(); dst = rcu_dereference(sk->sk_dst_cache); if (dst && !atomic_inc_not_zero(&dst->__refcnt)) dst = NULL; rcu_read_unlock(); return dst; } static inline void dst_negative_advice(struct sock *sk) { struct dst_entry *ndst, *dst = __sk_dst_get(sk); sk_rethink_txhash(sk); if (dst && dst->ops->negative_advice) { ndst = dst->ops->negative_advice(dst); if (ndst != dst) { rcu_assign_pointer(sk->sk_dst_cache, ndst); sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; } } } static inline void __sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = rcu_dereference_protected(sk->sk_dst_cache, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void __sk_dst_reset(struct sock *sk) { __sk_dst_set(sk, NULL); } static inline void sk_dst_reset(struct sock *sk) { sk_dst_set(sk, NULL); } struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); static inline void sk_dst_confirm(struct sock *sk) { if (!READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 1); } static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) { if (skb_get_dst_pending_confirm(skb)) { struct sock *sk = skb->sk; unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 0); } } bool sk_mc_loop(struct sock *sk); static inline bool sk_can_gso(const struct sock *sk) { return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); } void sk_setup_caps(struct sock *sk, struct dst_entry *dst); static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) { sk->sk_route_nocaps |= flags; sk->sk_route_caps &= ~flags; } static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, char *to, int copy, int offset) { if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, offset); } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { if (!copy_from_iter_full_nocache(to, copy, from)) return -EFAULT; } else if (!copy_from_iter_full(to, copy, from)) return -EFAULT; return 0; } static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, int copy) { int err, offset = skb->len; err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), copy, offset); if (err) __skb_trim(skb, offset); return err; } static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, struct sk_buff *skb, struct page *page, int off, int copy) { int err; err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, copy, skb->len); if (err) return err; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); return 0; } /** * sk_wmem_alloc_get - returns write allocations * @sk: socket * * Return: sk_wmem_alloc minus initial offset of one */ static inline int sk_wmem_alloc_get(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) - 1; } /** * sk_rmem_alloc_get - returns read allocations * @sk: socket * * Return: sk_rmem_alloc */ static inline int sk_rmem_alloc_get(const struct sock *sk) { return atomic_read(&sk->sk_rmem_alloc); } /** * sk_has_allocations - check if allocations are outstanding * @sk: socket * * Return: true if socket has write or read allocations */ static inline bool sk_has_allocations(const struct sock *sk) { return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); } /** * skwq_has_sleeper - check if there are any waiting processes * @wq: struct socket_wq * * Return: true if socket_wq has waiting processes * * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory * barrier call. They were added due to the race found within the tcp code. * * Consider following tcp code paths:: * * CPU1 CPU2 * sys_select receive packet * ... ... * __add_wait_queue update tp->rcv_nxt * ... ... * tp->rcv_nxt check sock_def_readable * ... { * schedule rcu_read_lock(); * wq = rcu_dereference(sk->sk_wq); * if (wq && waitqueue_active(&wq->wait)) * wake_up_interruptible(&wq->wait) * ... * } * * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 * could then endup calling schedule and sleep forever if there are no more * data on the socket. * */ static inline bool skwq_has_sleeper(struct socket_wq *wq) { return wq && wq_has_sleeper(&wq->wait); } /** * sock_poll_wait - place memory barrier behind the poll_wait call. * @filp: file * @sock: socket to wait on * @p: poll_table * * See the comments in the wq_has_sleeper function. */ static inline void sock_poll_wait(struct file *filp, struct socket *sock, poll_table *p) { if (!poll_does_not_wait(p)) { poll_wait(filp, &sock->wq.wait, p); /* We need to be sure we are in sync with the * socket flags modification. * * This memory barrier is paired in the wq_has_sleeper. */ smp_mb(); } } static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) { if (sk->sk_txhash) { skb->l4_hash = 1; skb->hash = sk->sk_txhash; } } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); /* * Queue a received datagram if it will fit. Stream and sequenced * protocols can't normally use this as they need to fit buffers in * and play with them. * * Inlined as it's very short and called for pretty much every * packet ever received. */ static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rfree; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } void sk_reset_timer(struct sock *sk, struct timer_list *timer, unsigned long expires); void sk_stop_timer(struct sock *sk, struct timer_list *timer); int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, struct sk_buff *skb, unsigned int flags, void (*destructor)(struct sock *sk, struct sk_buff *skb)); int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); struct