// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2001 Andrea Arcangeli SuSE * Copyright (C) 2016 - 2020 Christoph Hellwig */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" struct bdev_inode { struct block_device bdev; struct inode vfs_inode; }; static const struct address_space_operations def_blk_aops; static inline struct bdev_inode *BDEV_I(struct inode *inode) { return container_of(inode, struct bdev_inode, vfs_inode); } struct block_device *I_BDEV(struct inode *inode) { return &BDEV_I(inode)->bdev; } EXPORT_SYMBOL(I_BDEV); static void bdev_write_inode(struct block_device *bdev) { struct inode *inode = bdev->bd_inode; int ret; spin_lock(&inode->i_lock); while (inode->i_state & I_DIRTY) { spin_unlock(&inode->i_lock); ret = write_inode_now(inode, true); if (ret) { char name[BDEVNAME_SIZE]; pr_warn_ratelimited("VFS: Dirty inode writeback failed " "for block device %s (err=%d).\n", bdevname(bdev, name), ret); } spin_lock(&inode->i_lock); } spin_unlock(&inode->i_lock); } /* Kill _all_ buffers and pagecache , dirty or not.. */ static void kill_bdev(struct block_device *bdev) { struct address_space *mapping = bdev->bd_inode->i_mapping; if (mapping_empty(mapping)) return; invalidate_bh_lrus(); truncate_inode_pages(mapping, 0); } /* Invalidate clean unused buffers and pagecache. */ void invalidate_bdev(struct block_device *bdev) { struct address_space *mapping = bdev->bd_inode->i_mapping; if (mapping->nrpages) { invalidate_bh_lrus(); lru_add_drain_all(); /* make sure all lru add caches are flushed */ invalidate_mapping_pages(mapping, 0, -1); } /* 99% of the time, we don't need to flush the cleancache on the bdev. * But, for the strange corners, lets be cautious */ cleancache_invalidate_inode(mapping); } EXPORT_SYMBOL(invalidate_bdev); /* * Drop all buffers & page cache for given bdev range. This function bails * with error if bdev has other exclusive owner (such as filesystem). */ int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, loff_t lend) { /* * If we don't hold exclusive handle for the device, upgrade to it * while we discard the buffer cache to avoid discarding buffers * under live filesystem. */ if (!(mode & FMODE_EXCL)) { int err = bd_prepare_to_claim(bdev, truncate_bdev_range); if (err) goto invalidate; } truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend); if (!(mode & FMODE_EXCL)) bd_abort_claiming(bdev, truncate_bdev_range); return 0; invalidate: /* * Someone else has handle exclusively open. Try invalidating instead. * The 'end' argument is inclusive so the rounding is safe. */ return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping, lstart >> PAGE_SHIFT, lend >> PAGE_SHIFT); } static void set_init_blocksize(struct block_device *bdev) { unsigned int bsize = bdev_logical_block_size(bdev); loff_t size = i_size_read(bdev->bd_inode); while (bsize < PAGE_SIZE) { if (size & bsize) break; bsize <<= 1; } bdev->bd_inode->i_blkbits = blksize_bits(bsize); } int set_blocksize(struct block_device *bdev, int size) { /* Size must be a power of two, and between 512 and PAGE_SIZE */ if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) return -EINVAL; /* Size cannot be smaller than the size supported by the device */ if (size < bdev_logical_block_size(bdev)) return -EINVAL; /* Don't change the size if it is same as current */ if (bdev->bd_inode->i_blkbits != blksize_bits(size)) { sync_blockdev(bdev); bdev->bd_inode->i_blkbits = blksize_bits(size); kill_bdev(bdev); } return 0; } EXPORT_SYMBOL(set_blocksize); int sb_set_blocksize(struct super_block *sb, int size) { if (set_blocksize(sb->s_bdev, size)) return 0; /* If we get here, we know size is power of two * and it's value is between 512 and PAGE_SIZE */ sb->s_blocksize = size; sb->s_blocksize_bits = blksize_bits(size); return sb->s_blocksize; } EXPORT_SYMBOL(sb_set_blocksize); int sb_min_blocksize(struct super_block *sb, int size) { int minsize = bdev_logical_block_size(sb->s_bdev); if (size < minsize) size = minsize; return sb_set_blocksize(sb, size); } EXPORT_SYMBOL(sb_min_blocksize); static int blkdev_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create) { bh->b_bdev = I_BDEV(inode); bh->b_blocknr = iblock; set_buffer_mapped(bh); return 0; } static struct inode *bdev_file_inode(struct file *file) { return file->f_mapping->host; } static unsigned int dio_bio_write_op(struct kiocb *iocb) { unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; /* avoid the need for a I/O completion work item */ if (iocb->ki_flags & IOCB_DSYNC) op |= REQ_FUA; return op; } #define DIO_INLINE_BIO_VECS 4 static void blkdev_bio_end_io_simple(struct bio *bio) { struct task_struct *waiter = bio->bi_private; WRITE_ONCE(bio->bi_private, NULL); blk_wake_io_task(waiter); } static ssize_t __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, unsigned int nr_pages) { struct file *file = iocb->ki_filp; struct block_device *bdev = I_BDEV(bdev_file_inode(file)); struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs; loff_t pos = iocb->ki_pos; bool should_dirty = false; struct bio bio; ssize_t ret; blk_qc_t qc; if ((pos | iov_iter_alignment(iter)) & (bdev_logical_block_size(bdev) - 1)) return -EINVAL; if (nr_pages <= DIO_INLINE_BIO_VECS) vecs = inline_vecs; else { vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), GFP_KERNEL); if (!vecs) return -ENOMEM; } bio_init(&bio, vecs, nr_pages); bio_set_dev(&bio, bdev); bio.bi_iter.bi_sector = pos >> 9; bio.bi_write_hint = iocb->ki_hint; bio.bi_private = current; bio.bi_end_io = blkdev_bio_end_io_simple; bio.bi_ioprio = iocb->ki_ioprio; ret = bio_iov_iter_get_pages(&bio, iter); if (unlikely(ret)) goto out; ret = bio.bi_iter.bi_size; if (iov_iter_rw(iter) == READ) { bio.bi_opf = REQ_OP_READ; if (iter_is_iovec(iter)) should_dirty = true; } else { bio.bi_opf = dio_bio_write_op(iocb); task_io_account_write(ret); } if (iocb->ki_flags & IOCB_NOWAIT) bio.bi_opf |= REQ_NOWAIT; if (iocb->ki_flags & IOCB_HIPRI) bio_set_polled(&bio, iocb); qc = submit_bio(&bio); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!READ_ONCE(bio.bi_private)) break; if (!