/* * Testsuite for eBPF verifier * * Copyright (c) 2014 PLUMgrid, http://plumgrid.com * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../../include/linux/filter.h" #include "bpf_sys.h" #ifndef ARRAY_SIZE # define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #endif #define MAX_INSNS 512 #define MAX_FIXUPS 8 struct bpf_test { const char *descr; struct bpf_insn insns[MAX_INSNS]; int fixup_map1[MAX_FIXUPS]; int fixup_map2[MAX_FIXUPS]; int fixup_prog[MAX_FIXUPS]; const char *errstr; const char *errstr_unpriv; enum { UNDEF, ACCEPT, REJECT } result, result_unpriv; enum bpf_prog_type prog_type; }; /* Note we want this to be 64 bit aligned so that the end of our array is * actually the end of the structure. */ #define MAX_ENTRIES 11 struct test_val { unsigned int index; int foo[MAX_ENTRIES]; }; static struct bpf_test tests[] = { { "add+sub+mul", .insns = { BPF_MOV64_IMM(BPF_REG_1, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 2), BPF_MOV64_IMM(BPF_REG_2, 3), BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -1), BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 3), BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "unreachable", .insns = { BPF_EXIT_INSN(), BPF_EXIT_INSN(), }, .errstr = "unreachable", .result = REJECT, }, { "unreachable2", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "unreachable", .result = REJECT, }, { "out of range jump", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_EXIT_INSN(), }, .errstr = "jump out of range", .result = REJECT, }, { "out of range jump2", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, -2), BPF_EXIT_INSN(), }, .errstr = "jump out of range", .result = REJECT, }, { "test1 ld_imm64", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 1), BPF_LD_IMM64(BPF_REG_0, 1), BPF_MOV64_IMM(BPF_REG_0, 2), BPF_EXIT_INSN(), }, .errstr = "invalid BPF_LD_IMM insn", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "test2 ld_imm64", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 1), BPF_LD_IMM64(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .errstr = "invalid BPF_LD_IMM insn", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "test3 ld_imm64", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 0), BPF_LD_IMM64(BPF_REG_0, 1), BPF_LD_IMM64(BPF_REG_0, 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test4 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "test5 ld_imm64", .insns = { BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0), }, .errstr = "invalid bpf_ld_imm64 insn", .result = REJECT, }, { "no bpf_exit", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2), }, .errstr = "jump out of range", .result = REJECT, }, { "loop (back-edge)", .insns = { BPF_JMP_IMM(BPF_JA, 0, 0, -1), BPF_EXIT_INSN(), }, .errstr = "back-edge", .result = REJECT, }, { "loop2 (back-edge)", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_0), BPF_JMP_IMM(BPF_JA, 0, 0, -4), BPF_EXIT_INSN(), }, .errstr = "back-edge", .result = REJECT, }, { "conditional loop", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3), BPF_EXIT_INSN(), }, .errstr = "back-edge", .result = REJECT, }, { "read uninitialized register", .insns = { BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr = "R2 !read_ok", .result = REJECT, }, { "read invalid register", .insns = { BPF_MOV64_REG(BPF_REG_0, -1), BPF_EXIT_INSN(), }, .errstr = "R15 is invalid", .result = REJECT, }, { "program doesn't init R0 before exit", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1), BPF_EXIT_INSN(), }, .errstr = "R0 !read_ok", .result = REJECT, }, { "program doesn't init R0 before exit in all branches", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2), BPF_EXIT_INSN(), }, .errstr = "R0 !read_ok", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "stack out of bounds", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack", .result = REJECT, }, { "invalid call insn1", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL | BPF_X, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "BPF_CALL uses reserved", .result = REJECT, }, { "invalid call insn2", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 1, 0), BPF_EXIT_INSN(), }, .errstr = "BPF_CALL uses reserved", .result = REJECT, }, { "invalid function call", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 1234567), BPF_EXIT_INSN(), }, .errstr = "invalid func unknown#1234567", .result = REJECT, }, { "uninitialized stack1", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_EXIT_INSN(), }, .fixup_map1 = { 2 }, .errstr = "invalid indirect read from stack", .result = REJECT, }, { "uninitialized stack2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -8), BPF_EXIT_INSN(), }, .errstr = "invalid read from stack", .result = REJECT, }, { "invalid argument register", .insns = { BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_EXIT_INSN(), }, .errstr = "R1 !read_ok", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "non-invalid argument register", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_ALU64_REG(BPF_MOV, BPF_REG_1, BPF_REG_6), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_cgroup_classid), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "check valid spill/fill", .insns = { /* spill R1(ctx) into stack */ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), /* fill it back into R2 */ BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8), /* should be able to access R0 = *(R2 + 8) */ /* BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 8), */ BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, }, { "check valid spill/fill, skb mark", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = ACCEPT, }, { "check corrupted spill/fill", .insns = { /* spill R1(ctx) into stack */ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), /* mess up with R1 pointer on stack */ BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23), /* fill back into R0 should fail */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8), BPF_EXIT_INSN(), }, .errstr_unpriv = "attempt to corrupt spilled", .errstr = "corrupted spill", .result = REJECT, }, { "invalid src register in STX", .insns = { BPF_STX_MEM(BPF_B, BPF_REG_10, -1, -1), BPF_EXIT_INSN(), }, .errstr = "R15 is invalid", .result = REJECT, }, { "invalid dst register in STX", .insns = { BPF_STX_MEM(BPF_B, 14, BPF_REG_10, -1), BPF_EXIT_INSN(), }, .errstr = "R14 is invalid", .result = REJECT, }, { "invalid dst register in ST", .insns = { BPF_ST_MEM(BPF_B, 14, -1, -1), BPF_EXIT_INSN(), }, .errstr = "R14 is invalid", .result = REJECT, }, { "invalid src register in LDX", .insns = { BPF_LDX_MEM(BPF_B, BPF_REG_0, 12, 