sk_buff *sock_dequeue_err_skb(struct sock *sk); /* * Recover an error report and clear atomically */ static inline int sock_error(struct sock *sk) { int err; if (likely(!sk->sk_err)) return 0; err = xchg(&sk->sk_err, 0); return -err; } static inline unsigned long sock_wspace(struct sock *sk) { int amt = 0; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); if (amt < 0) amt = 0; } return amt; } /* Note: * We use sk->sk_wq_raw, from contexts knowing this * pointer is not NULL and cannot disappear/change. */ static inline void sk_set_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; set_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_clear_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; clear_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_wake_async(const struct sock *sk, int how, int band) { if (sock_flag(sk, SOCK_FASYNC)) { rcu_read_lock(); sock_wake_async(rcu_dereference(sk->sk_wq), how, band); rcu_read_unlock(); } } /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. * Note: for send buffers, TCP works better if we can build two skbs at * minimum. */ #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE static inline void sk_stream_moderate_sndbuf(struct sock *sk) { u32 val; if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) return; val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); } struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule); /** * sk_page_frag - return an appropriate page_frag * @sk: socket * * Use the per task page_frag instead of the per socket one for * optimization when we know that we're in the normal context and owns * everything that's associated with %current. * * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest * inside other socket operations and end up recursing into sk_page_frag() * while it's already in use. * * Return: a per task page_frag if context allows that, * otherwise a per socket one. */ static inline struct page_frag *sk_page_frag(struct sock *sk) { if (gfpflags_normal_context(sk->sk_allocation)) return ¤t->task_frag; return &sk->sk_frag; } bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); /* * Default write policy as shown to user space via poll/select/SIGIO */ static inline bool sock_writeable(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); } static inline gfp_t gfp_any(void) { return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; } static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_rcvtimeo; } static inline long sock_sndtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_sndtimeo; } static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) { int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); return v ?: 1; } /* Alas, with timeout socket operations are not restartable. * Compare this to poll(). */ static inline int sock_intr_errno(long timeo) { return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; } struct sock_skb_cb { u32 dropcount; }; /* Store sock_skb_cb at the end of skb->cb[] so protocol families * using skb->cb[] would keep using it directly and utilize its * alignement guarantee. */ #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ sizeof(struct sock_skb_cb))) #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ SOCK_SKB_CB_OFFSET)) #define sock_skb_cb_check_size(size) \ BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) static inline void sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) { SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? atomic_read(&sk->sk_drops) : 0; } static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) { int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); atomic_add(segs, &sk->sk_drops); } static inline ktime_t sock_read_timestamp(struct sock *sk) { #if BITS_PER_LONG==32 unsigned int seq; ktime_t kt; do { seq = read_seqbegin(&sk->sk_stamp_seq); kt = sk->sk_stamp; } while (read_seqretry(&sk->sk_stamp_seq, seq)); return kt; #else return READ_ONCE(sk->sk_stamp); #endif } static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) { #if BITS_PER_LONG==32 write_seqlock(&sk->sk_stamp_seq); sk->sk_stamp = kt; write_sequnlock(&sk->sk_stamp_seq); #else WRITE_ONCE(sk->sk_stamp, kt); #endif } void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); static inline void sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { ktime_t kt = skb->tstamp; struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); /* * generate control messages if * - receive time stamping in software requested * - software time stamp available and wanted * - hardware time stamps available and wanted */ if (sock_flag(sk, SOCK_RCVTSTAMP) || (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || (hwtstamps->hwtstamp && (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) __sock_recv_timestamp(msg, sk, skb); else sock_write_timestamp(sk, kt); if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) __sock_recv_wifi_status(msg, sk, skb); } void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ (1UL << SOCK_RCVTSTAMP)) #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ SOF_TIMESTAMPING_RAW_HARDWARE) if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) __sock_recv_ts_and_drops(msg, sk, skb); else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) sock_write_timestamp(sk, skb->tstamp); else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) sock_write_timestamp(sk, 