/* * devices.c * (C) Copyright 1999 Randy Dunlap. * (C) Copyright 1999,2000 Thomas Sailer . * (proc file per device) * (C) Copyright 1999 Deti Fliegl (new USB architecture) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ************************************************************* * * /devices contains USB topology, device, config, class, * interface, & endpoint data. * * I considered using /proc/bus/usb/devices/device# for each device * as it is attached or detached, but I didn't like this for some * reason -- maybe it's just too deep of a directory structure. * I also don't like looking in multiple places to gather and view * the data. Having only one file for ./devices also prevents race * conditions that could arise if a program was reading device info * for devices that are being removed (unplugged). (That is, the * program may find a directory for devnum_12 then try to open it, * but it was just unplugged, so the directory is now deleted. * But programs would just have to be prepared for situations like * this in any plug-and-play environment.) * * 1999-12-16: Thomas Sailer * Converted the whole proc stuff to real * read methods. Now not the whole device list needs to fit * into one page, only the device list for one bus. * Added a poll method to /proc/bus/usb/devices, to wake * up an eventual usbd * 2000-01-04: Thomas Sailer * Turned into its own filesystem * 2000-07-05: Ashley Montanaro * Converted file reading routine to dump to buffer once * per device, not per bus */ #include #include #include #include #include #include #include #include #include #include "usb.h" /* Define ALLOW_SERIAL_NUMBER if you want to see the serial number of devices */ #define ALLOW_SERIAL_NUMBER static const char format_topo[] = /* T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd */ "\nT: Bus=%2.2d Lev=%2.2d Prnt=%2.2d Port=%2.2d Cnt=%2.2d Dev#=%3d Spd=%-4s MxCh=%2d\n"; static const char format_string_manufacturer[] = /* S: Manufacturer=xxxx */ "S: Manufacturer=%.100s\n"; static const char format_string_product[] = /* S: Product=xxxx */ "S: Product=%.100s\n"; #ifdef ALLOW_SERIAL_NUMBER static const char format_string_serialnumber[] = /* S: SerialNumber=xxxx */ "S: SerialNumber=%.100s\n"; #endif static const char format_bandwidth[] = /* B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd */ "B: Alloc=%3d/%3d us (%2d%%), #Int=%3d, #Iso=%3d\n"; static const char format_device1[] = /* D: Ver=xx.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd */ "D: Ver=%2x.%02x Cls=%02x(%-5s) Sub=%02x Prot=%02x MxPS=%2d #Cfgs=%3d\n"; static const char format_device2[] = /* P: Vendor=xxxx ProdID=xxxx Rev=xx.xx */ "P: Vendor=%04x ProdID=%04x Rev=%2x.%02x\n"; static const char format_config[] = /* C: #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA */ "C:%c #Ifs=%2d Cfg#=%2d Atr=%02x MxPwr=%3dmA\n"; static const char format_iad[] = /* A: FirstIf#=dd IfCount=dd Cls=xx(sssss) Sub=xx Prot=xx */ "A: FirstIf#=%2d IfCount=%2d Cls=%02x(%-5s) Sub=%02x Prot=%02x\n"; static const char format_iface[] = /* I: If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=xxxx*/ "I:%c If#=%2d Alt=%2d #EPs=%2d Cls=%02x(%-5s) Sub=%02x Prot=%02x Driver=%s\n"; static const char format_endpt[] = /* E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=D?s */ "E: Ad=%02x(%c) Atr=%02x(%-4s) MxPS=%4d Ivl=%d%cs\n"; /* * Wait for an connect/disconnect event to happen. We initialize * the event counter with an odd number, and each event will increment * the event counter by two, so it will always _stay_ odd. That means * that it will never be zero, so "event 0" will never match a current * event, and thus 'poll' will always trigger as readable for the first * time it gets called. */ static struct device_connect_event { atomic_t count; wait_queue_head_t wait; } device_event = { .count = ATOMIC_INIT(1), .wait = __WAIT_QUEUE_HEAD_INITIALIZER(device_event.wait) }; struct class_info { int class; char *class_name; }; static const struct class_info clas_info[] = { /* max. 5 chars. per name string */ {USB_CLASS_PER_INTERFACE, ">ifc"}, {USB_CLASS_AUDIO, "audio"}, {USB_CLASS_COMM, "comm."