0), BPF_EXIT_INSN(), }, .errstr = "R12 is invalid", .result = REJECT, }, { "invalid dst register in LDX", .insns = { BPF_LDX_MEM(BPF_B, 11, BPF_REG_1, 0), BPF_EXIT_INSN(), }, .errstr = "R11 is invalid", .result = REJECT, }, { "junk insn", .insns = { BPF_RAW_INSN(0, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid BPF_LD_IMM", .result = REJECT, }, { "junk insn2", .insns = { BPF_RAW_INSN(1, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "BPF_LDX uses reserved fields", .result = REJECT, }, { "junk insn3", .insns = { BPF_RAW_INSN(-1, 0, 0, 0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid BPF_ALU opcode f0", .result = REJECT, }, { "junk insn4", .insns = { BPF_RAW_INSN(-1, -1, -1, -1, -1), BPF_EXIT_INSN(), }, .errstr = "invalid BPF_ALU opcode f0", .result = REJECT, }, { "junk insn5", .insns = { BPF_RAW_INSN(0x7f, -1, -1, -1, -1), BPF_EXIT_INSN(), }, .errstr = "BPF_ALU uses reserved fields", .result = REJECT, }, { "misaligned read from stack", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -4), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "invalid map_fd for function call", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_delete_elem), BPF_EXIT_INSN(), }, .errstr = "fd 0 is not pointing to valid bpf_map", .result = REJECT, }, { "don't check return value before access", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, .errstr = "R0 invalid mem access 'map_value_or_null'", .result = REJECT, }, { "access memory with incorrect alignment", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, .errstr = "misaligned access", .result = REJECT, }, { "sometimes access memory with incorrect alignment", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, .errstr = "R0 invalid mem access", .errstr_unpriv = "R0 leaks addr", .result = REJECT, }, { "jump test 1", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 5), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "jump test 2", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 14), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 11), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 5), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 2), BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1), BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "jump test 3", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 19), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_JMP_IMM(BPF_JA, 0, 0, 15), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -32), BPF_JMP_IMM(BPF_JA, 0, 0, 11), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -40), BPF_JMP_IMM(BPF_JA, 0, 0, 7), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 3), BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), BPF_JMP_IMM(BPF_JA, 0, 0, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 0), BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -56), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_delete_elem), BPF_EXIT_INSN(), }, .fixup_map1 = { 24 }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "jump test 4", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "jump test 5", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 2), BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JA, 0, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "access skb fields ok", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, pkt_type)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, queue_mapping)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, protocol)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, vlan_present)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, vlan_tci)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "access skb fields bad1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -4), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "access skb fields bad2", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 9), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, pkt_type)), BPF_EXIT_INSN(), }, .fixup_map1 = { 4 }, .errstr = "different pointers", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "access skb fields bad3", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, pkt_type)), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JA, 0, 0, -12), }, .fixup_map1 = { 6 }, .errstr = "different pointers", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "access skb fields bad4", .insns = { BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 3), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, len)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_JMP_IMM(BPF_JA, 0, 0, -13), }, .fixup_map1 = { 7 }, .errstr = "different pointers", .errstr_unpriv = "R1 pointer comparison", .result = REJECT, }, { "check skb->mark is not writeable by sockets", .insns = { BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .errstr_unpriv = "R1 leaks addr", .result = REJECT, }, { "check skb->tc_index is not writeable by sockets", .insns = { BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, tc_index)), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .errstr_unpriv = "R1 leaks addr", .result = REJECT, }, { "check cb access: byte", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 3), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 1), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 2), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 2), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 3), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check cb access: byte, oob 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 4), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: byte, oob 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) - 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: byte, oob 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 4), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: byte, oob 4", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) - 1), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: byte, wrong type", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "check cb access: half", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3]) + 2), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3]) + 2), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 2), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check cb access: half, unaligned", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 1), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "check cb access: half, oob 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 4), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: half, oob 