// SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/ufs/super.c * * Copyright (C) 1998 * Daniel Pirkl <daniel.pirkl@email.cz> * Charles University, Faculty of Mathematics and Physics */ /* Derived from * * linux/fs/ext2/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ /* * Inspired by * * linux/fs/ufs/super.c * * Copyright (C) 1996 * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu) * Laboratory for Computer Science Research Computing Facility * Rutgers, The State University of New Jersey * * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * * Kernel module support added on 96/04/26 by * Stefan Reinauer <stepan@home.culture.mipt.ru> * * Module usage counts added on 96/04/29 by * Gertjan van Wingerde <gwingerde@gmail.com> * * Clean swab support on 19970406 by * Francois-Rene Rideau <fare@tunes.org> * * 4.4BSD (FreeBSD) support added on February 1st 1998 by * Niels Kristian Bech Jensen <nkbj@image.dk> partially based * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>. * * NeXTstep support added on February 5th 1998 by * Niels Kristian Bech Jensen <nkbj@image.dk>. * * write support Daniel Pirkl <daniel.pirkl@email.cz> 1998 * * HP/UX hfs filesystem support added by * Martin K. Petersen <mkp@mkp.net>, August 1999 * * UFS2 (of FreeBSD 5.x) support added by * Niraj Kumar <niraj17@iitbombay.org>, Jan 2004 * * UFS2 write support added by * Evgeniy Dushistov <dushistov@mail.ru>, 2007 */ #include <linux/exportfs.h> #include <linux/module.h> #include <linux/bitops.h> #include <stdarg.h> #include <linux/uaccess.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/string.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/init.h> #include <linux/parser.h> #include <linux/buffer_head.h> #include <linux/vfs.h> #include <linux/log2.h> #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/iversion.h> #include "ufs_fs.h" #include "ufs.h" #include "swab.h" #include "util.h" static struct inode *ufs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct inode *inode; if (ino < UFS_ROOTINO || ino > uspi->s_ncg * uspi->s_ipg) return ERR_PTR(-ESTALE); inode = ufs_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (generation && inode->i_generation != generation) { iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *ufs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ufs_nfs_get_inode); } static struct dentry *ufs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, ufs_nfs_get_inode); } static struct dentry *ufs_get_parent(struct dentry *child) { struct qstr dot_dot = QSTR_INIT("..", 2); ino_t ino; ino = ufs_inode_by_name(d_inode(child), &dot_dot); if (!ino) return ERR_PTR(-ENOENT); return d_obtain_alias(ufs_iget(child->d_sb, ino)); } static const struct export_operations ufs_export_ops = { .fh_to_dentry = ufs_fh_to_dentry, .fh_to_parent = ufs_fh_to_parent, .get_parent = ufs_get_parent, }; #ifdef CONFIG_UFS_DEBUG /* * Print contents of ufs_super_block, useful for debugging */ static void ufs_print_super_stuff(struct super_block *sb, struct ufs_super_block_first *usb1, struct ufs_super_block_second *usb2, struct ufs_super_block_third *usb3) { u32 magic = fs32_to_cpu(sb, usb3->fs_magic); pr_debug("ufs_print_super_stuff\n"); pr_debug(" magic: 0x%x\n", magic); if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) { pr_debug(" fs_size: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size)); pr_debug(" fs_dsize: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize)); pr_debug(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize)); pr_debug(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize)); pr_debug(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname); pr_debug(" fs_sblockloc: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc)); pr_debug(" cs_ndir(No of dirs): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir)); pr_debug(" cs_nbfree(No of free blocks): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree)); pr_info(" cs_nifree(Num of free inodes): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree)); pr_info(" cs_nffree(Num of free frags): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree)); pr_info(" fs_maxsymlinklen: %u\n", fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen)); } else { pr_debug(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno)); pr_debug(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno)); pr_debug(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno)); pr_debug(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno)); pr_debug(" cgoffset: %u\n", fs32_to_cpu(sb, usb1->fs_cgoffset)); pr_debug(" ~cgmask: 0x%x\n", ~fs32_to_cpu(sb, usb1->fs_cgmask)); pr_debug(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size)); pr_debug(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize)); pr_debug(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg)); pr_debug(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize)); pr_debug(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize)); pr_debug(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag)); pr_debug(" fragshift: %u\n", fs32_to_cpu(sb, usb1->fs_fragshift)); pr_debug(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask)); pr_debug(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift)); pr_debug(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize)); pr_debug(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc)); pr_debug(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg)); pr_debug(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg)); pr_debug(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg)); pr_debug(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr)); pr_debug(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize)); pr_debug(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize)); pr_debug(" fstodb: %u\n", fs32_to_cpu(sb, usb1->fs_fsbtodb)); pr_debug(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos)); pr_debug(" ndir %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir)); pr_debug(" nifree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree)); pr_debug(" nbfree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree)); pr_debug(" nffree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree)); } pr_debug("\n"); } /* * Print contents of ufs_cylinder_group, useful for debugging */ static void ufs_print_cylinder_stuff(struct super_block *sb, struct ufs_cylinder_group *cg) { pr_debug("\nufs_print_cylinder_stuff\n"); pr_debug("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group)); pr_debug(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic)); pr_debug(" time: %u\n", fs32_to_cpu(sb, cg->cg_time)); pr_debug(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx)); pr_debug(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl)); pr_debug(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk)); pr_debug(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk)); pr_debug(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir)); pr_debug(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree)); pr_debug(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree)); pr_debug(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree)); pr_debug(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor)); pr_debug(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor)); pr_debug(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor)); pr_debug(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n", fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]), fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]), fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]), fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7])); pr_debug(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff)); pr_debug(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff)); pr_debug(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff)); pr_debug(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff)); pr_debug(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff)); pr_debug(" clustersumoff %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff)); pr_debug(" clusteroff %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff)); pr_debug(" nclusterblks %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks)); pr_debug("\n"); } #else # define ufs_print_super_stuff(sb, usb1, usb2, usb3) /**/ # define ufs_print_cylinder_stuff(sb, cg) /**/ #endif /* CONFIG_UFS_DEBUG */ static const struct super_operations ufs_super_ops; void ufs_error (struct super_block * sb, const char * function, const char * fmt, ...) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct va_format vaf; va_list args; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); if (!sb_rdonly(sb)) { usb1->fs_clean = UFS_FSBAD; ubh_mark_buffer_dirty(USPI_UBH(uspi)); ufs_mark_sb_dirty(sb); sb->s_flags |= SB_RDONLY; } va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) { case UFS_MOUNT_ONERROR_PANIC: panic("panic (device %s): %s: %pV\n", sb->s_id, function, &vaf); case UFS_MOUNT_ONERROR_LOCK: case UFS_MOUNT_ONERROR_UMOUNT: case UFS_MOUNT_ONERROR_REPAIR: pr_crit("error (device %s): %s: %pV\n", sb->s_id, function, &vaf); } va_end(args); } void ufs_panic (struct super_block * sb, const char * function, const char * fmt, ...) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct va_format vaf; va_list args; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); if (!sb_rdonly(sb)) { usb1->fs_clean = UFS_FSBAD; ubh_mark_buffer_dirty(USPI_UBH(uspi)); ufs_mark_sb_dirty(sb); } va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; sb->s_flags |= SB_RDONLY; pr_crit("panic (device %s): %s: %pV\n", sb->s_id, function, &vaf); va_end(args); } void ufs_warning (struct super_block * sb, const char * function, const char * fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; pr_warn("(device %s): %s: %pV\n", sb->s_id, function, &vaf); va_end(args); } enum { Opt_type_old = UFS_MOUNT_UFSTYPE_OLD, Opt_type_sunx86 = UFS_MOUNT_UFSTYPE_SUNx86, Opt_type_sun = UFS_MOUNT_UFSTYPE_SUN, Opt_type_sunos = UFS_MOUNT_UFSTYPE_SUNOS, Opt_type_44bsd = UFS_MOUNT_UFSTYPE_44BSD, Opt_type_ufs2 = UFS_MOUNT_UFSTYPE_UFS2, Opt_type_hp = UFS_MOUNT_UFSTYPE_HP, Opt_type_nextstepcd = UFS_MOUNT_UFSTYPE_NEXTSTEP_CD, Opt_type_nextstep = UFS_MOUNT_UFSTYPE_NEXTSTEP, Opt_type_openstep = UFS_MOUNT_UFSTYPE_OPENSTEP, Opt_onerror_panic = UFS_MOUNT_ONERROR_PANIC, Opt_onerror_lock = UFS_MOUNT_ONERROR_LOCK, Opt_onerror_umount = UFS_MOUNT_ONERROR_UMOUNT, Opt_onerror_repair = UFS_MOUNT_ONERROR_REPAIR, Opt_err }; static const match_table_t tokens = { {Opt_type_old, "ufstype=old"}, {Opt_type_sunx86, "ufstype=sunx86"}, {Opt_type_sun, "ufstype=sun"}, {Opt_type_sunos, "ufstype=sunos"}, {Opt_type_44bsd, "ufstype=44bsd"}, {Opt_type_ufs2, "ufstype=ufs2"}, {Opt_type_ufs2, "ufstype=5xbsd"}, {Opt_type_hp, "ufstype=hp"}, {Opt_type_nextstepcd, "ufstype=nextstep-cd"}, {Opt_type_nextstep, "ufstype=nextstep"}, {Opt_type_openstep, "ufstype=openstep"}, /*end of possible ufs types */ {Opt_onerror_panic, "onerror=panic"}, {Opt_onerror_lock, "onerror=lock"}, {Opt_onerror_umount, "onerror=umount"}, {Opt_onerror_repair, "onerror=repair"}, {Opt_err, NULL} }; static int ufs_parse_options (char * options, unsigned * mount_options) { char * p; UFSD("ENTER\n"); if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { substring_t args[MAX_OPT_ARGS]; int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_type_old: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_OLD); break; case Opt_type_sunx86: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_SUNx86); break; case Opt_type_sun: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_SUN); break; case Opt_type_sunos: ufs_clear_opt(*mount_options, UFSTYPE); ufs_set_opt(*mount_options, UFSTYPE_SUNOS); break; case Opt_type_44bsd: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_44BSD); break; case Opt_type_ufs2: ufs_clear_opt(*mount_options, UFSTYPE); ufs_set_opt(*mount_options, UFSTYPE_UFS2); break; case Opt_type_hp: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_HP); break; case Opt_type_nextstepcd: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD); break; case Opt_type_nextstep: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP); break; case Opt_type_openstep: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP); break; case Opt_onerror_panic: ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_PANIC); break; case Opt_onerror_lock: ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_LOCK); break; case Opt_onerror_umount: ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_UMOUNT); break; case Opt_onerror_repair: pr_err("Unable to do repair on error, will lock lock instead\n"); ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_REPAIR); break; default: pr_err("Invalid option: \"%s\" or missing value\n", p); return 0; } } return 1; } /* * Different types of UFS hold fs_cstotal in different * places, and use different data structure for it. * To make things simpler we just copy fs_cstotal to ufs_sb_private_info */ static void ufs_setup_cstotal(struct super_block *sb) { struct ufs_sb_info *sbi = UFS_SB(sb); struct ufs_sb_private_info *uspi = sbi->s_uspi; struct ufs_super_block_first *usb1; struct ufs_super_block_second *usb2; struct ufs_super_block_third *usb3; unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE; UFSD("ENTER, mtype=%u\n", mtype); usb1 = ubh_get_usb_first(uspi); usb2 = ubh_get_usb_second(uspi); usb3 = ubh_get_usb_third(uspi); if ((mtype == UFS_MOUNT_UFSTYPE_44BSD && (usb2->fs_un.fs_u2.fs_maxbsize == usb1->fs_bsize)) || mtype == UFS_MOUNT_UFSTYPE_UFS2) { /*we have statistic in different place, then usual*/ uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir); uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree); uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree); uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree); } else { uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir); uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree); uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree); uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree); } UFSD("EXIT\n"); } /* * Read on-disk structures associated with cylinder groups */ static int ufs_read_cylinder_structures(struct super_block *sb) { struct ufs_sb_info *sbi = UFS_SB(sb); struct ufs_sb_private_info *uspi = sbi->s_uspi; struct ufs_buffer_head * ubh; unsigned char * base, * space; unsigned size, blks, i; UFSD("ENTER\n"); /* * Read cs structures from (usually) first data block * on the device. */ size = uspi->s_cssize; blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift; base = space = kmalloc(size, GFP_NOFS); if (!base) goto failed; sbi->s_csp = (struct ufs_csum *)space; for (i = 0; i < blks; i += uspi->s_fpb) { size = uspi->s_bsize; if (i + uspi->s_fpb > blks) size = (blks - i) * uspi->s_fsize; ubh = ubh_bread(sb, uspi->s_csaddr + i, size); if (!ubh) goto failed; ubh_ubhcpymem (space, ubh, size); space += size; ubh_brelse (ubh); ubh = NULL; } /* * Read cylinder group (we read only first fragment from block * at this time) and prepare