/* * IEEE754 floating point arithmetic * single precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; version 2 of the License. */ #include "ieee754sp.h" enum maddf_flags { maddf_negate_product = 1 << 0, }; static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y, enum maddf_flags flags) { int re; int rs; unsigned rm; unsigned short lxm; unsigned short hxm; unsigned short lym; unsigned short hym; unsigned lrm; unsigned hrm; unsigned t; unsigned at; int s; COMPXSP; COMPYSP; COMPZSP; EXPLODEXSP; EXPLODEYSP; EXPLODEZSP; FLUSHXSP; FLUSHYSP; FLUSHZSP; ieee754_clearcx(); switch (zc) { case IEEE754_CLASS_SNAN: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_nanxcpt(z); case IEEE754_CLASS_DNORM: SPDNORMZ; /* QNAN is handled separately below */ } switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return y; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return x; /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): if (zc == IEEE754_CLASS_QNAN) return z; ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if (zc == IEEE754_CLASS_QNAN) return z; return ieee754sp_inf(xs ^ ys); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); /* Multiplication is 0 so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_QNAN) return z; else if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_QNAN) return z; else if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_QNAN) return z; else if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); /* fall through to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ /* rm = xm * ym, re = xe+ye basically */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); re = xe + ye; rs = xs ^ ys; if (flags & maddf_negate_product) rs ^= 1; /* shunt to top of word */ xm <<= 32 - (SP_FBITS + 1); ym <<= 32 - (SP_FBITS + 1); /* * Multiply 32 bits xm, ym to give high 32 bits rm with stickness. */ lxm = xm & 0xffff; hxm = xm >> 16; lym = ym & 0xffff; hym = ym >> 16; lrm = lxm * lym; /* 16 * 16 => 32 */ hrm = hxm * hym; /* 16 * 16 => 32 */ t = lxm * hym; /* 16 * 16 => 32 */ at = lrm + (t << 16); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 16); t = hxm * lym; /* 16 * 16 => 32 */ at = lrm + (t << 16); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 16); rm = hrm | (lrm != 0); /* * Sticky shift down to normal rounding precision. */ if ((int) rm < 0) { rm = (rm >> (32 - (SP_FBITS + 1 + 3))) | ((rm << (SP_FBITS + 1 + 3)) != 0); re++; } else { rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) | ((rm << (SP_FBITS + 1 + 3 + 1)) != 0); } assert(rm & (SP_HIDDEN_BIT << 3)); /* And now the addition */ assert(zm & SP_HIDDEN_BIT); /* * Provide guard,round and stick bit space. */ zm <<= 3; if (ze > re) { /* * Have to shift y fraction right to align. */ s = ze - re; SPXSRSYn(s); } else if (re > ze) { /* * Have to shift x fraction right to align. */ s = re - ze; SPXSRSYn(s); } assert(ze == re); assert(ze <= SP_EMAX); if (zs == rs) { /* * Generate 28 bit result of adding two 27 bit numbers * leaving result in zm, zs and ze. */ zm = zm + rm; if (zm >> (SP_FBITS + 1 + 3)) { /* carry out */ SPXSRSX1(); } } else { if (zm >= rm) { zm = zm - rm; } else { zm = rm - zm; zs = rs; } if (zm == 0) return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Normalize in extended single precision */ while ((zm >> (SP_MBITS + 3)) == 0) { zm <<= 1; ze--; } } return ieee754sp_format(zs, ze, zm); } union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); } union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, maddf_negate_product); }