/* Intel Ethernet Switch Host Interface Driver * Copyright(c) 2013 - 2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 */ #ifndef _FM10K_H_ #define _FM10K_H_ #include #include #include #include #include #include #include #include #include "fm10k_pf.h" #include "fm10k_vf.h" #define FM10K_MAX_JUMBO_FRAME_SIZE 15342 /* Maximum supported size 15K */ #define MAX_QUEUES FM10K_MAX_QUEUES_PF #define FM10K_MIN_RXD 128 #define FM10K_MAX_RXD 4096 #define FM10K_DEFAULT_RXD 256 #define FM10K_MIN_TXD 128 #define FM10K_MAX_TXD 4096 #define FM10K_DEFAULT_TXD 256 #define FM10K_DEFAULT_TX_WORK 256 #define FM10K_RXBUFFER_256 256 #define FM10K_RX_HDR_LEN FM10K_RXBUFFER_256 #define FM10K_RXBUFFER_2048 2048 #define FM10K_RX_BUFSZ FM10K_RXBUFFER_2048 /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define FM10K_RX_BUFFER_WRITE 16 /* Must be power of 2 */ #define FM10K_MAX_STATIONS 63 struct fm10k_l2_accel { int size; u16 count; u16 dglort; struct rcu_head rcu; struct net_device *macvlan[0]; }; enum fm10k_ring_state_t { __FM10K_TX_DETECT_HANG, __FM10K_HANG_CHECK_ARMED, }; #define check_for_tx_hang(ring) \ test_bit(__FM10K_TX_DETECT_HANG, &(ring)->state) #define set_check_for_tx_hang(ring) \ set_bit(__FM10K_TX_DETECT_HANG, &(ring)->state) #define clear_check_for_tx_hang(ring) \ clear_bit(__FM10K_TX_DETECT_HANG, &(ring)->state) struct fm10k_tx_buffer { struct fm10k_tx_desc *next_to_watch; struct sk_buff *skb; unsigned int bytecount; u16 gso_segs; u16 tx_flags; DEFINE_DMA_UNMAP_ADDR(dma); DEFINE_DMA_UNMAP_LEN(len); }; struct fm10k_rx_buffer { dma_addr_t dma; struct page *page; u32 page_offset; }; struct fm10k_queue_stats { u64 packets; u64 bytes; }; struct fm10k_tx_queue_stats { u64 restart_queue; u64 csum_err; u64 tx_busy; u64 tx_done_old; u64 csum_good; }; struct fm10k_rx_queue_stats { u64 alloc_failed; u64 csum_err; u64 errors; u64 csum_good; u64 switch_errors; u64 drops; u64 pp_errors; u64 link_errors; u64 length_errors; }; struct fm10k_ring { struct fm10k_q_vector *q_vector;/* backpointer to host q_vector */ struct net_device *netdev; /* netdev ring belongs to */ struct device *dev; /* device for DMA mapping */ struct fm10k_l2_accel __rcu *l2_accel; /* L2 acceleration list */ void *desc; /* descriptor ring memory */ union { struct fm10k_tx_buffer *tx_buffer; struct fm10k_rx_buffer *rx_buffer; }; u32 __iomem *tail; unsigned long state; dma_addr_t dma; /* phys. address of descriptor ring */ unsigned int size; /* length in bytes */ u8 queue_index; /* needed for queue management */ u8 reg_idx; /* holds the special value that gets * the hardware register offset * associated with this ring, which is * different for DCB and RSS modes */ u8 qos_pc; /* priority class of queue */ u16 vid; /* default VLAN ID of queue */ u16 count; /* amount of descriptors */ u16 next_to_alloc; u16 next_to_use; u16 next_to_clean; struct fm10k_queue_stats stats; struct u64_stats_sync syncp; union { /* Tx */ struct fm10k_tx_queue_stats tx_stats; /* Rx */ struct { struct fm10k_rx_queue_stats rx_stats; struct sk_buff *skb; }; }; } ____cacheline_internodealigned_in_smp; struct fm10k_ring_container { struct fm10k_ring *ring; /* pointer to linked list of rings */ unsigned int total_bytes; /* total bytes processed this int */ unsigned int total_packets; /* total packets processed this int */ u16 work_limit; /* total work allowed per interrupt */ u16 itr; /* interrupt throttle rate value */ u8 itr_scale; /* ITR adjustment scaler based on PCI speed */ u8 count; /* total number of rings in vector */ }; #define FM10K_ITR_MAX 0x0FFF /* maximum value for ITR */ #define FM10K_ITR_10K 100 /* 100us */ #define FM10K_ITR_20K 50 /* 50us */ #define FM10K_ITR_40K 25 /* 25us */ #define FM10K_ITR_ADAPTIVE 0x8000 /* adaptive interrupt moderation flag */ #define ITR_IS_ADAPTIVE(itr) (!!(itr & FM10K_ITR_ADAPTIVE)) #define FM10K_TX_ITR_DEFAULT FM10K_ITR_40K #define FM10K_RX_ITR_DEFAULT FM10K_ITR_20K #define FM10K_ITR_ENABLE (FM10K_ITR_AUTOMASK | FM10K_ITR_MASK_CLEAR) static inline struct netdev_queue *txring_txq(const struct fm10k_ring *ring) { return &ring->netdev->_tx[ring->queue_index]; } /* iterator for handling rings in ring container */ #define fm10k_for_each_ring(pos, head) \ for (pos = &(head).ring[(head).count]; (--pos) >= (head).ring;) #define MAX_Q_VECTORS 256 #define MIN_Q_VECTORS 1 enum fm10k_non_q_vectors { FM10K_MBX_VECTOR, #define NON_Q_VECTORS_VF NON_Q_VECTORS_PF NON_Q_VECTORS_PF }; #define NON_Q_VECTORS(hw) (((hw)->mac.type == fm10k_mac_pf) ? \ NON_Q_VECTORS_PF : \ NON_Q_VECTORS_VF) #define MIN_MSIX_COUNT(hw) (MIN_Q_VECTORS + NON_Q_VECTORS(hw)) struct fm10k_q_vector { struct fm10k_intfc *interface; u32 __iomem *itr; /* pointer to ITR register for this vector */ u16 v_idx; /* index of q_vector within interface array */ struct fm10k_ring_container rx, tx; struct napi_struct napi; char name[IFNAMSIZ + 9]; #ifdef CONFIG_DEBUG_FS struct dentry *dbg_q_vector; #endif /* CONFIG_DEBUG_FS */ struct rcu_head rcu; /* to avoid race with update stats on free */ /* for dynamic allocation of rings associated with this q_vector */ struct fm10k_ring ring[0] ____cacheline_internodealigned_in_smp; }; enum fm10k_ring_f_enum { RING_F_RSS, RING_F_QOS, RING_F_ARRAY_SIZE /* must be last in enum set */ }; struct fm10k_ring_feature { u16 limit; /* upper limit on feature indices */ u16 indices; /* current value of indices */ u16 mask; /* Mask used for feature to ring mapping */ u16 offset; /* offset to start of feature */ }; struct fm10k_iov_data { unsigned int num_vfs; unsigned int next_vf_mbx; struct rcu_head rcu; struct fm10k_vf_info vf_info[0]; }; #define fm10k_vxlan_port_for_each(vp, intfc) \ list_for_each_entry(vp, &(intfc)->vxlan_port, list) struct fm10k_vxlan_port { struct list_head list; sa_family_t sa_family; __be16 port; }; /* one work queue for entire driver */ extern struct workqueue_struct *fm10k_workqueue; struct fm10k_intfc { unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; struct net_device *netdev; struct fm10k_l2_accel *l2_accel; /* pointer to L2 acceleration list */ struct pci_dev *pdev; unsigned long state; u32 flags; #define FM10K_FLAG_RESET_REQUESTED (u32)(1 << 0) #define FM10K_FLAG_RSS_FIELD_IPV4_UDP (u32)(1 << 1) #define FM10K_FLAG_RSS_FIELD_IPV6_UDP (u32)(1 << 2) #define FM10K_FLAG_RX_TS_ENABLED (u32)(1 << 3) #define FM10K_FLAG_SWPRI_CONFIG (u32)(1 << 4) #define FM10K_FLAG_DEBUG_STATS (u32)(1 << 5) int xcast_mode; /* Tx fast path data */ int num_tx_queues; u16 tx_itr; /* Rx fast path data */ int num_rx_queues; u16 rx_itr; /* TX */ struct fm10k_ring *tx_ring[MAX_QUEUES] ____cacheline_aligned_in_smp; u64 restart_queue; u64 tx_busy; u64 tx_csum_errors; u64 alloc_failed; u64 rx_csum_errors; u64 tx_bytes_nic; u64 tx_packets_nic; u64 rx_bytes_nic; u64 rx_packets_nic; u64 rx_drops_nic; u64 rx_overrun_pf; u64 rx_overrun_vf; /* Debug Statistics */ u64 hw_sm_mbx_full; u64 hw_csum_tx_good; u64 hw_csum_rx_good; u64 rx_switch_errors; u64 rx_drops; u64 rx_pp_errors; u64 rx_link_errors; u64 rx_length_errors; u32 tx_timeout_count; /* RX */ struct fm10k_ring *rx_ring[MAX_QUEUES]; /* Queueing vectors */ struct fm10k_q_vector *q_vector[MAX_Q_VECTORS]; struct msix_entry *msix_entries; int num_q_vectors; /* current number of q_vectors for device */ struct fm10k_ring_feature ring_feature[RING_F_ARRAY_SIZE]; /* SR-IOV information management structure */ struct fm10k_iov_data *iov_data; struct fm10k_hw_stats stats; struct fm10k_hw hw; u32 __iomem *uc_addr; u32 __iomem *sw_addr; u16 msg_enable; u16 tx_ring_count; u16 rx_ring_count; struct timer_list service_timer; struct work_struct service_task; unsigned long next_stats_update; unsigned long next_tx_hang_check; unsigned long last_reset; unsigned long link_down_event; bool host_ready; u32 reta[FM10K_RETA_SIZE]; u32 rssrk[FM10K_RSSRK_SIZE]; /* VXLAN port tracking information */ struct list_head vxlan_port; #ifdef CONFIG_DEBUG_FS struct dentry *dbg_intfc; #endif /* CONFIG_DEBUG_FS */ struct ptp_clock_info ptp_caps; struct ptp_clock *ptp_clock; struct sk_buff_head ts_tx_skb_queue; u32 tx_hwtstamp_timeouts; struct hwtstamp_config ts_config; /* We are unable to actually adjust the clock beyond the frequency * value. Once the clock is started there is no resetting it. As * such we maintain a separate offset from the actual hardware clock * to allow for offset adjustment. */ s64 ptp_adjust; rwlock_t systime_lock; #ifdef CONFIG_DCB u8 pfc_en; #endif u8 rx_pause; /* GLORT resources in use by PF */ u16 glort; u16 glort_count; /* VLAN ID for updating multicast/unicast lists */ u16 vid; }; enum fm10k_state_t { __FM10K_RESETTING, __FM10K_DOWN, __FM10K_SERVICE_SCHED, __FM10K_SERVICE_DISABLE, __FM10K_MBX_LOCK, __FM10K_LINK_DOWN, }; static inline void fm10k_mbx_lock(struct fm10k_intfc *interface) { /* busy loop if we cannot obtain the lock as some calls * such as ndo_set_rx_mode may be made in atomic context */ while (test_and_set_bit(__FM10K_MBX_LOCK, &interface->state)) udelay(20); } static inline void fm10k_mbx_unlock(struct fm10k_intfc *interface) { /* flush memory to make sure state is correct */ smp_mb__before_atomic(); clear_bit(__FM10K_MBX_LOCK, &interface->state); } static inline int fm10k_mbx_trylock(struct