// SPDX-License-Identifier: GPL-2.0-only #ifndef KVM_X86_MMU_SPTE_H #define KVM_X86_MMU_SPTE_H #include "mmu_internal.h" /* * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also * be restricted to using write-protection (for L2 when CPU dirty logging, i.e. * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that * is must be employed for a given TDP SPTE. * * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE * paging, including NPT PAE. This scheme works because legacy shadow paging * is guaranteed to have A/D bits and write-protection is forced only for * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it * must be restricted to 64-bit KVM. */ #define SPTE_TDP_AD_SHIFT 52 #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT) #define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT) #define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT) #define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT) static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) #else #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) #endif #define PT64_LVL_ADDR_MASK(level) \ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ * PT64_LEVEL_BITS))) - 1)) #define PT64_LVL_OFFSET_MASK(level) \ (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ * PT64_LEVEL_BITS))) - 1)) #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ | shadow_x_mask | shadow_nx_mask | shadow_me_mask) #define ACC_EXEC_MASK 1 #define ACC_WRITE_MASK PT_WRITABLE_MASK #define ACC_USER_MASK PT_USER_MASK #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) /* The mask for the R/X bits in EPT PTEs */ #define PT64_EPT_READABLE_MASK 0x1ull #define PT64_EPT_EXECUTABLE_MASK 0x4ull #define PT64_LEVEL_BITS 9 #define PT64_LEVEL_SHIFT(level) \ (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) #define PT64_INDEX(address, level)\ (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) #define DEFAULT_SPTE_HOST_WRITEABLE BIT_ULL(10) #define DEFAULT_SPTE_MMU_WRITEABLE BIT_ULL(11) /* * Due to limited space in PTEs, the MMIO generation is a 20 bit subset of * the memslots generation and is derived as follows: * * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 * Bits 9-19 of the MMIO generation are propagated to spte bits 52-62 * * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in * the MMIO generation number, as doing so would require stealing a bit from * the "real" generation number and thus effectively halve the maximum number * of MMIO generations that can be handled before encountering a wrap (which * requires a full MMU zap). The flag is instead explicitly queried when * checking for MMIO spte cache hits. */ #define MMIO_SPTE_GEN_LOW_START 3 #define MMIO_SPTE_GEN_LOW_END 11 #define MMIO_SPTE_GEN_HIGH_START 52 #define MMIO_SPTE_GEN_HIGH_END 62 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ MMIO_SPTE_GEN_LOW_START) #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ MMIO_SPTE_GEN_HIGH_START) #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) /* remember to adjust the comment above as well if you change these */ static_assert(MMIO_SPTE_GEN_LOW_BITS == 9 && MMIO_SPTE_GEN_HIGH_BITS == 11); #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) extern u64 __read_mostly shadow_host_writable_mask; extern u64 __read_mostly shadow_mmu_writable_mask; extern u64 __read_mostly shadow_nx_mask; extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ extern u64 __read_mostly shadow_user_mask; extern u64 __read_mostly shadow_accessed_mask; extern u64 __read_mostly shadow_dirty_mask; extern u64 __read_mostly shadow_mmio_value; extern u64 __read_mostly shadow_mmio_mask; extern u64 __read_mostly shadow_mmio_access_mask; extern u64 __read_mostly shadow_present_mask; extern u64 __read_mostly shadow_me_mask; /* * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK; * shadow_acc_track_mask is the set of bits to be cleared in non-accessed * pages. */ extern u64 __read_mostly shadow_acc_track_mask; /* * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order * to guard against L1TF attacks. */ extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; /* * The number of high-order 1 bits to use in the mask above. */ #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 /* * The mask/shift to use for saving the original R/X bits when marking the PTE * as not-present for access tracking purposes. We do not save the W bit as the * PTEs being access tracked also need to be dirty tracked, so the W bit will be * restored only when a write is attempted to the page. This mask obviously * must not overlap the A/D type mask. */ #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \ PT64_EPT_EXECUTABLE_MASK) #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 static_assert(!(SPTE_TDP_AD_MASK & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << SHADOW_ACC_TRACK_SAVED_BITS_SHIFT))); /* * If a thread running without exclusive control of the MMU lock must perform a * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a * non-present intermediate value. Other threads which encounter this value * should not modify the SPTE. * * This constant works because it is considered non-present on both AMD and * Intel CPUs and does not create a L1TF vulnerability because the pfn section * is zeroed out. * * Only used by the TDP MMU. */ #define REMOVED_SPTE (1ull << 59) static inline bool is_removed_spte(u64 spte) { return spte == REMOVED_SPTE; } /* * In some cases, we need to preserve the GFN of a non-present or reserved * SPTE when we usurp the upper five bits of the physical address space to * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask * left into the reserved bits, i.e. the GFN in the SPTE will be split into * high and low parts. This mask covers the lower bits of the GFN. */ extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; /* * The number of non-reserved physical address bits irrespective of features * that repurpose legal bits, e.g. MKTME. */ extern u8 __read_mostly shadow_phys_bits; static inline bool is_mmio_spte(u64 spte) { return (spte & shadow_mmio_mask) == shadow_mmio_value && likely(shadow_mmio_value); } static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) { return sp->role.ad_disabled; } static inline bool spte_ad_enabled(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK; } static inline bool spte_ad_need_write_protect(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); /* * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0', * and non-TDP SPTEs will never set these bits. Optimize for 64-bit * TDP and do the A/D type check unconditionally. */ return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK; } static inline u64 spte_shadow_accessed_mask(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; } static inline u64 spte_shadow_dirty_mask(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; } static inline bool is_access_track_spte(u64 spte) { return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; } static inline bool is_shadow_present_pte(u64 pte) { return (pte != 0) && !is_mmio_spte(pte) && !is_removed_spte(pte); } static inline bool is_large_pte(u64 pte) { return pte & PT_PAGE_SIZE_MASK; } static inline bool is_last_spte(u64 pte, int level) { return (level == PG_LEVEL_4K) || is_large_pte(pte); } static inline bool is_executable_pte(u64 spte) { return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; } static inline kvm_pfn_t spte_to_pfn(u64 pte) { return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; } static inline bool is_accessed_spte(u64 spte) { u64 accessed_mask = spte_shadow_accessed_mask(spte); return accessed_mask ? spte & accessed_mask : !is_access_track_spte(spte); } static inline bool is_dirty_spte(u64 spte) { u64 dirty_mask = spte_shadow_dirty_mask(spte); return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; } static inline bool spte_can_locklessly_be_made_writable(u64 spte) { return (spte & shadow_host_writable_mask) && (spte & shadow_mmu_writable_mask); } static inline u64 get_mmio_spte_generation(u64 spte) { u64 gen; gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; return gen; } /* Bits which may be returned by set_spte() */ #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) #define SET_SPTE_SPURIOUS BIT(2) int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, bool can_unsync, bool host_writable, bool ad_disabled, u64 *new_spte); u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); u64 mark_spte_for_access_track(u64 spte); u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); void kvm_mmu_reset_all_pte_masks(void); #endif