}, {USB_CLASS_HID, "HID"}, {USB_CLASS_PHYSICAL, "PID"}, {USB_CLASS_STILL_IMAGE, "still"}, {USB_CLASS_PRINTER, "print"}, {USB_CLASS_MASS_STORAGE, "stor."}, {USB_CLASS_HUB, "hub"}, {USB_CLASS_CDC_DATA, "data"}, {USB_CLASS_CSCID, "scard"}, {USB_CLASS_CONTENT_SEC, "c-sec"}, {USB_CLASS_VIDEO, "video"}, {USB_CLASS_WIRELESS_CONTROLLER, "wlcon"}, {USB_CLASS_MISC, "misc"}, {USB_CLASS_APP_SPEC, "app."}, {USB_CLASS_VENDOR_SPEC, "vend."}, {-1, "unk."} /* leave as last */ }; /*****************************************************************/ void usbfs_conn_disc_event(void) { atomic_add(2, &device_event.count); wake_up(&device_event.wait); } static const char *class_decode(const int class) { int ix; for (ix = 0; clas_info[ix].class != -1; ix++) if (clas_info[ix].class == class) break; return clas_info[ix].class_name; } static char *usb_dump_endpoint_descriptor(int speed, char *start, char *end, const struct usb_endpoint_descriptor *desc) { char dir, unit, *type; unsigned interval, bandwidth = 1; if (start > end) return start; dir = usb_endpoint_dir_in(desc) ? 'I' : 'O'; if (speed == USB_SPEED_HIGH) { switch (usb_endpoint_maxp(desc) & (0x03 << 11)) { case 1 << 11: bandwidth = 2; break; case 2 << 11: bandwidth = 3; break; } } /* this isn't checking for illegal values */ switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_CONTROL: type = "Ctrl"; if (speed == USB_SPEED_HIGH) /* uframes per NAK */ interval = desc->bInterval; else interval = 0; dir = 'B'; /* ctrl is bidirectional */ break; case USB_ENDPOINT_XFER_ISOC: type = "Isoc"; interval = 1 << (desc->bInterval - 1); break; case USB_ENDPOINT_XFER_BULK: type = "Bulk"; if (speed == USB_SPEED_HIGH && dir == 'O') /* uframes per NAK */ interval = desc->bInterval; else interval = 0; break; case USB_ENDPOINT_XFER_INT: type = "Int."; if (speed == USB_SPEED_HIGH || speed >= USB_SPEED_SUPER) interval = 1 << (desc->bInterval - 1); else interval = desc->bInterval; break; default: /* "can't happen" */ return start; } interval *= (speed == USB_SPEED_HIGH || speed >= USB_SPEED_SUPER) ? 125 : 1000; if (interval % 1000) unit = 'u'; else { unit = 'm'; interval /= 1000; } start += sprintf(start, format_endpt, desc->bEndpointAddress, dir, desc->bmAttributes, type, (usb_endpoint_maxp(desc) & 0x07ff) * bandwidth, interval, unit); return start; } static char *usb_dump_interface_descriptor(char *start, char *end, const struct usb_interface_cache *intfc, const struct usb_interface *iface, int setno) { const struct usb_interface_descriptor *desc; const char *driver_name = ""; int active = 0; if (start > end) return start; desc = &intfc->altsetting[setno].desc; if (iface) { driver_name = (iface->dev.driver ? iface->dev.driver->name : "(none)"); active = (desc == &iface->cur_altsetting->desc); } start += sprintf(start, format_iface, active ? '*' : ' ', /* mark active altsetting */ desc->bInterfaceNumber, desc->bAlternateSetting, desc->bNumEndpoints, desc->bInterfaceClass, class_decode(desc->bInterfaceClass), desc->bInterfaceSubClass, desc->bInterfaceProtocol, driver_name); return start; } static char *usb_dump_interface(int speed, char *start, char *end, const struct usb_interface_cache *intfc, const struct usb_interface *iface, int setno) { const struct usb_host_interface *desc = &intfc->altsetting[setno]; int i; start = usb_dump_interface_descriptor(start, end, intfc, iface, setno); for (i = 0; i < desc->desc.bNumEndpoints; i++) { if (start > end) return start; start = usb_dump_endpoint_descriptor(speed, start, end, &desc->endpoint[i].desc); } return start; } static char *usb_dump_iad_descriptor(char *start, char *end, const struct usb_interface_assoc_descriptor *iad) { if (start > end) return start; start += sprintf(start, format_iad, iad->bFirstInterface, iad->bInterfaceCount, iad->bFunctionClass, class_decode(iad->bFunctionClass), iad->bFunctionSubClass, iad->bFunctionProtocol); return start; } /* TBD: * 0. TBDs * 1. marking active interface altsettings (code lists all, but should mark * which ones are active, if any) */ static char *usb_dump_config_descriptor(char *start, char *end, const struct usb_config_descriptor *desc, int active, int speed) { int mul; if (start > end) return start; if (speed >= USB_SPEED_SUPER) mul = 8; else mul = 2; start += sprintf(start, format_config, /* mark active/actual/current cfg. */ active ? '*' : ' ', desc->bNumInterfaces, desc->bConfigurationValue, desc->bmAttributes, desc->bMaxPower * mul); return start; } static char *usb_dump_config(int speed, char *start, char *end, const struct usb_host_config *config, int active) { int i, j; struct usb_interface_cache *intfc; struct usb_interface *interface; if (start > end) return start; if (!config) /* getting these some in 2.3.7; none in 2.3.6 */ return start + sprintf(start, "(null Cfg. desc.)