(iocb->ki_flags & IOCB_HIPRI) || !blk_poll(bdev_get_queue(bdev), qc, true)) blk_io_schedule(); } __set_current_state(TASK_RUNNING); bio_release_pages(&bio, should_dirty); if (unlikely(bio.bi_status)) ret = blk_status_to_errno(bio.bi_status); out: if (vecs != inline_vecs) kfree(vecs); bio_uninit(&bio); return ret; } struct blkdev_dio { union { struct kiocb *iocb; struct task_struct *waiter; }; size_t size; atomic_t ref; bool multi_bio : 1; bool should_dirty : 1; bool is_sync : 1; struct bio bio; }; static struct bio_set blkdev_dio_pool; static int blkdev_iopoll(struct kiocb *kiocb, bool wait) { struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); struct request_queue *q = bdev_get_queue(bdev); return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); } static void blkdev_bio_end_io(struct bio *bio) { struct blkdev_dio *dio = bio->bi_private; bool should_dirty = dio->should_dirty; if (bio->bi_status && !dio->bio.bi_status) dio->bio.bi_status = bio->bi_status; if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) { if (!dio->is_sync) { struct kiocb *iocb = dio->iocb; ssize_t ret; if (likely(!dio->bio.bi_status)) { ret = dio->size; iocb->ki_pos += ret; } else { ret = blk_status_to_errno(dio->bio.bi_status); } dio->iocb->ki_complete(iocb, ret, 0); if (dio->multi_bio) bio_put(&dio->bio); } else { struct task_struct *waiter = dio->waiter; WRITE_ONCE(dio->waiter, NULL); blk_wake_io_task(waiter); } } if (should_dirty) { bio_check_pages_dirty(bio); } else { bio_release_pages(bio, false); bio_put(bio); } } static ssize_t __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, unsigned int nr_pages) { struct file *file = iocb->ki_filp; struct inode *inode = bdev_file_inode(file); struct block_device *bdev = I_BDEV(inode); struct blk_plug plug; struct blkdev_dio *dio; struct bio *bio; bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; bool is_read = (iov_iter_rw(iter) == READ), is_sync; loff_t pos = iocb->ki_pos; blk_qc_t qc = BLK_QC_T_NONE; int ret = 0; if ((pos | iov_iter_alignment(iter)) & (bdev_logical_block_size(bdev) - 1)) return -EINVAL; bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); dio = container_of(bio, struct blkdev_dio, bio); dio->is_sync = is_sync = is_sync_kiocb(iocb); if (dio->is_sync) { dio->waiter = current; bio_get(bio); } else { dio->iocb = iocb; } dio->size = 0; dio->multi_bio = false; dio->should_dirty = is_read && iter_is_iovec(iter); /* * Don't plug for HIPRI/polled IO, as those should go straight * to issue */ if (!is_poll) blk_start_plug(&plug); for (;;) { bio_set_dev(bio, bdev); bio->bi_iter.bi_sector = pos >> 9; bio->bi_write_hint = iocb->ki_hint; bio->bi_private = dio; bio->bi_end_io = blkdev_bio_end_io; bio->bi_ioprio = iocb->ki_ioprio; ret = bio_iov_iter_get_pages(bio, iter); if (unlikely(ret)) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); break; } if (is_read) { bio->bi_opf = REQ_OP_READ; if (dio->should_dirty) bio_set_pages_dirty(bio); } else { bio->bi_opf = dio_bio_write_op(iocb); task_io_account_write(bio->bi_iter.bi_size); } if (iocb->ki_flags & IOCB_NOWAIT) bio->bi_opf |= REQ_NOWAIT; dio->size += bio->bi_iter.bi_size; pos += bio->bi_iter.bi_size; nr_pages = bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS); if (!nr_pages) { bool polled = false; if (iocb->ki_flags & IOCB_HIPRI) { bio_set_polled(bio, iocb); polled = true; } qc = submit_bio(bio); if (polled) WRITE_ONCE(iocb->ki_cookie, qc); break; } if (!dio->multi_bio) { /* * AIO needs an extra reference to ensure the dio * structure which is embedded into the first bio * stays around. */ if (!is_sync) bio_get(bio); dio->multi_bio = true; atomic_set(&dio->ref, 2); } else { atomic_inc(&dio->ref); } submit_bio(bio); bio = bio_alloc(GFP_KERNEL, nr_pages); } if (!is_poll) blk_finish_plug(&plug); if (!is_sync) return -EIOCBQUEUED; for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!READ_ONCE(dio->waiter)) break; if (!(iocb->ki_flags & IOCB_HIPRI) || !blk_poll(bdev_get_queue(bdev), qc, true)) blk_io_schedule(); } __set_current_state(TASK_RUNNING); if (!ret) ret = blk_status_to_errno(dio->bio.bi_status); if (likely(!ret)) ret = dio->size; bio_put(&dio->bio); return ret; } static ssize_t blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { unsigned int nr_pages; if (!iov_iter_count(iter)) return 0; nr_pages = bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS + 1); if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_VECS) return __blkdev_direct_IO_simple(iocb, iter, nr_pages); return __blkdev_direct_IO(iocb, iter, bio_max_segs(nr_pages)); } static __init int blkdev_init(void) { return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); } module_init(blkdev_init); int __sync_blockdev(struct block_device *bdev, int wait) { if (!bdev) return 0; if (!wait) return filemap_flush(bdev->bd_inode->i_mapping); return filemap_write_and_wait(bdev->bd_inode->i_mapping); } /* * Write out and wait upon all the dirty data associated with a block * device via its mapping. Does not take the superblock lock. */ int sync_blockdev(struct block_device *bdev) { return __sync_blockdev(bdev, 1); } EXPORT_SYMBOL(sync_blockdev); /* * Write out and wait upon all dirty data associated with this * device. Filesystem