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) - 2), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: half, oob 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 4), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: half, oob 4", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) - 2), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: half, wrong type", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "check cb access: word", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[1])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[3])), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check cb access: word, unaligned 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) + 2), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "check cb access: word, unaligned 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 1), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "check cb access: word, unaligned 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 2), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "check cb access: word, unaligned 4", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 3), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "check cb access: double", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[2])), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "check cb access: double, unaligned 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[1])), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "check cb access: double, unaligned 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_EXIT_INSN(), }, .errstr = "misaligned access", .result = REJECT, }, { "check cb access: double, oob 1", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, oob 2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[4]) + 8), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, oob 3", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0]) - 8), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, oob 4", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, oob 5", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4]) + 8), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, oob 6", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) - 8), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, }, { "check cb access: double, wrong type", .insns = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[0])), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .result = REJECT, .prog_type = BPF_PROG_TYPE_CGROUP_SOCK, }, { "check out of range skb->cb access", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0]) + 256), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access", .errstr_unpriv = "", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_ACT, }, { "write skb fields from socket prog", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[4])), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_index)), BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, cb[2])), BPF_EXIT_INSN(), }, .result = ACCEPT, .errstr_unpriv = "R1 leaks addr", .result_unpriv = REJECT, }, { "write skb fields from tc_cls_act prog", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, cb[0])), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_index)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, tc_index)), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, offsetof(struct __sk_buff, cb[3])), BPF_EXIT_INSN(), }, .errstr_unpriv = "", .result_unpriv = REJECT, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "PTR_TO_STACK store/load", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10), BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "PTR_TO_STACK store/load - bad alignment on off", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "misaligned access off -6 size 8", }, { "PTR_TO_STACK store/load - bad alignment on reg", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10), BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "misaligned access off -2 size 8", }, { "PTR_TO_STACK store/load - out of bounds low", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -80000), BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack off=-79992 size=8", }, { "PTR_TO_STACK store/load - out of bounds high", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack off=0 size=8", }, { "unpriv: return pointer", .insns = { BPF_MOV64_REG(BPF_REG_0, BPF_REG_10), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R0 leaks addr", }, { "unpriv: add const to pointer", .insns = { BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R1 pointer arithmetic", }, { "unpriv: add pointer to pointer", .insns = { BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R1 pointer arithmetic", }, { "unpriv: neg pointer", .insns = { BPF_ALU64_IMM(BPF_NEG, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R1 pointer arithmetic", }, { "unpriv: cmp pointer with const", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R1 pointer comparison", }, { "unpriv: cmp pointer with pointer", .insns = { BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .result_unpriv = REJECT, .errstr_unpriv = "R10 pointer comparison", }, { "unpriv: check that printk is disallowed", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_1), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_trace_printk), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "unknown func bpf_trace_printk#6", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: pass pointer to helper function", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_update_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, .errstr_unpriv = "R4 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: indirectly pass pointer on stack to helper function", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, .errstr = "invalid indirect read from stack off -8+0 size 8", .result = REJECT, }, { "unpriv: mangle pointer on stack 1", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_ST_MEM(BPF_W, BPF_REG_10, -8, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "attempt to corrupt spilled", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: mangle pointer on stack 2", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_ST_MEM(BPF_B, BPF_REG_10, -1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "attempt to corrupt spilled", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: read pointer from stack in small chunks", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid size", .result = REJECT, }, { "unpriv: write pointer into ctx", .insns = { BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R1 