internal data structures for cg caching. */ sbi->s_ucg = kmalloc_array(uspi->s_ncg, sizeof(struct buffer_head *), GFP_NOFS); if (!sbi->s_ucg) goto failed; for (i = 0; i < uspi->s_ncg; i++) sbi->s_ucg[i] = NULL; for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) { sbi->s_ucpi[i] = NULL; sbi->s_cgno[i] = UFS_CGNO_EMPTY; } for (i = 0; i < uspi->s_ncg; i++) { UFSD("read cg %u\n", i); if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i)))) goto failed; if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data)) goto failed; ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data); } for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) { if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_NOFS))) goto failed; sbi->s_cgno[i] = UFS_CGNO_EMPTY; } sbi->s_cg_loaded = 0; UFSD("EXIT\n"); return 1; failed: kfree (base); if (sbi->s_ucg) { for (i = 0; i < uspi->s_ncg; i++) if (sbi->s_ucg[i]) brelse (sbi->s_ucg[i]); kfree (sbi->s_ucg); for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) kfree (sbi->s_ucpi[i]); } UFSD("EXIT (FAILED)\n"); return 0; } /* * Sync our internal copy of fs_cstotal with disk */ static void ufs_put_cstotal(struct super_block *sb) { unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct ufs_super_block_first *usb1; struct ufs_super_block_second *usb2; struct ufs_super_block_third *usb3; UFSD("ENTER\n"); usb1 = ubh_get_usb_first(uspi); usb2 = ubh_get_usb_second(uspi); usb3 = ubh_get_usb_third(uspi); if (mtype == UFS_MOUNT_UFSTYPE_UFS2) { /*we have statistic in different place, then usual*/ usb2->fs_un.fs_u2.cs_ndir = cpu_to_fs64(sb, uspi->cs_total.cs_ndir); usb2->fs_un.fs_u2.cs_nbfree = cpu_to_fs64(sb, uspi->cs_total.cs_nbfree); usb3->fs_un1.fs_u2.cs_nifree = cpu_to_fs64(sb, uspi->cs_total.cs_nifree); usb3->fs_un1.fs_u2.cs_nffree = cpu_to_fs64(sb, uspi->cs_total.cs_nffree); goto out; } if (mtype == UFS_MOUNT_UFSTYPE_44BSD && (usb2->fs_un.fs_u2.fs_maxbsize == usb1->fs_bsize)) { /* store stats in both old and new places */ usb2->fs_un.fs_u2.cs_ndir = cpu_to_fs64(sb, uspi->cs_total.cs_ndir); usb2->fs_un.fs_u2.cs_nbfree = cpu_to_fs64(sb, uspi->cs_total.cs_nbfree); usb3->fs_un1.fs_u2.cs_nifree = cpu_to_fs64(sb, uspi->cs_total.cs_nifree); usb3->fs_un1.fs_u2.cs_nffree = cpu_to_fs64(sb, uspi->cs_total.cs_nffree); } usb1->fs_cstotal.cs_ndir = cpu_to_fs32(sb, uspi->cs_total.cs_ndir); usb1->fs_cstotal.cs_nbfree = cpu_to_fs32(sb, uspi->cs_total.cs_nbfree); usb1->fs_cstotal.cs_nifree = cpu_to_fs32(sb, uspi->cs_total.cs_nifree); usb1->fs_cstotal.cs_nffree = cpu_to_fs32(sb, uspi->cs_total.cs_nffree); out: ubh_mark_buffer_dirty(USPI_UBH(uspi)); ufs_print_super_stuff(sb, usb1, usb2, usb3); UFSD("EXIT\n"); } /** * ufs_put_super_internal() - put on-disk intrenal structures * @sb: pointer to super_block structure * Put on-disk structures associated with cylinder groups * and write them back to disk, also update cs_total on disk */ static void ufs_put_super_internal(struct super_block *sb) { struct ufs_sb_info *sbi = UFS_SB(sb); struct ufs_sb_private_info *uspi = sbi->s_uspi; struct ufs_buffer_head * ubh; unsigned char * base, * space; unsigned blks, size, i; UFSD("ENTER\n"); ufs_put_cstotal(sb); size = uspi->s_cssize; blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift; base = space = (char*) sbi->s_csp; for (i = 0; i < blks; i += uspi->s_fpb) { size = uspi->s_bsize; if (i + uspi->s_fpb > blks) size = (blks - i) * uspi->s_fsize; ubh = ubh_bread(sb, uspi->s_csaddr + i, size); ubh_memcpyubh (ubh, space, size); space += size; ubh_mark_buffer_uptodate (ubh, 1); ubh_mark_buffer_dirty (ubh); ubh_brelse (ubh); } for (i = 0; i < sbi->s_cg_loaded; i++) { ufs_put_cylinder (sb, i); kfree (sbi->s_ucpi[i]); } for (; i < UFS_MAX_GROUP_LOADED; i++) kfree (sbi->s_ucpi[i]); for (i = 0; i < uspi->s_ncg; i++) brelse (sbi->s_ucg[i]); kfree (sbi->s_ucg); kfree (base); UFSD("EXIT\n"); } static int ufs_sync_fs(struct super_block *sb, int wait) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_super_block_third * usb3; unsigned flags; mutex_lock(&UFS_SB(sb)->s_lock); UFSD("ENTER\n"); flags = UFS_SB(sb)->s_flags; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); usb3 = ubh_get_usb_third(uspi); usb1->fs_time = ufs_get_seconds(sb); if ((flags & UFS_ST_MASK) == UFS_ST_SUN || (flags & UFS_ST_MASK) == UFS_ST_SUNOS || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) ufs_set_fs_state(sb, usb1, usb3, UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time)); ufs_put_cstotal(sb); UFSD("EXIT\n"); mutex_unlock(&UFS_SB(sb)->s_lock); return 0; } static void delayed_sync_fs(struct work_struct *work) { struct ufs_sb_info *sbi; sbi = container_of(work, struct ufs_sb_info, sync_work.work); spin_lock(&sbi->work_lock); sbi->work_queued = 0; spin_unlock(&sbi->work_lock); ufs_sync_fs(sbi->sb, 1); } void ufs_mark_sb_dirty(struct super_block *sb) { struct ufs_sb_info *sbi = UFS_SB(sb); unsigned long delay; spin_lock(&sbi->work_lock); if (!sbi->work_queued) { delay = msecs_to_jiffies(dirty_writeback_interval * 