\n"); start = usb_dump_config_descriptor(start, end, &config->desc, active, speed); for (i = 0; i < USB_MAXIADS; i++) { if (config->intf_assoc[i] == NULL) break; start = usb_dump_iad_descriptor(start, end, config->intf_assoc[i]); } for (i = 0; i < config->desc.bNumInterfaces; i++) { intfc = config->intf_cache[i]; interface = config->interface[i]; for (j = 0; j < intfc->num_altsetting; j++) { if (start > end) return start; start = usb_dump_interface(speed, start, end, intfc, interface, j); } } return start; } /* * Dump the different USB descriptors. */ static char *usb_dump_device_descriptor(char *start, char *end, const struct usb_device_descriptor *desc) { u16 bcdUSB = le16_to_cpu(desc->bcdUSB); u16 bcdDevice = le16_to_cpu(desc->bcdDevice); if (start > end) return start; start += sprintf(start, format_device1, bcdUSB >> 8, bcdUSB & 0xff, desc->bDeviceClass, class_decode(desc->bDeviceClass), desc->bDeviceSubClass, desc->bDeviceProtocol, desc->bMaxPacketSize0, desc->bNumConfigurations); if (start > end) return start; start += sprintf(start, format_device2, le16_to_cpu(desc->idVendor), le16_to_cpu(desc->idProduct), bcdDevice >> 8, bcdDevice & 0xff); return start; } /* * Dump the different strings that this device holds. */ static char *usb_dump_device_strings(char *start, char *end, struct usb_device *dev) { if (start > end) return start; if (dev->manufacturer) start += sprintf(start, format_string_manufacturer, dev->manufacturer); if (start > end) goto out; if (dev->product) start += sprintf(start, format_string_product, dev->product); if (start > end) goto out; #ifdef ALLOW_SERIAL_NUMBER if (dev->serial) start += sprintf(start, format_string_serialnumber, dev->serial); #endif out: return start; } static char *usb_dump_desc(char *start, char *end, struct usb_device *dev) { int i; if (start > end) return start; start = usb_dump_device_descriptor(start, end, &dev->descriptor); if (start > end) return start; start = usb_dump_device_strings(start, end, dev); for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { if (start > end) return start; start = usb_dump_config(dev->speed, start, end, dev->config + i, /* active ? */ (dev->config + i) == dev->actconfig); } return start; } #ifdef PROC_EXTRA /* TBD: may want to add this code later */ static char *usb_dump_hub_descriptor(char *start, char *end, const struct usb_hub_descriptor *desc) { int leng = USB_DT_HUB_NONVAR_SIZE; unsigned char *ptr = (unsigned char *)desc; if (start > end) return start; start += sprintf(start, "Interface:"); while (leng && start <= end) { start += sprintf(start, " %02x", *ptr); ptr++; leng--; } *start++ = '\n'; return start; } static char *usb_dump_string(char *start, char *end, const struct usb_device *dev, char *id, int index) { if (start > end) return start; start += sprintf(start, "Interface:"); if (index <= dev->maxstring && dev->stringindex && dev->stringindex[index]) start += sprintf(start, "%s: %.100s ", id, dev->stringindex[index]); return start; } #endif /* PROC_EXTRA */ /*****************************************************************/ /* This is a recursive function. Parameters: * buffer - the user-space buffer to write data into * nbytes - the maximum number of bytes to write * skip_bytes - the number of bytes to skip before writing anything * file_offset - the offset into the devices file on completion * The caller must own the device lock. */ static ssize_t usb_device_dump(char __user **buffer, size_t *nbytes, loff_t *skip_bytes, loff_t *file_offset, struct usb_device *usbdev, struct usb_bus *bus, int level, int index, int count) { int chix; int ret, cnt = 0; int parent_devnum = 0; char *pages_start, *data_end, *speed; unsigned