leaks addr", .result_unpriv = REJECT, .errstr = "invalid bpf_context access", .result = REJECT, }, { "unpriv: spill/fill of ctx", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, }, { "unpriv: spill/fill of ctx 2", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_hash_recalc), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of ctx 3", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_hash_recalc), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R1 type=fp expected=ctx", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of ctx 4", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_10, BPF_REG_0, -8, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_hash_recalc), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R1 type=inv expected=ctx", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers stx", .insns = { BPF_MOV64_IMM(BPF_REG_3, 42), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3, offsetof(struct __sk_buff, mark)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "same insn cannot be used with different pointers", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "unpriv: spill/fill of different pointers ldx", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -(__s32)offsetof(struct bpf_perf_event_data, sample_period) - 8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0), BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, offsetof(struct bpf_perf_event_data, sample_period)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "same insn cannot be used with different pointers", .prog_type = BPF_PROG_TYPE_PERF_EVENT, }, { "unpriv: write pointer into map elem value", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 3 }, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: partial copy of pointer", .insns = { BPF_MOV32_REG(BPF_REG_1, BPF_REG_10), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R10 partial copy", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: pass pointer to tail_call", .insns = { BPF_MOV64_REG(BPF_REG_3, BPF_REG_1), BPF_LD_MAP_FD(BPF_REG_2, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_prog = { 1 }, .errstr_unpriv = "R3 leaks addr into helper", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: cmp map pointer with zero", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 1 }, .errstr_unpriv = "R1 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: write into frame pointer", .insns = { BPF_MOV64_REG(BPF_REG_10, BPF_REG_1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "frame pointer is read only", .result = REJECT, }, { "unpriv: spill/fill frame pointer", .insns = { BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "frame pointer is read only", .result = REJECT, }, { "unpriv: cmp of frame pointer", .insns = { BPF_JMP_IMM(BPF_JEQ, BPF_REG_10, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R10 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: cmp of stack pointer", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R2 pointer comparison", .result_unpriv = REJECT, .result = ACCEPT, }, { "unpriv: obfuscate stack pointer", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr_unpriv = "R2 pointer arithmetic", .result_unpriv = REJECT, .result = ACCEPT, }, { "raw_stack: no skb_load_bytes", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), /* Call to skb_load_bytes() omitted. */ BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid read from stack off -8+0 size 8", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, negative len", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, -8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, negative len 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, ~0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, zero len", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, no init", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, init", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xcafe), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs around bounds", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2, offsetof(struct __sk_buff, priority)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs corruption", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R0 invalid mem access 'inv'", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs corruption 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2, offsetof(struct __sk_buff, priority)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_3, offsetof(struct __sk_buff, pkt_type)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R3 invalid mem access 'inv'", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, spilled regs + data", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0), BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct __sk_buff, mark)), BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2, offsetof(struct __sk_buff, priority)), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 1", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -513), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-513 access_size=8", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 2", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-1 access_size=8", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 3", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 0xffffffff), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0xffffffff), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-1 access_size=-1", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 4", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-1 access_size=2147483647", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 5", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-512 access_size=2147483647", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, invalid access 6", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid stack type R3 off=-512 access_size=0", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "raw_stack: skb_load_bytes, large access", .insns = { BPF_MOV64_IMM(BPF_REG_2, 4), BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_4, 512), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test2", .insns = { BPF_MOV64_IMM(BPF_REG_0, 1), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 15), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 7), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_3, 12), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 14), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_4), BPF_MOV64_REG(BPF_REG_2, BPF_REG_1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 48), BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 48), BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_2), BPF_MOV64_REG(BPF_REG_2, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1), BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid bpf_context access off=76", .result = REJECT, .prog_type = BPF_PROG_TYPE_SOCKET_FILTER, }, { "direct packet access: test4 (write)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test5 (pkt_end >= reg, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test6 (pkt_end >= reg, bad access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid access to packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test7 (pkt_end >= reg, both accesses)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid access to packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test8 (double test, variant 1)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 4), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test9 (double test, variant 2)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test10 (write invalid)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid access to packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test11 (shift, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_3, 144), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23), BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 3), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test12 (and, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_3, 144), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23), BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test13 (branches, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 13), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, mark)), BPF_MOV64_IMM(BPF_REG_4, 1), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_3, 14), BPF_JMP_IMM(BPF_JA, 0, 0, 1), BPF_MOV64_IMM(BPF_REG_3, 24), BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23), BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "direct packet access: test14 (pkt_ptr += 0, CONST_IMM, good access)", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7), BPF_MOV64_IMM(BPF_REG_5, 12), BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 4), BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_6, 0), BPF_MOV64_IMM(BPF_REG_0, 1), BPF_EXIT_INSN(), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test1, valid packet_ptr range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_update_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 5 }, .result_unpriv = ACCEPT, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test2, unchecked packet_ptr", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 1 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test3, variable add", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10), BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5), BPF_MOV64_REG(BPF_REG_5, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_4), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 11 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test4, packet_ptr with bad range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 7 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test5, packet_ptr with too short range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct xdp_md, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct xdp_md, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 6 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_XDP, }, { "helper access to packet: test6, cls valid packet_ptr range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_1, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_update_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 5 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test7, cls unchecked packet_ptr", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 1 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test8, cls variable add", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10), BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5), BPF_MOV64_REG(BPF_REG_5, BPF_REG_4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_4), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 11 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test9, cls packet_ptr with bad range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 7 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test10, cls packet_ptr with too short range", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 6 }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test11, cls unsuitable helper 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_7, 4), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_4, 42), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_store_bytes), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "helper access to the packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test12, cls unsuitable helper 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_3, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_7, 3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_4, 4), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_load_bytes), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "helper access to the packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test13, cls helper ok", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test14, cls helper fail sub", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 4), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "type=inv expected=fp", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test15, cls helper fail range 1", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test16, cls helper fail range 2", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, -9), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test17, cls helper fail range 3", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, ~0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test18, cls helper fail range zero", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test19, pkt end as input", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_7), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "R1 type=pkt_end expected=fp", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to packet: test20, wrong reg", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1), BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7), BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6), BPF_MOV64_IMM(BPF_REG_2, 4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_csum_diff), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid access to packet", .