0); } void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); /** * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped * @sk: socket sending this packet * @tsflags: timestamping flags to use * @tx_flags: completed with instructions for time stamping * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) * * Note: callers should take care of initial ``*tx_flags`` value (usually 0) */ static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags, __u32 *tskey) { if (unlikely(tsflags)) { __sock_tx_timestamp(tsflags, tx_flags); if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) *tskey = sk->sk_tskey++; } if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) *tx_flags |= SKBTX_WIFI_STATUS; } static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags) { _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); } static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) { _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, &skb_shinfo(skb)->tskey); } DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); /** * sk_eat_skb - Release a skb if it is no longer needed * @sk: socket to eat this skb from * @skb: socket buffer to eat * * This routine must be called with interrupts disabled or with the socket * locked so that the sk_buff queue operation is ok. */ static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); if (static_branch_unlikely(&tcp_rx_skb_cache_key) && !sk->sk_rx_skb_cache) { sk->sk_rx_skb_cache = skb; skb_orphan(skb); return; } __kfree_skb(skb); } static inline struct net *sock_net(const struct sock *sk) { return read_pnet(&sk->sk_net); } static inline void sock_net_set(struct sock *sk, struct net *net) { write_pnet(&sk->sk_net, net); } static inline bool skb_sk_is_prefetched(struct sk_buff *skb) { #ifdef CONFIG_INET return skb->destructor == sock_pfree; #else return false; #endif /* CONFIG_INET */ } /** * skb_steal_sock * @skb to steal the socket from * @refcounted is set to true if the socket is reference-counted */ static inline struct sock * skb_steal_sock(struct sk_buff *skb, bool *refcounted) { if (skb->sk) { struct sock *sk = skb->sk; *refcounted = true; skb->destructor = NULL; skb->sk = NULL; return sk; } *refcounted = false; return NULL; } /* This helper checks if a socket is a full socket, * ie _not_ a timewait or request socket. */ static inline bool sk_fullsock(const struct sock *sk) { return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); } /* Checks if this SKB belongs to an HW offloaded socket * and whether any SW fallbacks are required based on dev. * Check decrypted mark in case skb_orphan() cleared socket. */ static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) { #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sock *sk = skb->sk; if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { skb = sk->sk_validate_xmit_skb(sk, dev, skb); #ifdef CONFIG_TLS_DEVICE } else if (unlikely(skb->decrypted)) { pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); kfree_skb(skb); skb = NULL; #endif } #endif return skb; } /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) */ static inline bool sk_listener(const struct sock *sk) { return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); } void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type); bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap); bool sk_capable(const struct sock *sk, int cap); bool sk_net_capable(const struct sock *sk, int cap); void sk_get_meminfo(const struct sock *sk, u32 *meminfo); /* Take into consideration the size of the struct sk_buff overhead in the * determination of these values, since that is non-constant across * platforms. This makes socket queueing behavior and performance * not depend upon such differences. */ #define _SK_MEM_PACKETS 256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) extern __u32 sysctl_wmem_max; extern __u32 sysctl_rmem_max; extern int sysctl_tstamp_allow_data; extern int sysctl_optmem_max; extern __u32 sysctl_wmem_default; extern __u32 sysctl_rmem_default; DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_wmem ? */ if (proto->sysctl_wmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); return *proto->sysctl_wmem; } static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_rmem ? */ if (proto->sysctl_rmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); return *proto->sysctl_rmem; } /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) * Some wifi drivers need to tweak it to get more chunks. * They can use this helper from their ndo_start_xmit() */ static inline void sk_pacing_shift_update(struct sock *sk, int val) { if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) return; WRITE_ONCE(sk->sk_pacing_shift, val); } /* if a socket is bound to a device, check that the given device * index is either the same or that the socket is bound to an L3 * master device and the given device index is also enslaved to * that L3 master */ static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) { int mdif; if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) return true; mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); if (mdif && mdif == sk->sk_bound_dev_if) return true; return false; } void sock_def_readable(struct sock *sk); #endif /* _SOCK_H */