data as well as the underlying block * device. Takes the superblock lock. */ int fsync_bdev(struct block_device *bdev) { struct super_block *sb = get_super(bdev); if (sb) { int res = sync_filesystem(sb); drop_super(sb); return res; } return sync_blockdev(bdev); } EXPORT_SYMBOL(fsync_bdev); /** * freeze_bdev -- lock a filesystem and force it into a consistent state * @bdev: blockdevice to lock * * If a superblock is found on this device, we take the s_umount semaphore * on it to make sure nobody unmounts until the snapshot creation is done. * The reference counter (bd_fsfreeze_count) guarantees that only the last * unfreeze process can unfreeze the frozen filesystem actually when multiple * freeze requests arrive simultaneously. It counts up in freeze_bdev() and * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze * actually. */ int freeze_bdev(struct block_device *bdev) { struct super_block *sb; int error = 0; mutex_lock(&bdev->bd_fsfreeze_mutex); if (++bdev->bd_fsfreeze_count > 1) goto done; sb = get_active_super(bdev); if (!sb) goto sync; if (sb->s_op->freeze_super) error = sb->s_op->freeze_super(sb); else error = freeze_super(sb); deactivate_super(sb); if (error) { bdev->bd_fsfreeze_count--; goto done; } bdev->bd_fsfreeze_sb = sb; sync: sync_blockdev(bdev); done: mutex_unlock(&bdev->bd_fsfreeze_mutex); return error; } EXPORT_SYMBOL(freeze_bdev); /** * thaw_bdev -- unlock filesystem * @bdev: blockdevice to unlock * * Unlocks the filesystem and marks it writeable again after freeze_bdev(). */ int thaw_bdev(struct block_device *bdev) { struct super_block *sb; int error = -EINVAL; mutex_lock(&bdev->bd_fsfreeze_mutex); if (!bdev->bd_fsfreeze_count) goto out; error = 0; if (--bdev->bd_fsfreeze_count > 0) goto out; sb = bdev->bd_fsfreeze_sb; if (!sb) goto out; if (sb->s_op->thaw_super) error = sb->s_op->thaw_super(sb); else error = thaw_super(sb); if (error) bdev->bd_fsfreeze_count++; else bdev->bd_fsfreeze_sb = NULL; out: mutex_unlock(&bdev->bd_fsfreeze_mutex); return error; } EXPORT_SYMBOL(thaw_bdev); static int blkdev_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page, blkdev_get_block, wbc); } static int blkdev_readpage(struct file * file, struct page * page) { return block_read_full_page(page, blkdev_get_block); } static void blkdev_readahead(struct readahead_control *rac) { mpage_readahead(rac, blkdev_get_block); } static int blkdev_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { return block_write_begin(mapping, pos, len, flags, pagep, blkdev_get_block); } static int blkdev_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { int ret; ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); unlock_page(page); put_page(page); return ret; } /* * private llseek: * for a block special file file_inode(file)->i_size is zero * so we compute the size by hand (just as in block_read/write above) */ static loff_t block_llseek(struct file *file, loff_t offset, int whence) { struct inode *bd_inode = bdev_file_inode(file); loff_t retval; inode_lock(bd_inode); retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); inode_unlock(bd_inode); return retval; } int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) { struct inode *bd_inode = bdev_file_inode(filp); struct block_device *bdev = I_BDEV(bd_inode); int error; error = file_write_and_wait_range(filp, start, end); if (error) return error; /* * There is no need to serialise calls to blkdev_issue_flush with * i_mutex and doing so causes performance issues with concurrent * O_SYNC writers to a block device. */ error = blkdev_issue_flush(bdev); if (error == -EOPNOTSUPP) error = 0; return error; } EXPORT_SYMBOL(blkdev_fsync); /** * bdev_read_page() - Start reading a page from a block device * @bdev: The device to read the page from * @sector: The offset on the device to read the page to (need not be aligned) * @page: The page to read * * On entry, the page should be locked. It will be unlocked when the page * has been read. If the block driver implements rw_page synchronously, * that will be true on exit from this function, but it need not be. * * Errors returned by this function are usually "soft", eg out of memory, or * queue full; callers should try a different route to read this page rather * than propagate an error back up the stack. * * Return: negative errno if an error occurs, 0 if submission was successful. */ int bdev_read_page(struct block_device *bdev, sector_t sector, struct page *page) { const struct block_device_operations *ops = bdev->bd_disk->fops; int result = -EOPNOTSUPP; if (!ops->rw_page || bdev_get_integrity(bdev)) return result; result = blk_queue_enter(bdev->bd_disk->queue, 0); if (result) return result; result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, REQ_OP_READ); blk_queue_exit(bdev->bd_disk->queue); return result; } /** * bdev_write_page() - Start writing a page to a block device * @bdev: The device to write the page to * @sector: The offset on the device to write the page to (need not be aligned) * @page: The page to write * @wbc: The writeback_control for the write * * On entry, the page should be locked and not currently under writeback. * On exit, if the write started successfully, the page will be unlocked and * under writeback. If the write failed already (eg the driver failed to * queue the page to the device), the page will still be locked. If the * caller is a ->writepage implementation, it will need to unlock the page. * * Errors returned by this function are usually "soft", eg out of memory, or * queue full; callers should try a different route to write this page rather * than propagate an error back up the stack. * * Return: negative errno if an error occurs, 0 if submission was successful. */ int bdev_write_page(struct block_device *bdev, sector_t sector, struct page *page, struct writeback_control *wbc) { int result; const struct block_device_operations *ops = bdev->bd_disk->fops; if (!ops->rw_page || bdev_get_integrity(bdev)) return -EOPNOTSUPP; result = blk_queue_enter(bdev->bd_disk->queue, 0); if (result) return result; set_page_writeback(page); result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, REQ_OP_WRITE); if (result) { end_page_writeback(page); } else { clean_page_buffers(page); unlock_page(page); } blk_queue_exit(bdev->bd_disk->queue); return result; } /* * pseudo-fs */ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); static struct kmem_cache * bdev_cachep __read_mostly; static struct inode *bdev_alloc_inode(struct super_block *sb) { struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); if (!ei) return NULL; memset(&ei->bdev, 0, sizeof(ei->bdev)); ei->bdev.bd_bdi = &noop_backing_dev_info; return &ei->vfs_inode; } static void bdev_free_inode(struct inode *inode) { struct block_device *bdev = I_BDEV(inode); free_percpu(bdev->bd_stats); kfree(bdev->bd_meta_info); kmem_cache_free(bdev_cachep, BDEV_I(inode)); } static void init_once(void *data) { struct bdev_inode *ei = data; inode_init_once(&ei->vfs_inode); } static void bdev_evict_inode(struct inode *inode) { struct block_device *bdev = &BDEV_I(inode)->bdev; truncate_inode_pages_final(&inode->i_data); invalidate_inode_buffers(inode); /* is it needed here? */ clear_inode(inode); /* Detach inode from wb early as bdi_put() may free bdi->wb */ inode_detach_wb(inode); if (bdev->bd_bdi != &noop_backing_dev_info) { bdi_put(bdev->bd_bdi); bdev->bd_bdi = &noop_backing_dev_info; } } static const struct super_operations bdev_sops = { .statfs = simple_statfs, .alloc_inode = bdev_alloc_inode, .free_inode = bdev_free_inode, .drop_inode = generic_delete_inode, .evict_inode = bdev_evict_inode, }; static int bd_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC); if (!ctx) return -ENOMEM; fc->s_iflags |= SB_I_CGROUPWB; ctx->ops = &bdev_sops; return 0; } static struct file_system_type bd_type = { .name = "bdev", .init_fs_context = bd_init_fs_context, .kill_sb = kill_anon_super, }; struct super_block *blockdev_superblock __read_mostly; EXPORT_SYMBOL_GPL(blockdev_superblock); void __init bdev_cache_init(void) { int err; static struct vfsmount *bd_mnt; bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), init_once); err = register_filesystem(&bd_type); if (err) panic("Cannot register bdev pseudo-fs"); bd_mnt = kern_mount(&bd_type); if (IS_ERR(bd_mnt)) panic("Cannot create bdev pseudo-fs"); blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ } struct block_device *bdev_alloc(struct gendisk *disk, u8 partno) { struct block_device *bdev; struct inode *inode; inode = new_inode(blockdev_superblock); if (!inode) return NULL; inode->i_mode = S_IFBLK; inode->i_rdev = 0; inode->i_data.a_ops = &def_blk_aops; mapping_set_gfp_mask(&inode->i_data, GFP_USER); bdev = I_BDEV(inode); mutex_init(&bdev->bd_mutex); mutex_init(&bdev->bd_fsfreeze_mutex); spin_lock_init(&bdev->bd_size_lock); bdev->bd_disk = disk; bdev->bd_partno = partno; bdev->bd_inode = inode; #ifdef CONFIG_SYSFS INIT_LIST_HEAD(&bdev->bd_holder_disks); #endif bdev->bd_stats = alloc_percpu(struct disk_stats); if (!bdev->bd_stats) { iput(inode); return NULL; } return bdev; } void bdev_add(struct block_device *bdev, dev_t dev) { bdev->bd_dev = dev; bdev->bd_inode->i_rdev = dev; bdev->bd_inode->i_ino = dev; insert_inode_hash(bdev->bd_inode); } static struct block_device *bdget(dev_t dev) { struct inode *inode; inode = ilookup(blockdev_superblock, dev); if (!inode) return NULL; return &BDEV_I(inode)->bdev; } /** * bdgrab -- Grab a reference to an already referenced block device * @bdev: Block device to grab a reference to. * * Returns the block_device with an additional reference when successful, * or NULL if the inode is already beeing freed. */ struct block_device *bdgrab(struct block_device *bdev) { if (!igrab(bdev->bd_inode)) return NULL; return bdev; } EXPORT_SYMBOL(bdgrab); long nr_blockdev_pages(void) { struct inode *inode; long ret = 0; spin_lock(&blockdev_superblock->s_inode_list_lock); list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) ret += inode->i_mapping->nrpages; spin_unlock(&blockdev_superblock->s_inode_list_lock); return ret; } void bdput(struct block_device *bdev) { iput(bdev->bd_inode); } EXPORT_SYMBOL(bdput); /** * bd_may_claim - test whether a block device can be claimed * @bdev: block device of interest * @whole: whole block device containing @bdev, may equal @bdev * @holder: holder trying to claim @bdev * * Test whether @bdev can be claimed by @holder. * * CONTEXT: * spin_lock(&bdev_lock). * * RETURNS: * %true if @bdev can be claimed, %false otherwise. */ static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, void *holder) { if (bdev->bd_holder == holder) return true; /* already a holder */ else if (bdev->bd_holder != NULL) return false; /* held by someone else */ else if (whole == bdev) return true; /* is a whole device which isn't held */ else if (whole->bd_holder == bd_may_claim) return true; /* is a partition of a device that is being partitioned */ else if (whole->bd_holder != NULL) return false; /* is a partition of a held device */ else return true; /* is a partition of an un-held device */ } /** * bd_prepare_to_claim - claim a block device * @bdev: block device of interest * @holder: holder trying to claim @bdev * * Claim @bdev. This function fails if @bdev is already claimed by another * holder and