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "valid map access into an array with a constant", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 leaks addr", .result_unpriv = REJECT, .result = ACCEPT, }, { "valid map access into an array with a register", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_IMM(BPF_REG_1, 4), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .result_unpriv = REJECT, .result = ACCEPT, }, { "valid map access into an array with a variable", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .result_unpriv = REJECT, .result = ACCEPT, }, { "valid map access into an array with a signed variable", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES), BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .result_unpriv = REJECT, .result = ACCEPT, }, { "invalid map access into an array with a constant", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=48 size=8", .result = REJECT, }, { "invalid map access into an array with a register", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "R0 min value is outside of the array range", .result_unpriv = REJECT, .result = REJECT, }, { "invalid map access into an array with a variable", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.", .result_unpriv = REJECT, .result = REJECT, }, { "invalid map access into an array with no floor check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES), BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.", .result_unpriv = REJECT, .result = REJECT, }, { "invalid map access into an array with a invalid max check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1), BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1), BPF_MOV32_IMM(BPF_REG_1, 0), BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "invalid access to map value, value_size=48 off=44 size=8", .result_unpriv = REJECT, .result = REJECT, }, { "invalid map access into an array with a invalid max check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_MOV64_REG(BPF_REG_8, BPF_REG_0), BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8), BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3, 11 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.", .result_unpriv = REJECT, .result = REJECT, }, { "multiple registers share map_lookup_elem result", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 4 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "invalid memory access with multiple map_lookup_elem calls", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 4 }, .result = REJECT, .errstr = "R4 !read_ok", .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "valid indirect map_lookup_elem access with 2nd lookup in branch", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_MOV64_REG(BPF_REG_8, BPF_REG_1), BPF_MOV64_REG(BPF_REG_7, BPF_REG_2), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_IMM(BPF_REG_2, 10), BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 3), BPF_MOV64_REG(BPF_REG_1, BPF_REG_8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_7), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0), BPF_EXIT_INSN(), }, .fixup_map1 = { 4 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "multiple registers share map_lookup_elem bad reg type", .insns = { BPF_MOV64_IMM(BPF_REG_1, 10), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_MOV64_REG(BPF_REG_2, BPF_REG_0), BPF_MOV64_REG(BPF_REG_3, BPF_REG_0), BPF_MOV64_REG(BPF_REG_4, BPF_REG_0), BPF_MOV64_REG(BPF_REG_5, BPF_REG_0), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_MOV64_IMM(BPF_REG_1, 1), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), BPF_MOV64_IMM(BPF_REG_1, 2), BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0, 1), BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 0), BPF_MOV64_IMM(BPF_REG_1, 3), BPF_EXIT_INSN(), }, .fixup_map1 = { 4 }, .result = REJECT, .errstr = "R3 invalid mem access 'inv'", .prog_type = BPF_PROG_TYPE_SCHED_CLS }, { "invalid map access from else condition", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES-1, 1), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R0 unbounded memory access, make sure to bounds check any array access into a map", .result = REJECT, .errstr_unpriv = "R0 pointer arithmetic prohibited", .result_unpriv = REJECT, }, { "constant register |= constant should keep constant type", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 13), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "constant register |= constant should not bypass stack boundary checks", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 24), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-48 access_size=58", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "constant register |= constant register should keep constant type", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_MOV64_IMM(BPF_REG_4, 13), BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "constant register |= constant register should not bypass stack boundary checks", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48), BPF_MOV64_IMM(BPF_REG_2, 34), BPF_MOV64_IMM(BPF_REG_4, 24), BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-48 access_size=58", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "invalid direct packet write for LWT_IN", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "cannot write into packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "invalid direct packet write for LWT_OUT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "cannot write into packet", .result = REJECT, .prog_type = BPF_PROG_TYPE_LWT_OUT, }, { "direct packet write for LWT_XMIT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_XMIT, }, { "direct packet read for LWT_IN", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_IN, }, { "direct packet read for LWT_OUT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_OUT, }, { "direct packet read for LWT_XMIT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, offsetof(struct __sk_buff, data)), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, offsetof(struct __sk_buff, data_end)), BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1), BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_LWT_XMIT, }, { "invalid access of tc_classid for LWT_IN", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", }, { "invalid access of tc_classid for LWT_OUT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", }, { "invalid access of tc_classid for LWT_XMIT", .insns = { BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, offsetof(struct __sk_buff, tc_classid)), BPF_EXIT_INSN(), }, .result = REJECT, .errstr = "invalid bpf_context access", }, { "helper access to map: full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=0 size=0", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: out-of-bound range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) + 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=0 size=56", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to map: negative range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, -8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=0 size=-8", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): out-of-bound range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo) + 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=52", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): negative range (> adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, -8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=-8", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const imm): negative range (< adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): out-of-bound range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo) + 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=52", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): negative range (> adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, -8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=-8", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via const reg): negative range (< adjustment)", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_3, offsetof(struct test_val, foo)), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, -1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): full range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo)), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): partial range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): empty range", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): no max check", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R1 min value is negative, either use unsigned index or do a if (index >=0) check", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to adjusted map (via variable): wrong max check", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0), BPF_JMP_IMM(BPF_JGT, BPF_REG_3, offsetof(struct test_val, foo), 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) - offsetof(struct test_val, foo) + 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=4 size=45", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "map element value is preserved across register spilling", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0), BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 leaks addr", .result = ACCEPT, .result_unpriv = REJECT, }, { "map element value (adjusted) is preserved across register spilling", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7), BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, offsetof(struct test_val, foo)), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42), BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0), BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0), BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .result = ACCEPT, .result_unpriv = REJECT, }, { "helper access to variable memory: stack, bitwise AND + JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, bitwise AND, zero included", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=0", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, bitwise AND + JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 65), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=65", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP (signed), correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, bounds + offset", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 5), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 3), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=65", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 65, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=65", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, no max check", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R2 unbounded memory access", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP, no min check", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 3), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-64 access_size=0", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: stack, JMP (signed), no min check", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 16), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 3), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .errstr = "R2 min value is negative", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map, JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val), 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map, JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val) + 1, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "invalid access to map value, value_size=48 off=0 size=49", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map adjusted, JMP, correct bounds", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val) - 20, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: map adjusted, JMP, wrong max", .insns = { BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11), BPF_MOV64_REG(BPF_REG_1, BPF_REG_0), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20), BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, sizeof(struct test_val) - 19, 4), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr = "R1 min value is outside of the array range", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: size > 0 not allowed on NULL", .insns = { BPF_MOV64_IMM(BPF_REG_1, 0), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .errstr = "R1 type=imm expected=fp", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: size = 0 not allowed on != NULL", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 8), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_MOV64_IMM(BPF_REG_4, 0), BPF_MOV64_IMM(BPF_REG_5, 0), BPF_EMIT_CALL(BPF_FUNC_csum_diff), BPF_EXIT_INSN(), }, .errstr = "invalid stack type R1 off=-8 access_size=0", .result = REJECT, .prog_type = BPF_PROG_TYPE_SCHED_CLS, }, { "helper access to variable memory: 8 bytes leak", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128), BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 63), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_EXIT_INSN(), }, .errstr = "invalid indirect read from stack off -64+32 size 64", .result = REJECT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "helper access to variable memory: 8 bytes no leak (init memory)", .insns = { BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16), BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64), BPF_MOV64_IMM(BPF_REG_2, 0), BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 32), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 32), BPF_MOV64_IMM(BPF_REG_3, 0), BPF_EMIT_CALL(BPF_FUNC_probe_read), BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16), BPF_EXIT_INSN(), }, .result = ACCEPT, .prog_type = BPF_PROG_TYPE_TRACEPOINT, }, { "invalid and of negative number", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4), BPF_MOV64_IMM(BPF_REG_1, 6), BPF_ALU64_IMM(BPF_AND, BPF_REG_1, -4), BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1), BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.", .result = REJECT, .result_unpriv = REJECT, }, { "invalid range check", .insns = { BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), BPF_LD_MAP_FD(BPF_REG_1, 0), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 12), BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0), BPF_MOV64_IMM(BPF_REG_9, 1), BPF_ALU32_IMM(BPF_MOD, BPF_REG_1, 2), BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 1), BPF_ALU32_REG(BPF_AND, BPF_REG_9, BPF_REG_1), BPF_ALU32_IMM(BPF_ADD, BPF_REG_9, 1), BPF_ALU32_IMM(BPF_RSH, BPF_REG_9, 1), BPF_MOV32_IMM(BPF_REG_3, 1), BPF_ALU32_REG(BPF_SUB, BPF_REG_3, BPF_REG_9), BPF_ALU32_IMM(BPF_MUL, BPF_REG_3, 0x10000000), BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3), BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_3, 0), BPF_MOV64_REG(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .fixup_map2 = { 3 }, .errstr_unpriv = "R0 pointer arithmetic prohibited", .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.", .result = REJECT, .result_unpriv = REJECT, } }; static int probe_filter_length(const struct bpf_insn *fp) { int len; for (len = MAX_INSNS - 1; len > 0; --len) if (fp[len].code != 0 || fp[len].imm != 0) break; return len + 1; } static int create_map(uint32_t size_value, uint32_t max_elem) { int fd; fd = bpf_map_create(BPF_MAP_TYPE_HASH, sizeof(long long), size_value, max_elem, BPF_F_NO_PREALLOC); if (fd < 0) printf("Failed to create hash map '%s'!\n", strerror(errno)); return fd; } static int create_prog_array(void) { int fd; fd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), sizeof(int), 4, 0); if (fd < 0) printf("Failed to create prog array '%s'!\n", strerror(errno)); return fd; } static char bpf_vlog[32768]; static void do_test_fixup(struct bpf_test *test, struct bpf_insn *prog, int *fd_f1, int *fd_f2, int *fd_f3) { int *fixup_map1 = test->fixup_map1; int *fixup_map2 = test->fixup_map2; int *fixup_prog = test->fixup_prog; /* Allocating HTs with 1 elem is fine here, since we only test * for verifier and not do a runtime lookup, so the only thing * that really matters is value size in this case. */ if (*fixup_map1) { *fd_f1 = create_map(sizeof(long long), 1); do { prog[*fixup_map1].imm = *fd_f1; fixup_map1++; } while (*fixup_map1); } if (*fixup_map2) { *fd_f2 = create_map(sizeof(struct test_val), 1); do { prog[*fixup_map2].imm = *fd_f2; fixup_map2++; } while (*fixup_map2); } if (*fixup_prog) { *fd_f3 = create_prog_array(); do { prog[*fixup_prog].imm = *fd_f3; fixup_prog++; } while (*fixup_prog); } } static void do_test_single(struct bpf_test *test, bool unpriv, int *passes, int *errors) { struct bpf_insn *prog = test->insns; int prog_len = probe_filter_length(prog); int prog_type = test->prog_type; int fd_f1 = -1, fd_f2 = -1, fd_f3 = -1; int fd_prog, expected_ret; const char *expected_err; do_test_fixup(test, prog, &fd_f1, &fd_f2, &fd_f3); fd_prog = bpf_load_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER, prog, prog_len, "GPL", 0, bpf_vlog, sizeof(bpf_vlog)); expected_ret = unpriv && test->result_unpriv != UNDEF ? test->result_unpriv : test->result; expected_err = unpriv && test->errstr_unpriv ? test->errstr_unpriv : test->errstr; if (expected_ret == ACCEPT) { if (fd_prog < 0) { printf("FAIL\nFailed to load prog '%s'!\n", strerror(errno)); goto fail_log; } } else { if (fd_prog >= 0) { printf("FAIL\nUnexpected success to load!\n"); goto fail_log; } if (!strstr(bpf_vlog, expected_err)) { printf("FAIL\nUnexpected error message!\n"); goto fail_log; } } (*passes)++; printf("OK\n"); close_fds: close(fd_prog); close(fd_f1); close(fd_f2); close(fd_f3); sched_yield(); return; fail_log: (*errors)++; printf("%s", bpf_vlog); goto close_fds; } static bool is_admin(void) { cap_t caps; cap_flag_value_t sysadmin = CAP_CLEAR; const cap_value_t cap_val = CAP_SYS_ADMIN; if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { perror("cap_get_flag"); return false; } caps = cap_get_proc(); if (!caps) { perror("cap_get_proc"); return false; } if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin)) perror("cap_get_flag"); if (cap_free(caps)) perror("cap_free"); return (sysadmin == CAP_SET); } static int set_admin(bool admin) { cap_t caps; const cap_value_t cap_val = CAP_SYS_ADMIN; int ret = -1; caps = cap_get_proc(); if (!caps) { perror("cap_get_proc"); return -1; } if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val, admin ? CAP_SET : CAP_CLEAR)) { perror("cap_set_flag"); goto out; } if (cap_set_proc(caps)) { perror("cap_set_proc"); goto out; } ret = 0; out: if (cap_free(caps)) perror("cap_free"); return ret; } static int do_test(bool unpriv, unsigned int from, unsigned int to) { int i, passes = 0, errors = 0; for (i = from; i < to; i++) { struct bpf_test *test = &tests[i]; /* Program types that are not supported by non-root we * skip right away. */ if (!test->prog_type) { if (!unpriv) set_admin(false); printf("#%d/u %s ", i, test->descr); do_test_single(test, true, &passes, &errors); if (!unpriv) set_admin(true); } if (!unpriv) { printf("#%d/p %s ", i, test->descr); do_test_single(test, false, &passes, &errors); } } printf("Summary: %d PASSED, %d FAILED\n", passes, errors); return errors ? -errors : 0; } int main(int argc, char **argv) { struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY }; struct rlimit rlim = { 1 << 20, 1 << 20 }; unsigned int from = 0, to = ARRAY_SIZE(tests); bool unpriv = !is_admin(); if (argc == 3) { unsigned int l = atoi(argv[argc - 2]); unsigned int u = atoi(argv[argc - 1]); if (l < to && u < to) { from = l; to = u + 1; } } else if (argc == 2) { unsigned int t = atoi(argv[argc - 1]); if (t < to) { from = t; to = t + 1; } } setrlimit(RLIMIT_MEMLOCK, unpriv ? &rlim : &rinf); return do_test(unpriv, from, to); }