10); queue_delayed_work(system_long_wq, &sbi->sync_work, delay); sbi->work_queued = 1; } spin_unlock(&sbi->work_lock); } static void ufs_put_super(struct super_block *sb) { struct ufs_sb_info * sbi = UFS_SB(sb); UFSD("ENTER\n"); if (!sb_rdonly(sb)) ufs_put_super_internal(sb); cancel_delayed_work_sync(&sbi->sync_work); ubh_brelse_uspi (sbi->s_uspi); kfree (sbi->s_uspi); kfree (sbi); sb->s_fs_info = NULL; UFSD("EXIT\n"); return; } static u64 ufs_max_bytes(struct super_block *sb) { struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; int bits = uspi->s_apbshift; u64 res; if (bits > 21) res = ~0ULL; else res = UFS_NDADDR + (1LL << bits) + (1LL << (2*bits)) + (1LL << (3*bits)); if (res >= (MAX_LFS_FILESIZE >> uspi->s_bshift)) return MAX_LFS_FILESIZE; return res << uspi->s_bshift; } static int ufs_fill_super(struct super_block *sb, void *data, int silent) { struct ufs_sb_info * sbi; struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_super_block_second * usb2; struct ufs_super_block_third * usb3; struct ufs_buffer_head * ubh; struct inode *inode; unsigned block_size, super_block_size; unsigned flags; unsigned super_block_offset; unsigned maxsymlen; int ret = -EINVAL; uspi = NULL; ubh = NULL; flags = 0; UFSD("ENTER\n"); #ifndef CONFIG_UFS_FS_WRITE if (!sb_rdonly(sb)) { pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n"); return -EROFS; } #endif sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL); if (!sbi) goto failed_nomem; sb->s_fs_info = sbi; sbi->sb = sb; UFSD("flag %u\n", (int)(sb_rdonly(sb))); mutex_init(&sbi->s_lock); spin_lock_init(&sbi->work_lock); INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs); /* * Set default mount options * Parse mount options */ sbi->s_mount_opt = 0; ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK); if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) { pr_err("wrong mount options\n"); goto failed; } if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) { if (!silent) pr_err("You didn't specify the type of your ufs filesystem\n\n" "mount -t ufs -o ufstype=" "sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n" ">>>WARNING<<< Wrong ufstype may corrupt your filesystem, " "default is ufstype=old\n"); ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD); } uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL); sbi->s_uspi = uspi; if (!uspi) goto failed; uspi->s_dirblksize = UFS_SECTOR_SIZE; super_block_offset=UFS_SBLOCK; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_time_gran = NSEC_PER_SEC; sb->s_time_min = S32_MIN; sb->s_time_max = S32_MAX; switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) { case UFS_MOUNT_UFSTYPE_44BSD: UFSD("ufstype=44bsd\n"); uspi->s_fsize = block_size = 512; uspi->s_fmask = ~(512 - 1); uspi->s_fshift = 9; uspi->s_sbsize = super_block_size = 1536; uspi->s_sbbase = 0; flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD; break; case UFS_MOUNT_UFSTYPE_UFS2: UFSD("ufstype=ufs2\n"); super_block_offset=SBLOCK_UFS2; uspi->s_fsize = block_size = 512; uspi->s_fmask = ~(512 - 1); uspi->s_fshift = 9; uspi->s_sbsize = super_block_size = 1536; uspi->s_sbbase = 0; sb->s_time_gran = 1; sb->s_time_min = S64_MIN; sb->s_time_max = S64_MAX; flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD; break; case UFS_MOUNT_UFSTYPE_SUN: UFSD("ufstype=sun\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_maxsymlinklen = 0; /* Not supported on disk */ flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN; break; case UFS_MOUNT_UFSTYPE_SUNOS: UFSD("ufstype=sunos\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = 2048; super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_maxsymlinklen = 0; /* Not supported on disk */ flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN; break; case UFS_MOUNT_UFSTYPE_SUNx86: UFSD("ufstype=sunx86\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_maxsymlinklen = 0; /* Not supported on disk */ flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN; break; case UFS_MOUNT_UFSTYPE_OLD: UFSD("ufstype=old\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!sb_rdonly(sb)) { if (!silent) pr_info("ufstype=old is supported read-only\n"); sb->s_flags |= SB_RDONLY; } break; case UFS_MOUNT_UFSTYPE_NEXTSTEP: UFSD("ufstype=nextstep\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_dirblksize = 1024; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!sb_rdonly(sb)) { if (!silent) pr_info("ufstype=nextstep is supported read-only\n"); sb->s_flags |= SB_RDONLY; } break; case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD: UFSD("ufstype=nextstep-cd\n"); uspi->s_fsize = block_size = 2048; uspi->s_fmask = ~(2048 - 1); uspi->s_fshift = 11; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_dirblksize = 1024; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!sb_rdonly(sb)) { if (!silent) pr_info("ufstype=nextstep-cd is supported read-only\n"); sb->s_flags |= SB_RDONLY; } break; case UFS_MOUNT_UFSTYPE_OPENSTEP: UFSD("ufstype=openstep\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_dirblksize = 1024; flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD; if (!sb_rdonly(sb)) { if (!silent) pr_info("ufstype=openstep is supported read-only\n"); sb->s_flags |= SB_RDONLY; } break; case UFS_MOUNT_UFSTYPE_HP: UFSD("ufstype=hp\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!sb_rdonly(sb)) { if (!silent) pr_info("ufstype=hp is supported read-only\n"); sb->s_flags |= SB_RDONLY; } break; default: if (!silent) pr_err("unknown ufstype\n"); goto failed; } again: if (!sb_set_blocksize(sb, block_size)) { pr_err("failed to set blocksize\n"); goto failed; } /* * read ufs super block from device */ ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size); if (!ubh) goto failed; usb1 = ubh_get_usb_first(uspi); usb2 = ubh_get_usb_second(uspi); usb3 = ubh_get_usb_third(uspi); /* Sort out mod used on SunOS 4.1.3 for fs_state */ uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat); if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) && (uspi->s_postblformat != UFS_42POSTBLFMT)) { flags &= ~UFS_ST_MASK; flags |= UFS_ST_SUN; } if ((flags & UFS_ST_MASK) == UFS_ST_44BSD && uspi->s_postblformat == UFS_42POSTBLFMT) { if (!silent) pr_err("this is not a 44bsd filesystem"); goto failed; } /* * Check ufs magic number */ sbi->s_bytesex = BYTESEX_LE; switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) { case UFS_MAGIC: case UFS_MAGIC_BW: case UFS2_MAGIC: case UFS_MAGIC_LFN: case UFS_MAGIC_FEA: case UFS_MAGIC_4GB: goto magic_found; } sbi->s_bytesex = BYTESEX_BE; switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) { case UFS_MAGIC: case UFS_MAGIC_BW: case UFS2_MAGIC: case UFS_MAGIC_LFN: case UFS_MAGIC_FEA: case UFS_MAGIC_4GB: goto magic_found; } if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP) || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD) || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP)) && uspi->s_sbbase < 256) { ubh_brelse_uspi(uspi); ubh = NULL; uspi->s_sbbase += 8; goto again; } if (!silent) pr_err("%s(): bad magic number\n", __func__); goto failed; magic_found: /* * Check block and fragment sizes */ uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize); uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize); uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize); uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask); uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift); if (!is_power_of_2(uspi->s_fsize)) { pr_err("%s(): fragment size %u is not a power of 2\n", __func__, uspi->s_fsize); goto failed; } if (uspi->s_fsize < 512) { pr_err("%s(): fragment size %u is too small\n", __func__, uspi->s_fsize); goto failed; } if (uspi->s_fsize > 4096) { pr_err("%s(): fragment size %u is too large\n", __func__, uspi->s_fsize); goto failed; } if (!is_power_of_2(uspi->s_bsize)) { pr_err("%s(): block size %u is not a power of 2\n", __func__, uspi->s_bsize); goto failed; } if (uspi->s_bsize < 4096) { pr_err("%s(): block size %u is too small\n", __func__, uspi->s_bsize); goto failed; } if (uspi->s_bsize / uspi->s_fsize > 8) { pr_err("%s(): too many fragments per block (%u)\n", __func__, uspi->s_bsize / uspi->s_fsize); goto failed; } if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) { ubh_brelse_uspi(uspi); ubh = NULL; block_size = uspi->s_fsize; super_block_size = uspi->s_sbsize; UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size); goto again; } sbi->s_flags = flags;/*after that line some functions use s_flags*/ ufs_print_super_stuff(sb, usb1, usb2, usb3); /* * Check, if file system was correctly unmounted. * If not, make it read only. */ if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) || ((flags & UFS_ST_MASK) == UFS_ST_OLD) || (((flags & UFS_ST_MASK) == UFS_ST_SUN || (flags & UFS_ST_MASK) == UFS_ST_SUNOS || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) && (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) { switch(usb1->fs_clean) { case UFS_FSCLEAN: UFSD("fs is clean\n"); break; case UFS_FSSTABLE: UFSD("fs is stable\n"); break; case UFS_FSLOG: UFSD("fs is logging fs\n"); break; case UFS_FSOSF1: UFSD("fs is DEC OSF/1\n"); break; case UFS_FSACTIVE: pr_err("%s(): fs is active\n", __func__); sb->s_flags |= SB_RDONLY; break; case UFS_FSBAD: pr_err("%s(): fs is bad\n", __func__); sb->s_flags |= SB_RDONLY; break; default: pr_err("%s(): can't grok fs_clean 0x%x\n", __func__, usb1->fs_clean); sb->s_flags |= SB_RDONLY; break; } } else { pr_err("%s(): fs needs fsck\n", __func__); sb->s_flags |= SB_RDONLY; } /* * Read ufs_super_block into internal data structures */ sb->s_op = &ufs_super_ops; sb->s_export_op = &ufs_export_ops; sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic); uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno); uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno); uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno); uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno); uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset); uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask); if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { uspi->s_size = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size); uspi->s_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize); } else { uspi->s_size = fs32_to_cpu(sb, usb1->fs_size); uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize); } uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg); /* s_bsize already set */ /* s_fsize already set */ uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag); uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree); uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask); uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask); uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift); uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift); UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift, uspi->s_fshift); uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift); uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb); /* s_sbsize already set */ uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask); uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift); uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir); uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb); uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf); uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3); uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave); uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew); if (uspi->fs_magic == UFS2_MAGIC) uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr); else uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr); uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize); uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize); uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak); uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect); uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc); uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg); uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg); uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc); uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize); uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3); uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3); uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos); uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff); uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff); uspi->s_root_blocks = mul_u64_u32_div(uspi->s_dsize, uspi->s_minfree, 100); if (uspi->s_minfree <= 5) { uspi->s_time_to_space = ~0ULL; uspi->s_space_to_time = 0; usb1->fs_optim = cpu_to_fs32(sb, UFS_OPTSPACE); } else { uspi->s_time_to_space = (uspi->s_root_blocks / 2) + 1; uspi->s_space_to_time = mul_u64_u32_div(uspi->s_dsize, uspi->s_minfree - 2, 100) - 1; } /* * Compute another frequently used values */ uspi->s_fpbmask = uspi->s_fpb - 1; if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) uspi->s_apbshift = uspi->s_bshift - 3; else uspi->s_apbshift = uspi->s_bshift - 2; uspi->s_2apbshift = uspi->s_apbshift * 2; uspi->s_3apbshift = uspi->s_apbshift * 3; uspi->s_apb = 1 << uspi->s_apbshift; uspi->s_2apb = 1 << uspi->s_2apbshift; uspi->s_3apb = 1 << uspi->s_3apbshift; uspi->s_apbmask = uspi->s_apb - 1; uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS; uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift; uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift; uspi->s_bpf = uspi->s_fsize << 3; uspi->s_bpfshift = uspi->s_fshift + 3; uspi->s_bpfmask = uspi->s_bpf - 1; if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD || (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2) uspi->s_maxsymlinklen = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen); if (uspi->fs_magic == UFS2_MAGIC) maxsymlen = 2 * 4 * (UFS_NDADDR + UFS_NINDIR); else maxsymlen = 4 * (UFS_NDADDR + UFS_NINDIR); if (uspi->s_maxsymlinklen > maxsymlen) { ufs_warning(sb, __func__, "ufs_read_super: excessive maximum " "fast symlink size (%u)\n", uspi->s_maxsymlinklen); uspi->s_maxsymlinklen = maxsymlen; } sb->s_maxbytes = ufs_max_bytes(sb); sb->s_max_links = UFS_LINK_MAX; inode = ufs_iget(sb, UFS_ROOTINO); if (IS_ERR(inode)) { ret = PTR_ERR(inode); goto failed; } sb->s_root = d_make_root(inode); if (!sb->s_root) { ret = -ENOMEM; goto failed; } ufs_setup_cstotal(sb); /* * Read cylinder group structures */ if (!sb_rdonly(sb)) if (!ufs_read_cylinder_structures(sb)) goto failed; UFSD("EXIT\n"); return 0; failed: if (ubh) ubh_brelse_uspi (uspi); kfree (uspi); kfree(sbi); sb->s_fs_info = NULL; UFSD("EXIT (FAILED)\n"); return ret; failed_nomem: UFSD("EXIT (NOMEM)\n"); return -ENOMEM; } static int ufs_remount (struct super_block *sb, int *mount_flags, char *data) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_super_block_third * usb3; unsigned new_mount_opt, ufstype; unsigned flags; sync_filesystem(sb); mutex_lock(&UFS_SB(sb)->s_lock); uspi = UFS_SB(sb)->s_uspi; flags = UFS_SB(sb)->s_flags; usb1 = ubh_get_usb_first(uspi); usb3 = ubh_get_usb_third(uspi); /* * Allow the "check" option to be passed as a remount option. * It is not possible