waits if another claiming is in progress. return, the caller * has ownership of bd_claiming and bd_holder[s]. * * RETURNS: * 0 if @bdev can be claimed, -EBUSY otherwise. */ int bd_prepare_to_claim(struct block_device *bdev, void *holder) { struct block_device *whole = bdev_whole(bdev); if (WARN_ON_ONCE(!holder)) return -EINVAL; retry: spin_lock(&bdev_lock); /* if someone else claimed, fail */ if (!bd_may_claim(bdev, whole, holder)) { spin_unlock(&bdev_lock); return -EBUSY; } /* if claiming is already in progress, wait for it to finish */ if (whole->bd_claiming) { wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); DEFINE_WAIT(wait); prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock(&bdev_lock); schedule(); finish_wait(wq, &wait); goto retry; } /* yay, all mine */ whole->bd_claiming = holder; spin_unlock(&bdev_lock); return 0; } EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */ static void bd_clear_claiming(struct block_device *whole, void *holder) { lockdep_assert_held(&bdev_lock); /* tell others that we're done */ BUG_ON(whole->bd_claiming != holder); whole->bd_claiming = NULL; wake_up_bit(&whole->bd_claiming, 0); } /** * bd_finish_claiming - finish claiming of a block device * @bdev: block device of interest * @holder: holder that has claimed @bdev * * Finish exclusive open of a block device. Mark the device as exlusively * open by the holder and wake up all waiters for exclusive open to finish. */ static void bd_finish_claiming(struct block_device *bdev, void *holder) { struct block_device *whole = bdev_whole(bdev); spin_lock(&bdev_lock); BUG_ON(!bd_may_claim(bdev, whole, holder)); /* * Note that for a whole device bd_holders will be incremented twice, * and bd_holder will be set to bd_may_claim before being set to holder */ whole->bd_holders++; whole->bd_holder = bd_may_claim; bdev->bd_holders++; bdev->bd_holder = holder; bd_clear_claiming(whole, holder); spin_unlock(&bdev_lock); } /** * bd_abort_claiming - abort claiming of a block device * @bdev: block device of interest * @holder: holder that has claimed @bdev * * Abort claiming of a block device when the exclusive open failed. This can be * also used when exclusive open is not actually desired and we just needed * to block other exclusive openers for a while. */ void bd_abort_claiming(struct block_device *bdev, void *holder) { spin_lock(&bdev_lock); bd_clear_claiming(bdev_whole(bdev), holder); spin_unlock(&bdev_lock); } EXPORT_SYMBOL(bd_abort_claiming); #ifdef CONFIG_SYSFS struct bd_holder_disk { struct list_head list; struct gendisk *disk; int refcnt; }; static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, struct gendisk *disk) { struct bd_holder_disk *holder; list_for_each_entry(holder, &bdev->bd_holder_disks, list) if (holder->disk == disk) return holder; return NULL; } static int add_symlink(struct kobject *from, struct kobject *to) { return sysfs_create_link(from, to, kobject_name(to)); } static void del_symlink(struct kobject *from, struct kobject *to) { sysfs_remove_link(from, kobject_name(to)); } /** * bd_link_disk_holder - create symlinks between holding disk and slave bdev * @bdev: the claimed slave bdev * @disk: the holding disk * * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. * * This functions creates the following sysfs symlinks. * * - from "slaves" directory of the holder @disk to the claimed @bdev * - from "holders" directory of the @bdev to the holder @disk * * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is * passed to bd_link_disk_holder(), then: * * /sys/block/dm-0/slaves/sda --> /sys/block/sda * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 * * The caller must have claimed @bdev before calling this function and * ensure that both @bdev and @disk are valid during the creation and * lifetime of these symlinks. * * CONTEXT: * Might sleep. * * RETURNS: * 0 on success, -errno on failure. */ int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { struct bd_holder_disk *holder; int ret = 0; mutex_lock(&bdev->bd_mutex); WARN_ON_ONCE(!bdev->bd_holder); /* FIXME: remove the following once add_disk() handles errors */ if (WARN_ON(!disk->slave_dir || !bdev->bd_holder_dir)) goto out_unlock; holder = bd_find_holder_disk(bdev, disk); if (holder) { holder->refcnt++; goto out_unlock; } holder = kzalloc(sizeof(*holder), GFP_KERNEL); if (!holder) { ret = -ENOMEM; goto out_unlock; } INIT_LIST_HEAD(&holder->list); holder->disk = disk; holder->refcnt = 1; ret = add_symlink(disk->slave_dir, bdev_kobj(bdev)); if (ret) goto out_free; ret = add_symlink(bdev->bd_holder_dir, &disk_to_dev(disk)->kobj); if (ret) goto out_del; /* * bdev could be deleted beneath us which would implicitly destroy * the holder directory. Hold on to it. */ kobject_get(bdev->bd_holder_dir); list_add(&holder->list, &bdev->bd_holder_disks); goto out_unlock; out_del: del_symlink(disk->slave_dir, bdev_kobj(bdev)); out_free: kfree(holder); out_unlock: mutex_unlock(&bdev->bd_mutex); return ret; } EXPORT_SYMBOL_GPL(bd_link_disk_holder); /** * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() * @bdev: the calimed slave bdev * @disk: the holding disk * * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. * * CONTEXT: * Might sleep. */ void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { struct bd_holder_disk *holder; mutex_lock(&bdev->bd_mutex); holder = bd_find_holder_disk(bdev, disk); if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { del_symlink(disk->slave_dir, bdev_kobj(bdev)); del_symlink(bdev->bd_holder_dir, &disk_to_dev(disk)->kobj); kobject_put(bdev->bd_holder_dir); list_del_init(&holder->list); kfree(holder); } mutex_unlock(&bdev->bd_mutex); } EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); #endif static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); int bdev_disk_changed(struct block_device *bdev, bool invalidate) { struct gendisk *disk = bdev->bd_disk; int ret = 0; lockdep_assert_held(&bdev->bd_mutex); if (!