fm10k_intfc *interface) { return !test_and_set_bit(__FM10K_MBX_LOCK, &interface->state); } /* fm10k_test_staterr - test bits in Rx descriptor status and error fields */ static inline __le32 fm10k_test_staterr(union fm10k_rx_desc *rx_desc, const u32 stat_err_bits) { return rx_desc->d.staterr & cpu_to_le32(stat_err_bits); } /* fm10k_desc_unused - calculate if we have unused descriptors */ static inline u16 fm10k_desc_unused(struct fm10k_ring *ring) { s16 unused = ring->next_to_clean - ring->next_to_use - 1; return likely(unused < 0) ? unused + ring->count : unused; } #define FM10K_TX_DESC(R, i) \ (&(((struct fm10k_tx_desc *)((R)->desc))[i])) #define FM10K_RX_DESC(R, i) \ (&(((union fm10k_rx_desc *)((R)->desc))[i])) #define FM10K_MAX_TXD_PWR 14 #define FM10K_MAX_DATA_PER_TXD (1 << FM10K_MAX_TXD_PWR) /* Tx Descriptors needed, worst case */ #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), FM10K_MAX_DATA_PER_TXD) #define DESC_NEEDED (MAX_SKB_FRAGS + 4) enum fm10k_tx_flags { /* Tx offload flags */ FM10K_TX_FLAGS_CSUM = 0x01, }; /* This structure is stored as little endian values as that is the native * format of the Rx descriptor. The ordering of these fields is reversed * from the actual ftag header to allow for a single bswap to take care * of placing all of the values in network order */ union fm10k_ftag_info { __le64 ftag; struct { /* dglort and sglort combined into a single 32bit desc read */ __le32 glort; /* upper 16 bits of VLAN are reserved 0 for swpri_type_user */ __le32 vlan; } d; struct { __le16 dglort; __le16 sglort; __le16 vlan; __le16 swpri_type_user; } w; }; struct fm10k_cb { union { __le64 tstamp; unsigned long ts_tx_timeout; }; union fm10k_ftag_info fi; }; #define FM10K_CB(skb) ((struct fm10k_cb *)(skb)->cb) /* main */ extern char fm10k_driver_name[]; extern const char fm10k_driver_version[]; int fm10k_init_queueing_scheme(struct fm10k_intfc *interface); void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface); __be16 fm10k_tx_encap_offload(struct sk_buff *skb); netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, struct fm10k_ring *tx_ring); void fm10k_tx_timeout_reset(struct fm10k_intfc *interface); bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring); void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count); /* PCI */ void fm10k_mbx_free_irq(struct fm10k_intfc *); int fm10k_mbx_request_irq(struct fm10k_intfc *); void fm10k_qv_free_irq(struct fm10k_intfc *interface); int fm10k_qv_request_irq(struct fm10k_intfc *interface); int fm10k_register_pci_driver(void); void fm10k_unregister_pci_driver(void); void fm10k_up(struct fm10k_intfc *interface); void fm10k_down(struct fm10k_intfc *interface); void fm10k_update_stats(struct fm10k_intfc *interface); void fm10k_service_event_schedule(struct fm10k_intfc *interface); void fm10k_update_rx_drop_en(struct fm10k_intfc *interface); #ifdef CONFIG_NET_POLL_CONTROLLER void fm10k_netpoll(struct net_device *netdev); #endif /* Netdev */ struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info); int fm10k_setup_rx_resources(struct