/** * fs/f2fs/data.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" /** * Lock ordering for the change of data block address: * ->data_page * ->node_page * update block addresses in the node page */ static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr) { struct f2fs_node *rn; __le32 *addr_array; struct page *node_page = dn->node_page; unsigned int ofs_in_node = dn->ofs_in_node; wait_on_page_writeback(node_page); rn = (struct f2fs_node *)page_address(node_page); /* Get physical address of data block */ addr_array = blkaddr_in_node(rn); addr_array[ofs_in_node] = cpu_to_le32(new_addr); set_page_dirty(node_page); } int reserve_new_block(struct dnode_of_data *dn) { struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) return -EPERM; if (!inc_valid_block_count(sbi, dn->inode, 1)) return -ENOSPC; __set_data_blkaddr(dn, NEW_ADDR); dn->data_blkaddr = NEW_ADDR; sync_inode_page(dn); return 0; } static int check_extent_cache(struct inode *inode, pgoff_t pgofs, struct buffer_head *bh_result) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); pgoff_t start_fofs, end_fofs; block_t start_blkaddr; read_lock(&fi->ext.ext_lock); if (fi->ext.len == 0) { read_unlock(&fi->ext.ext_lock); return 0; } sbi->total_hit_ext++; start_fofs = fi->ext.fofs; end_fofs = fi->ext.fofs + fi->ext.len - 1; start_blkaddr = fi->ext.blk_addr; if (pgofs >= start_fofs && pgofs <= end_fofs) { unsigned int blkbits = inode->i_sb->s_blocksize_bits; size_t count; clear_buffer_new(bh_result); map_bh(bh_result, inode->i_sb, start_blkaddr + pgofs - start_fofs); count = end_fofs - pgofs + 1; if (count < (UINT_MAX >> blkbits)) bh_result->b_size = (count << blkbits); else bh_result->b_size = UINT_MAX; sbi->read_hit_ext++; read_unlock(&fi->ext.ext_lock); return 1; } read_unlock(&fi->ext.ext_lock); return 0; } void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn) { struct f2fs_inode_info *fi = F2FS_I(dn->inode); pgoff_t fofs, start_fofs, end_fofs; block_t start_blkaddr, end_blkaddr; BUG_ON(blk_addr == NEW_ADDR); fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node; /* Update the page address in the parent node */ __set_data_blkaddr(dn, blk_addr); write_lock(&fi->ext.ext_lock); start_fofs = fi->ext.fofs; end_fofs = fi->ext.fofs + fi->ext.len - 1; start_blkaddr = fi->ext.blk_addr; end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1; /* Drop and initialize the matched extent */ if (fi->ext.len == 1 && fofs == start_fofs) fi->ext.len = 0; /* Initial extent */ if (fi->ext.len == 0) { if (blk_addr != NULL_ADDR) { fi->ext.fofs = fofs; fi->ext.blk_addr = blk_addr; fi->ext.len = 1; } goto end_update; } /* Frone merge */ if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) { fi->ext.fofs--; fi->ext.blk_addr--; fi->ext.len++; goto end_update; } /* Back merge */ if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) { fi->ext.len++; goto end_update; } /* Split the existing extent */ if (fi->ext.len > 1 && fofs >= start_fofs && fofs <= end_fofs) { if ((end_fofs - fofs) < (fi->ext.len >> 1)) { fi->ext.len = fofs - start_fofs; } else { fi->ext.fofs = fofs + 1; fi->ext.blk_addr = start_blkaddr + fofs - start_fofs + 1; fi->ext.len -= fofs - start_fofs + 1; } goto end_update; } write_unlock(&fi->ext.ext_lock); return; end_update: write_unlock(&fi->ext.ext_lock); sync_inode_page(dn); return; } struct page *find_data_page(struct inode *inode, pgoff_t index) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct address_space *mapping = inode->i_mapping; struct dnode_of_data dn; struct page *page; int err; page = find_get_page(mapping, index); if (page && PageUptodate(page)) return page; f2fs_put_page(page, 0); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, RDONLY_NODE); if (err) return ERR_PTR(err); f2fs_put_dnode(&dn); if (dn.data_blkaddr == NULL_ADDR) return ERR_PTR(-ENOENT); /* By fallocate(), there is no cached page, but with NEW_ADDR */ if (dn.data_blkaddr == NEW_ADDR) return ERR_PTR(-EINVAL); page = grab_cache_page(mapping, index); if (!page) return ERR_PTR(-ENOMEM); err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); if (err) { f2fs_put_page(page, 1); return ERR_PTR(err); } unlock_page(page); return page; } /** * If it tries to access a hole, return an error. * Because, the callers, functions in dir.c and GC, should be able to know * whether this page exists or not. */ struct page *get_lock_data_page(struct inode *inode, pgoff_t index) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct address_space *mapping = inode->i_mapping; struct dnode_of_data dn; struct page *page; int err; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, RDONLY_NODE); if (err) return ERR_PTR(err); f2fs_put_dnode(&dn); if (dn.data_blkaddr == NULL_ADDR) return ERR_PTR(-ENOENT); page = grab_cache_page(mapping, index); if (!page) return ERR_PTR(-ENOMEM); if (PageUptodate(page)) return page; BUG_ON(dn.data_blkaddr == NEW_ADDR); BUG_ON(dn.data_blkaddr == NULL_ADDR); err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); if (err) { f2fs_put_page(page, 1); return ERR_PTR(err); } return page; } /** * Caller ensures that this data page is never allocated. * A new zero-filled data page is allocated in the page cache. */ struct page *get_new_data_page(struct inode *inode, pgoff_t index, bool new_i_size) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct address_space *mapping = inode->i_mapping; struct page *page; struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, 0); if (err) return ERR_PTR(err); if (dn.data_blkaddr == NULL_ADDR) { if (reserve_new_block(&dn)) { f2fs_put_dnode(&dn); return ERR_PTR(-ENOSPC); } } f2fs_put_dnode(&dn); page = grab_cache_page(mapping, index); if (!page) return ERR_PTR(-ENOMEM); if (PageUptodate(page)) return page; if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_CACHE_SIZE); } else { err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); if (err) { f2fs_put_page(page, 1); return ERR_PTR(err); } } SetPageUptodate(page); if (new_i_size && i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) { i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT)); mark_inode_dirty_sync(inode); } return page; } static void read_end_io(struct bio *bio, int err) { const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; do { struct page *page = bvec->bv_page; if (--bvec >= bio->bi_io_vec) prefetchw(&bvec->bv_page->flags); if (uptodate) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } while (bvec >= bio->bi_io_vec); kfree(bio->bi_private); bio_put(bio); } /** * Fill the locked page with data located in the block address. * Read operation is synchronous, and caller must unlock the page. */ int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page, block_t blk_addr, int type) { struct block_device *bdev = sbi->sb->s_bdev; bool sync = (type == READ_SYNC); struct bio *bio; /* This page can be already read by other threads */ if (PageUptodate(page)) { if (!sync) unlock_page(page); return 0; } down_read(&sbi->bio_sem); /* Allocate a new bio */ bio = f2fs_bio_alloc(bdev, blk_addr << (sbi->log_blocksize - 9), 1, GFP_NOFS | __GFP_HIGH); /* Initialize the bio */ bio->bi_end_io = read_end_io; if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { kfree(bio->bi_private); bio_put(bio); up_read(&sbi->bio_sem); return -EFAULT; } submit_bio(type, bio); up_read(&sbi->bio_sem); /* wait for read completion if sync */ if (sync) { lock_page(page); if (PageError(page)) return -EIO; } return 0; } /** * This function should be used by the data read flow only where it * does not check the "create" flag that indicates block allocation. * The reason for this special functionality is to exploit VFS readahead * mechanism. */ static int get_data_block_ro(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { unsigned int blkbits = inode->i_sb->s_blocksize_bits; unsigned maxblocks = bh_result->b_size >> blkbits; struct dnode_of_data dn; pgoff_t pgofs; int err; /* Get the page offset from the block offset(iblock) */ pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits)); if (check_extent_cache(inode, pgofs, bh_result)) return 0; /* When reading holes, we need its node page */ set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE); if (err) return (err == -ENOENT) ? 0 : err; /* It does not support data allocation */ BUG_ON(create); if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) { int i; unsigned int end_offset; end_offset = IS_INODE(dn.node_page) ? ADDRS_PER_INODE : ADDRS_PER_BLOCK; clear_buffer_new(bh_result); /* Give more consecutive addresses for the read ahead */ for (i = 0; i < end_offset - dn.ofs_in_node; i++) if (((datablock_addr(dn.node_page, dn.ofs_in_node + i)) != (dn.data_blkaddr + i)) || maxblocks == i) break; map_bh(bh_result, inode->i_sb, dn.data_blkaddr); bh_result->b_size = (i << blkbits); } f2fs_put_dnode(&dn); return 0; } static int f2fs_read_data_page(struct file *file, struct page *page) { return mpage_readpage(page, get_data_block_ro); } static int f2fs_read_data_pages(struct file *file, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro); } int do_write_data_page(struct page *page) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); block_t old_blk_addr, new_blk_addr; struct dnode_of_data dn; int err = 0; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, page->index, RDONLY_NODE); if (err) return err; old_blk_addr = dn.data_blkaddr; /* This page is already truncated */ if (old_blk_addr == NULL_ADDR) goto out_writepage; set_page_writeback(page); /* * If current allocation needs SSR, * it had better in-place writes for updated data. */ if (old_blk_addr != NEW_ADDR && !is_cold_data(page) && need_inplace_update(inode)) { rewrite_data_page(F2FS_SB(inode->i_sb), page, old_blk_addr); } else { write_data_page(inode, page, &dn, old_blk_addr, &new_blk_addr); update_extent_cache(new_blk_addr, &dn); F2FS_I(inode)->data_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver); } out_writepage: f2fs_put_dnode(&dn); return err; } static int f2fs_write_data_page(struct page *page, struct writeback_control *wbc) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); loff_t i_size = i_size_read(inode); const pgoff_t end_index = ((unsigned long long) i_size) >> PAGE_CACHE_SHIFT; unsigned offset; int err = 0; if (page->index < end_index) goto out; /* * If the offset is out-of-range of file size, * this page does not have to be written to disk. */ offset = i_size & (PAGE_CACHE_SIZE - 1); if ((page->index >= end_index + 1) || !offset) { if (S_ISDIR(inode->i_mode)) { dec_page_count(sbi, F2FS_DIRTY_DENTS); inode_dec_dirty_dents(inode); } goto unlock_out; } zero_user_segment(page, offset, PAGE_CACHE_SIZE); out: if (sbi->por_doing) goto redirty_out; if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page)) goto redirty_out; mutex_lock_op(sbi, DATA_WRITE); if (S_ISDIR(inode->i_mode)) { dec_page_count(sbi, F2FS_DIRTY_DENTS); inode_dec_dirty_dents(inode); } err = do_write_data_page(page); if (err && err != -ENOENT) { wbc->pages_skipped++; set_page_dirty(page); } mutex_unlock_op(sbi, DATA_WRITE); if (wbc->for_reclaim) f2fs_submit_bio(sbi, DATA, true); if (err == -ENOENT) goto unlock_out; clear_cold_data(page); unlock_page(page); if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode)) f2fs_balance_fs(sbi); return 0; unlock_out: unlock_page(page); return (err == -ENOENT) ? 0 : err; redirty_out: wbc->pages_skipped++; set_page_dirty(page); return AOP_WRITEPAGE_ACTIVATE; } #define MAX_DESIRED_PAGES_WP 4096 int f2fs_write_data_pages(struct address_space *mapping, struct writeback_control *wbc) { struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); int ret; long excess_nrtw = 0, desired_nrtw; if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) { desired_nrtw = MAX_DESIRED_PAGES_WP; excess_nrtw = desired_nrtw - wbc->nr_to_write; wbc->nr_to_write = desired_nrtw; } if (!S_ISDIR(inode->i_mode)) mutex_lock(&sbi->writepages); ret = generic_writepages(mapping, wbc); if (!S_ISDIR(inode->i_mode)) mutex_unlock(&sbi->writepages); f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL)); remove_dirty_dir_inode(inode); wbc->nr_to_write -= excess_nrtw; return ret; } static int f2fs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct page *page; pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; struct dnode_of_data dn; int err = 0; /* for nobh_write_end */ *fsdata = NULL; f2fs_balance_fs(sbi); page = grab_cache_page_write_begin(mapping, index, flags); if (!page) return -ENOMEM; *pagep = page; mutex_lock_op(sbi, DATA_NEW); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, 0); if (err) { mutex_unlock_op(sbi, DATA_NEW); f2fs_put_page(page, 1); return err; } if (dn.data_blkaddr == NULL_ADDR) { err = reserve_new_block(&dn); if (err) { f2fs_put_dnode(&dn); mutex_unlock_op(sbi, DATA_NEW); f2fs_put_page(page, 1); return err; } } f2fs_put_dnode(&dn); mutex_unlock_op(sbi, DATA_NEW); if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) return 0; if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { unsigned start = pos & (PAGE_CACHE_SIZE - 1); unsigned end = start + len; /* Reading beyond i_size is simple: memset to zero */ zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); return 0; } if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_CACHE_SIZE); } else { err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); if (err) { f2fs_put_page(page, 1); return err; } } SetPageUptodate(page); clear_cold_data(page); return 0; } static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; if (rw == WRITE) return 0; /* Needs synchronization with the cleaner */ return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, get_data_block_ro); } static void f2fs_invalidate_data_page(struct page *page, unsigned long offset) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); if (S_ISDIR(inode->i_mode) && PageDirty(page)) { dec_page_count(sbi, F2FS_DIRTY_DENTS); inode_dec_dirty_dents(inode); } ClearPagePrivate(page); } static int f2fs_release_data_page(struct page *page, gfp_t wait) { ClearPagePrivate(page); return 0; } static int f2fs_set_data_page_dirty(struct page *page) { struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; SetPageUptodate(page); if (!PageDirty(page)) { __set_page_dirty_nobuffers(page); set_dirty_dir_page(inode, page); return 1; } return 0; } const struct address_space_operations f2fs_dblock_aops = { .readpage = f2fs_read_data_page, .readpages = f2fs_read_data_pages, .writepage = f2fs_write_data_page, .writepages = f2fs_write_data_pages, .write_begin = f2fs_write_begin, .write_end = nobh_write_end, .set_page_dirty = f2fs_set_data_page_dirty, .invalidatepage = f2fs_invalidate_data_page, .releasepage = f2fs_release_data_page, .direct_IO = f2fs_direct_IO, };