(disk->flags & GENHD_FL_UP)) return -ENXIO; rescan: if (bdev->bd_part_count) return -EBUSY; sync_blockdev(bdev); invalidate_bdev(bdev); blk_drop_partitions(disk); clear_bit(GD_NEED_PART_SCAN, &disk->state); /* * Historically we only set the capacity to zero for devices that * support partitions (independ of actually having partitions created). * Doing that is rather inconsistent, but changing it broke legacy * udisks polling for legacy ide-cdrom devices. Use the crude check * below to get the sane behavior for most device while not breaking * userspace for this particular setup. */ if (invalidate) { if (disk_part_scan_enabled(disk) || !(disk->flags & GENHD_FL_REMOVABLE)) set_capacity(disk, 0); } if (get_capacity(disk)) { ret = blk_add_partitions(disk, bdev); if (ret == -EAGAIN) goto rescan; } else if (invalidate) { /* * Tell userspace that the media / partition table may have * changed. */ kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); } return ret; } /* * Only exported for loop and dasd for historic reasons. Don't use in new * code! */ EXPORT_SYMBOL_GPL(bdev_disk_changed); /* * bd_mutex locking: * * mutex_lock(part->bd_mutex) * mutex_lock_nested(whole->bd_mutex, 1) */ static int __blkdev_get(struct block_device *bdev, fmode_t mode) { struct gendisk *disk = bdev->bd_disk; int ret = 0; if (!(disk->flags & GENHD_FL_UP)) return -ENXIO; if (!bdev->bd_openers) { if (!bdev_is_partition(bdev)) { ret = 0; if (disk->fops->open) ret = disk->fops->open(bdev, mode); if (!ret) set_init_blocksize(bdev); /* * If the device is invalidated, rescan partition * if open succeeded or failed with -ENOMEDIUM. * The latter is necessary to prevent ghost * partitions on a removed medium. */ if (test_bit(GD_NEED_PART_SCAN, &disk->state) && (!ret || ret == -ENOMEDIUM)) bdev_disk_changed(bdev, ret == -ENOMEDIUM); if (ret) return ret; } else { struct block_device *whole = bdgrab(disk->part0); mutex_lock_nested(&whole->bd_mutex, 1); ret = __blkdev_get(whole, mode); if (ret) { mutex_unlock(&whole->bd_mutex); bdput(whole); return ret; } whole->bd_part_count++; mutex_unlock(&whole->bd_mutex); if (!bdev_nr_sectors(bdev)) { __blkdev_put(whole, mode, 1); bdput(whole); return -ENXIO; } set_init_blocksize(bdev); } if (bdev->bd_bdi == &noop_backing_dev_info) bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); } else { if (!bdev_is_partition(bdev)) { if (bdev->bd_disk->fops->open) ret = bdev->bd_disk->fops->open(bdev, mode); /* the same as first opener case, read comment there */ if (test_bit(GD_NEED_PART_SCAN, &disk->state) && (!ret || ret == -ENOMEDIUM)) bdev_disk_changed(bdev, ret == -ENOMEDIUM); if (ret) return ret; } } bdev->bd_openers++; return 0; } struct block_device *blkdev_get_no_open(dev_t dev) { struct block_device *bdev; struct gendisk *disk; bdev = bdget(dev); if (!bdev) { blk_request_module(dev); bdev = bdget(dev); if (!bdev) return NULL; } disk = bdev->bd_disk; if (!kobject_get_unless_zero(&disk_to_dev(disk)->kobj)) goto bdput; if ((disk->flags & (GENHD_FL_UP | GENHD_FL_HIDDEN)) != GENHD_FL_UP) goto put_disk; if (!try_module_get(bdev->bd_disk->fops->owner)) goto put_disk; return bdev; put_disk: put_disk(disk); bdput: bdput(bdev); return NULL; } void blkdev_put_no_open(struct block_device *bdev) { module_put(bdev->bd_disk->fops->owner); put_disk(bdev->bd_disk); bdput(bdev); } /** * blkdev_get_by_dev - open a block device by device number * @dev: device number of block device to open * @mode: FMODE_* mask * @holder: exclusive holder identifier * * Open the block device described by device number @dev. If @mode includes * %FMODE_EXCL, the block device is opened with exclusive access. Specifying * %FMODE_EXCL with a %NULL @holder is invalid. Exclusive opens may nest for * the same @holder. * * Use this interface ONLY if you really do not have anything better - i.e. when * you are behind a truly sucky interface and all you are given is a device * number. Everything else should use blkdev_get_by_path(). * * CONTEXT: * Might sleep. * * RETURNS: * Reference to the block_device on success, ERR_PTR(-errno) on failure. */ struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) { bool unblock_events = true; struct block_device *bdev; struct gendisk *disk; int ret; ret = devcgroup_check_permission(DEVCG_DEV_BLOCK, MAJOR(dev), MINOR(dev), ((mode & FMODE_READ) ? DEVCG_ACC_READ : 0) | ((mode & FMODE_WRITE) ? DEVCG_ACC_WRITE : 0)); if (ret) return ERR_PTR(ret); bdev = blkdev_get_no_open(dev); if (!bdev) return ERR_PTR(-ENXIO); disk = bdev->bd_disk; if (mode & FMODE_EXCL) { ret = bd_prepare_to_claim(bdev, holder); if (ret) goto put_blkdev; } disk_block_events(disk); mutex_lock(&bdev->bd_mutex); ret =__blkdev_get(bdev, mode); if (ret) goto abort_claiming; if (mode & FMODE_EXCL) { bd_finish_claiming(bdev, holder); /* * Block event polling for write claims if requested. Any write * holder makes the write_holder state stick until all are * released. This is good enough and tracking individual * writeable reference is too fragile given the way @mode is * used in blkdev_get/put(). */ if ((mode & FMODE_WRITE) && !bdev->bd_write_holder && (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { bdev->bd_write_holder = true; unblock_events = false; } } mutex_unlock(&bdev->bd_mutex); if (unblock_events) disk_unblock_events(disk); return bdev; abort_claiming: if (mode & FMODE_EXCL) bd_abort_claiming(bdev, holder); mutex_unlock(&bdev->bd_mutex); disk_unblock_events(disk); put_blkdev: blkdev_put_no_open(bdev); return ERR_PTR(ret); } EXPORT_SYMBOL(blkdev_get_by_dev); /** * blkdev_get_by_path - open a block device by name * @path: path to the block device to open * @mode: FMODE_* mask * @holder: exclusive holder identifier * * Open the block device described by the device file at @path. If @mode * includes %FMODE_EXCL, the block device is opened with exclusive access. * Specifying %FMODE_EXCL with a %NULL @holder is invalid. Exclusive opens may * nest for the same @holder. * * CONTEXT: * Might sleep. * * RETURNS: * Reference to the block_device on success, ERR_PTR(-errno) on failure. */ struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, void *holder) { struct block_device *bdev; dev_t dev; int error; error = lookup_bdev(path, &dev); if (error) return ERR_PTR(error); bdev = blkdev_get_by_dev(dev, mode, holder); if (!IS_ERR(bdev) && (mode & FMODE_WRITE) && bdev_read_only(bdev)) { blkdev_put(bdev, mode); return ERR_PTR(-EACCES); } return bdev; } EXPORT_SYMBOL(blkdev_get_by_path); static int blkdev_open(struct inode * inode, struct file * filp) { struct block_device *bdev; /* * Preserve backwards compatibility and allow large file access * even if userspace doesn't ask for it explicitly. Some mkfs * binary needs it. We might want to drop this workaround * during an unstable branch. */ filp->f_flags |= O_LARGEFILE; filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; if (filp->f_flags & O_NDELAY) filp->f_mode |= FMODE_NDELAY; if (filp->f_flags & O_EXCL) filp->f_mode |= FMODE_EXCL; if ((filp->f_flags & O_ACCMODE) == 3) filp->f_mode |= FMODE_WRITE_IOCTL; bdev = blkdev_get_by_dev(inode->i_rdev, filp->f_mode, filp); if (IS_ERR(bdev)) return PTR_ERR(bdev); filp->f_mapping = bdev->bd_inode->i_mapping; filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); return 0; } static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) { struct gendisk *disk = bdev->bd_disk; struct block_device *victim = NULL; /* * Sync early if it looks like we're the last one. If someone else * opens the block device between now and the decrement of bd_openers * then we did a sync that we didn't need to, but that's not the end * of the world and we want to avoid long (could be several minute) * syncs while holding the mutex. */ if (bdev->bd_openers == 1) sync_blockdev(bdev); mutex_lock_nested(&bdev->bd_mutex, for_part); if (for_part) bdev->bd_part_count--; if (!--bdev->bd_openers) { WARN_ON_ONCE(bdev->bd_holders); sync_blockdev(bdev); kill_bdev(bdev); bdev_write_inode(bdev); if (bdev_is_partition(bdev)) victim = bdev_whole(bdev); } if (!bdev_is_partition(bdev) && disk->fops->release) disk->fops->release(disk, mode); mutex_unlock(&bdev->bd_mutex); if (victim) { __blkdev_put(victim, mode, 1); bdput(victim); } } void blkdev_put(struct block_device *bdev, fmode_t mode) { struct gendisk *disk = bdev->bd_disk; mutex_lock(&bdev->bd_mutex); if (mode & FMODE_EXCL) { struct block_device *whole = bdev_whole(bdev); bool bdev_free; /* * Release a claim on the device. The holder fields * are protected with bdev_lock. bd_mutex is to * synchronize disk_holder unlinking. */ spin_lock(&bdev_lock); WARN_ON_ONCE(--bdev->bd_holders < 0); WARN_ON_ONCE(--whole->bd_holders < 0); if ((bdev_free = !bdev->bd_holders)) bdev->bd_holder = NULL; if (!whole->bd_holders) whole->bd_holder = NULL; spin_unlock(&bdev_lock); /* * If this was the last claim, remove holder link and * unblock evpoll if it was a write holder. */ if (bdev_free && bdev->bd_write_holder) { disk_unblock_events(disk); bdev->bd_write_holder = false; } } /* * Trigger event checking and tell drivers to flush MEDIA_CHANGE * event. This is to ensure detection of media removal commanded * from userland - e.g. eject(1). */ disk_flush_events(disk, DISK_EVENT_MEDIA_CHANGE); mutex_unlock(&bdev->bd_mutex); __blkdev_put(bdev, mode, 0); blkdev_put_no_open(bdev); } EXPORT_SYMBOL(blkdev_put); static int blkdev_close(struct inode * inode, struct file * filp) { struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); blkdev_put(bdev, filp->f_mode); return 0; } static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) { struct block_device *bdev = I_BDEV(bdev_file_inode(file)); fmode_t mode = file->f_mode; /* * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have * to updated it before every ioctl. */ if (file->f_flags & O_NDELAY) mode |= FMODE_NDELAY; else mode &= ~FMODE_NDELAY; return blkdev_ioctl(bdev, mode, cmd, arg); } /* * Write data to the block device. Only intended for the block device itself * and the raw driver which basically is a fake block device. * * Does not take i_mutex for the write and thus is not for general purpose * use. */ static ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *bd_inode = bdev_file_inode(file); loff_t size = i_size_read(bd_inode); struct blk_plug plug; size_t shorted = 0; ssize_t ret; if (bdev_read_only(I_BDEV(bd_inode))) return -EPERM; if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev)) return -ETXTBSY; if (!iov_iter_count(from)) return 0; if (iocb->ki_pos >= size) return -ENOSPC; if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) return -EOPNOTSUPP; size -= iocb->ki_pos; if (iov_iter_count(from) > size) { shorted = iov_iter_count(from) - size; iov_iter_truncate(from, size); } blk_start_plug(&plug); ret = __generic_file_write_iter(iocb, from); if (ret > 0) ret = generic_write_sync(iocb, ret); iov_iter_reexpand(from, iov_iter_count(from) + shorted); blk_finish_plug(&plug); return ret; } static ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct inode *bd_inode = bdev_file_inode(file); loff_t size = i_size_read(bd_inode); loff_t pos = iocb->ki_pos; size_t shorted = 0; ssize_t ret; if (pos >= size) return 0; size -= pos; if (iov_iter_count(to) > size) { shorted = iov_iter_count(to) - size; iov_iter_truncate(to, size); } ret = generic_file_read_iter(iocb, to); iov_iter_reexpand(to, iov_iter_count(to) + shorted); return ret; } /* * Try to release a page associated with block device when the system * is under memory pressure. */ static int blkdev_releasepage(struct page *page, gfp_t wait) { struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; if (super && super->s_op->bdev_try_to_free_page) return super->s_op->bdev_try_to_free_page(super, page, wait); return try_to_free_buffers(page); } static int blkdev_writepages(struct address_space *mapping, struct writeback_control *wbc) { return generic_writepages(mapping, wbc); } static const struct address_space_operations def_blk_aops = { .readpage = blkdev_readpage, .readahead = blkdev_readahead, .writepage = blkdev_writepage, .write_begin = blkdev_write_begin, .write_end = blkdev_write_end, .writepages = blkdev_writepages, .releasepage = blkdev_releasepage, .direct_IO = blkdev_direct_IO, .migratepage = buffer_migrate_page_norefs, .is_dirty_writeback = buffer_check_dirty_writeback, }; #define BLKDEV_FALLOC_FL_SUPPORTED \ (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) static long blkdev_fallocate(struct file *file, int mode, loff_t start, loff_t len) { struct block_device *bdev = I_BDEV(bdev_file_inode(file)); loff_t end = start + len - 1; loff_t isize; int error; /* Fail if we don't recognize the flags. */ if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) return -EOPNOTSUPP; /* Don't go off the end of the device. */ isize = i_size_read(bdev->bd_inode); if (start >= isize) return -EINVAL; if (end >= isize) { if (mode & FALLOC_FL_KEEP_SIZE) { len = isize - start; end = start + len - 1; } else return -EINVAL; } /* * Don't allow IO that isn't aligned to logical block size. */ if ((start | len) & (bdev_logical_block_size(bdev) - 1)) return -EINVAL; /* Invalidate the page cache, including dirty pages. */ error = truncate_bdev_range(bdev, file->f_mode, start, end); if (error) return error; switch (mode) { case FALLOC_FL_ZERO_RANGE: case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); break; case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); break; case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: error = blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0); break; default: return -EOPNOTSUPP; } if (error) return error; /* * Invalidate the page cache again; if someone wandered in and dirtied * a page, we just discard it - userspace has no way of knowing whether * the write happened before or after discard completing... */ return truncate_bdev_range(bdev, file->f_mode, start, end); } const struct file_operations def_blk_fops = { .open = blkdev_open, .release = blkdev_close, .llseek = block_llseek, .read_iter = blkdev_read_iter, .write_iter = blkdev_write_iter, .iopoll = blkdev_iopoll, .mmap = generic_file_mmap, .fsync = blkdev_fsync, .unlocked_ioctl = block_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_blkdev_ioctl, #endif .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = blkdev_fallocate, }; /** * lookup_bdev - lookup a struct block_device by name * @pathname: special file representing the block device * @dev: return value of the block device's dev_t * * Get a reference to the blockdevice at @pathname in the current * namespace if possible and return it. Return ERR_PTR(error) * otherwise. */ int lookup_bdev(const char *pathname, dev_t *dev) { struct inode *inode; struct path path; int error; if (!pathname || !*pathname) return -EINVAL; error = kern_path(pathname, LOOKUP_FOLLOW, &path); if (error) return error; inode = d_backing_inode(path.dentry); error = -ENOTBLK; if (!S_ISBLK(inode->i_mode)) goto out_path_put; error = -EACCES; if (!may_open_dev(&path)) goto out_path_put; *dev = inode->i_rdev; error = 0; out_path_put: path_put(&path); return error; } EXPORT_SYMBOL(lookup_bdev); int __invalidate_device(struct block_device *bdev, bool kill_dirty) { struct super_block *sb = get_super(bdev); int res = 0; if (sb) { /* * no need to lock the super, get_super holds the * read mutex so the filesystem cannot go away * under us (->put_super runs with the write lock * hold). */ shrink_dcache_sb(sb); res = invalidate_inodes(sb, kill_dirty); drop_super(sb); } invalidate_bdev(bdev); return res; } EXPORT_SYMBOL(__invalidate_device); void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) { struct inode *inode, *old_inode = NULL; spin_lock(&blockdev_superblock->s_inode_list_lock); list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { struct address_space *mapping = inode->i_mapping; struct block_device *bdev; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || mapping->nrpages == 0) { spin_unlock(&inode->i_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); spin_unlock(&blockdev_superblock->s_inode_list_lock); /* * We hold a reference to 'inode' so it couldn't have been * removed from s_inodes list while we dropped the * s_inode_list_lock We cannot iput the inode now as we can * be holding the last reference and we cannot iput it under * s_inode_list_lock. So we keep the reference and iput it * later. */ iput(old_inode); old_inode = inode; bdev = I_BDEV(inode); mutex_lock(&bdev->bd_mutex); if (bdev->bd_openers) func(bdev, arg); mutex_unlock(&bdev->bd_mutex); spin_lock(&blockdev_superblock->s_inode_list_lock); } spin_unlock(&blockdev_superblock->s_inode_list_lock); iput(old_inode); }