fm10k_ring *); int fm10k_setup_tx_resources(struct fm10k_ring *); void fm10k_free_rx_resources(struct fm10k_ring *); void fm10k_free_tx_resources(struct fm10k_ring *); void fm10k_clean_all_rx_rings(struct fm10k_intfc *); void fm10k_clean_all_tx_rings(struct fm10k_intfc *); void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *, struct fm10k_tx_buffer *); void fm10k_restore_rx_state(struct fm10k_intfc *); void fm10k_reset_rx_state(struct fm10k_intfc *); int fm10k_setup_tc(struct net_device *dev, u8 tc); int fm10k_open(struct net_device *netdev); int fm10k_close(struct net_device *netdev); /* Ethtool */ void fm10k_set_ethtool_ops(struct net_device *dev); /* IOV */ s32 fm10k_iov_event(struct fm10k_intfc *interface); s32 fm10k_iov_mbx(struct fm10k_intfc *interface); void fm10k_iov_suspend(struct pci_dev *pdev); int fm10k_iov_resume(struct pci_dev *pdev); void fm10k_iov_disable(struct pci_dev *pdev); int fm10k_iov_configure(struct pci_dev *pdev, int num_vfs); s32 fm10k_iov_update_pvid(struct fm10k_intfc *interface, u16 glort, u16 pvid); int fm10k_ndo_set_vf_mac(struct net_device *netdev, int vf_idx, u8 *mac); int fm10k_ndo_set_vf_vlan(struct net_device *netdev, int vf_idx, u16 vid, u8 qos); int fm10k_ndo_set_vf_bw(struct net_device *netdev, int vf_idx, int rate, int unused); int fm10k_ndo_get_vf_config(struct net_device *netdev, int vf_idx, struct ifla_vf_info *ivi); /* DebugFS */ #ifdef CONFIG_DEBUG_FS void fm10k_dbg_q_vector_init(struct fm10k_q_vector *q_vector); void fm10k_dbg_q_vector_exit(struct fm10k_q_vector *q_vector); void fm10k_dbg_intfc_init(struct fm10k_intfc *interface); void fm10k_dbg_intfc_exit(struct fm10k_intfc *interface); void fm10k_dbg_init(void); void fm10k_dbg_exit(void); #else static inline void fm10k_dbg_q_vector_init(struct fm10k_q_vector *q_vector) {} static inline void fm10k_dbg_q_vector_exit(struct fm10k_q_vector *q_vector) {} static inline void fm10k_dbg_intfc_init(struct fm10k_intfc *interface) {} static inline void fm10k_dbg_intfc_exit(struct fm10k_intfc *interface) {} static inline void fm10k_dbg_init(void) {} static inline void fm10k_dbg_exit(void) {} #endif /* CONFIG_DEBUG_FS */ /* Time Stamping */ void fm10k_systime_to_hwtstamp(struct fm10k_intfc *interface, struct skb_shared_hwtstamps *hwtstamp, u64 systime); void fm10k_ts_tx_enqueue(struct fm10k_intfc *interface, struct sk_buff *skb); void fm10k_ts_tx_hwtstamp(struct fm10k_intfc *interface, __le16 dglort, u64 systime); void fm10k_ts_reset(struct fm10k_intfc *interface); void fm10k_ts_init(struct fm10k_intfc *interface); void fm10k_ts_tx_subtask(struct fm10k_intfc *interface); void fm10k_ptp_register(struct fm10k_intfc *interface); void fm10k_ptp_unregister(struct fm10k_intfc *interface); int fm10k_get_ts_config(struct net_device *netdev, struct ifreq *ifr); int fm10k_set_ts_config(struct net_device *netdev, struct ifreq *ifr); /* DCB */ #ifdef CONFIG_DCB void fm10k_dcbnl_set_ops(struct net_device *dev); #else static inline void fm10k_dcbnl_set_ops(struct net_device *dev) {} #endif #endif /* _FM10K_H_ */