int length; ssize_t total_written = 0; struct usb_device *childdev = NULL; /* don't bother with anything else if we're not writing any data */ if (*nbytes <= 0) return 0; if (level > MAX_TOPO_LEVEL) return 0; /* allocate 2^1 pages = 8K (on i386); * should be more than enough for one device */ pages_start = (char *)__get_free_pages(GFP_NOIO, 1); if (!pages_start) return -ENOMEM; if (usbdev->parent && usbdev->parent->devnum != -1) parent_devnum = usbdev->parent->devnum; /* * So the root hub's parent is 0 and any device that is * plugged into the root hub has a parent of 0. */ switch (usbdev->speed) { case USB_SPEED_LOW: speed = "1.5"; break; case USB_SPEED_UNKNOWN: /* usb 1.1 root hub code */ case USB_SPEED_FULL: speed = "12"; break; case USB_SPEED_WIRELESS: /* Wireless has no real fixed speed */ case USB_SPEED_HIGH: speed = "480"; break; case USB_SPEED_SUPER: speed = "5000"; break; case USB_SPEED_SUPER_PLUS: speed = "10000"; break; default: speed = "??"; } data_end = pages_start + sprintf(pages_start, format_topo, bus->busnum, level, parent_devnum, index, count, usbdev->devnum, speed, usbdev->maxchild); /* * level = topology-tier level; * parent_devnum = parent device number; * index = parent's connector number; * count = device count at this level */ /* If this is the root hub, display the bandwidth information */ if (level == 0) { int max; /* super/high speed reserves 80%, full/low reserves 90% */ if (usbdev->speed == USB_SPEED_HIGH || usbdev->speed >= USB_SPEED_SUPER) max = 800; else max = FRAME_TIME_MAX_USECS_ALLOC; /* report "average" periodic allocation over a microsecond. * the schedules are actually bursty, HCDs need to deal with * that and just compute/report this average. */ data_end += sprintf(data_end, format_bandwidth, bus->bandwidth_allocated, max, (100 * bus->bandwidth_allocated + max / 2) / max, bus->bandwidth_int_reqs, bus->bandwidth_isoc_reqs); } data_end = usb_dump_desc(data_end, pages_start + (2 * PAGE_SIZE) - 256, usbdev); if (data_end > (pages_start + (2 * PAGE_SIZE) - 256)) data_end += sprintf(data_end, "(truncated)\n"); length = data_end - pages_start; /* if we can start copying some data to the user */ if (length > *skip_bytes) { length -= *skip_bytes; if (length > *nbytes) length = *nbytes; if (copy_to_user(*buffer, pages_start + *skip_bytes, length)) { free_pages((unsigned long)pages_start, 1); return -EFAULT; } *nbytes -= length; *file_offset += length; total_written += length; *buffer += length; *skip_bytes = 0; } else *skip_bytes -= length; free_pages((unsigned long)pages_start, 1); /* Now look at all of this device's children. */ usb_hub_for_each_child(usbdev, chix, childdev) { usb_lock_device(childdev); ret = usb_device_dump(buffer, nbytes, skip_bytes, file_offset, childdev, bus, level + 1, chix - 1, ++cnt); usb_unlock_device(childdev); if (ret == -EFAULT) return total_written; total_written += ret; } return total_written; } static ssize_t usb_device_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct usb_bus *bus; ssize_t ret, total_written = 0; loff_t skip_bytes = *ppos; int id; if (*ppos < 0) return -EINVAL; if (nbytes <= 0) return 0; if (!access_ok(VERIFY_WRITE, buf, nbytes)) return -EFAULT; mutex_lock(&usb_bus_list_lock); /* print devices for all busses */ idr_for_each_entry(&usb_bus_idr, bus, id) { /* recurse through all children of the root hub */ if (!bus_to_hcd(bus)->rh_registered) continue; usb_lock_device(bus->root_hub); ret = usb_device_dump(&buf, &nbytes, &skip_bytes, ppos, bus->root_hub, bus, 0, 0, 0); usb_unlock_device(bus->root_hub); if (ret < 0) { mutex_unlock(&usb_bus_list_lock); return ret; } total_written += ret; } mutex_unlock(&usb_bus_list_lock); return total_written; } /* Kernel lock for "lastev" protection */ static unsigned int usb_device_poll(struct file *file, struct poll_table_struct *wait) { unsigned int event_count; poll_wait(file, &device_event.wait, wait); event_count = atomic_read(&device_event.count); if (file->f_version != event_count) { file->f_version = event_count; return POLLIN | POLLRDNORM; } return 0; } const struct file_operations usbfs_devices_fops = { .llseek = no_seek_end_llseek, .read = usb_device_read, .poll = usb_device_poll, };