to change ufstype option during remount */ ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE; new_mount_opt = 0; ufs_set_opt (new_mount_opt, ONERROR_LOCK); if (!ufs_parse_options (data, &new_mount_opt)) { mutex_unlock(&UFS_SB(sb)->s_lock); return -EINVAL; } if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) { new_mount_opt |= ufstype; } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) { pr_err("ufstype can't be changed during remount\n"); mutex_unlock(&UFS_SB(sb)->s_lock); return -EINVAL; } if ((bool)(*mount_flags & SB_RDONLY) == sb_rdonly(sb)) { UFS_SB(sb)->s_mount_opt = new_mount_opt; mutex_unlock(&UFS_SB(sb)->s_lock); return 0; } /* * fs was mouted as rw, remounting ro */ if (*mount_flags & SB_RDONLY) { ufs_put_super_internal(sb); usb1->fs_time = ufs_get_seconds(sb); if ((flags & UFS_ST_MASK) == UFS_ST_SUN || (flags & UFS_ST_MASK) == UFS_ST_SUNOS || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) ufs_set_fs_state(sb, usb1, usb3, UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time)); ubh_mark_buffer_dirty (USPI_UBH(uspi)); sb->s_flags |= SB_RDONLY; } else { /* * fs was mounted as ro, remounting rw */ #ifndef CONFIG_UFS_FS_WRITE pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n"); mutex_unlock(&UFS_SB(sb)->s_lock); return -EINVAL; #else if (ufstype != UFS_MOUNT_UFSTYPE_SUN && ufstype != UFS_MOUNT_UFSTYPE_SUNOS && ufstype != UFS_MOUNT_UFSTYPE_44BSD && ufstype != UFS_MOUNT_UFSTYPE_SUNx86 && ufstype != UFS_MOUNT_UFSTYPE_UFS2) { pr_err("this ufstype is read-only supported\n"); mutex_unlock(&UFS_SB(sb)->s_lock); return -EINVAL; } if (!ufs_read_cylinder_structures(sb)) { pr_err("failed during remounting\n"); mutex_unlock(&UFS_SB(sb)->s_lock); return -EPERM; } sb->s_flags &= ~SB_RDONLY; #endif } UFS_SB(sb)->s_mount_opt = new_mount_opt; mutex_unlock(&UFS_SB(sb)->s_lock); return 0; } static int ufs_show_options(struct seq_file *seq, struct dentry *root) { struct ufs_sb_info *sbi = UFS_SB(root->d_sb); unsigned mval = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE; const struct match_token *tp = tokens; while (tp->token != Opt_onerror_panic && tp->token != mval) ++tp; BUG_ON(tp->token == Opt_onerror_panic); seq_printf(seq, ",%s", tp->pattern); mval = sbi->s_mount_opt & UFS_MOUNT_ONERROR; while (tp->token != Opt_err && tp->token != mval) ++tp; BUG_ON(tp->token == Opt_err); seq_printf(seq, ",%s", tp->pattern); return 0; } static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi; unsigned flags = UFS_SB(sb)->s_flags; u64 id = huge_encode_dev(sb->s_bdev->bd_dev); mutex_lock(&UFS_SB(sb)->s_lock); if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) buf->f_type = UFS2_MAGIC; else buf->f_type = UFS_MAGIC; buf->f_blocks = uspi->s_dsize; buf->f_bfree = ufs_freefrags(uspi); buf->f_ffree = uspi->cs_total.cs_nifree; buf->f_bsize = sb->s_blocksize; buf->f_bavail = (buf->f_bfree > uspi->s_root_blocks) ? (buf->f_bfree - uspi->s_root_blocks) : 0; buf->f_files = uspi->s_ncg * uspi->s_ipg; buf->f_namelen = UFS_MAXNAMLEN; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); mutex_unlock(&UFS_SB(sb)->s_lock); return 0; } static struct kmem_cache * ufs_inode_cachep; static struct inode *ufs_alloc_inode(struct super_block *sb) { struct ufs_inode_info *ei; ei = kmem_cache_alloc(ufs_inode_cachep, GFP_NOFS); if (!ei) return NULL; inode_set_iversion(&ei->vfs_inode, 1); seqlock_init(&ei->meta_lock); mutex_init(&ei->truncate_mutex); return &ei->vfs_inode; } static void ufs_free_in_core_inode(struct inode *inode) { kmem_cache_free(ufs_inode_cachep, UFS_I(inode)); } static void init_once(void *foo) { struct ufs_inode_info *ei = (struct ufs_inode_info *) foo; inode_init_once(&ei->vfs_inode); } static int __init init_inodecache(void) { ufs_inode_cachep = kmem_cache_create_usercopy("ufs_inode_cache", sizeof(struct ufs_inode_info), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| SLAB_ACCOUNT), offsetof(struct ufs_inode_info, i_u1.i_symlink), sizeof_field(struct ufs_inode_info, i_u1.i_symlink), init_once); if (ufs_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(ufs_inode_cachep); } static const struct super_operations ufs_super_ops = { .alloc_inode = ufs_alloc_inode, .free_inode = ufs_free_in_core_inode, .write_inode = ufs_write_inode, .evict_inode = ufs_evict_inode, .put_super = ufs_put_super, .sync_fs = ufs_sync_fs, .statfs = ufs_statfs, .remount_fs = ufs_remount, .show_options = ufs_show_options, }; static struct dentry *ufs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, ufs_fill_super); } static struct file_system_type ufs_fs_type = { .owner = THIS_MODULE, .name = "ufs", .mount = ufs_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("ufs"); static int __init init_ufs_fs(void) { int err = init_inodecache(); if (err) goto out1; err = register_filesystem(&ufs_fs_type); if (err) goto out; return 0; out: destroy_inodecache(); out1: return err; } static void __exit exit_ufs_fs(void) { unregister_filesystem(&ufs_fs_type); destroy_inodecache(); } module_init(init_ufs_fs) module_exit(exit_ufs_fs) MODULE_LICENSE("GPL");