//SPDX-License-Identifier: GPL-2.0 /* * CFB: Cipher FeedBack mode * * Copyright (c) 2018 James.Bottomley@HansenPartnership.com * * CFB is a stream cipher mode which is layered on to a block * encryption scheme. It works very much like a one time pad where * the pad is generated initially from the encrypted IV and then * subsequently from the encrypted previous block of ciphertext. The * pad is XOR'd into the plain text to get the final ciphertext. * * The scheme of CFB is best described by wikipedia: * * https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB * * Note that since the pad for both encryption and decryption is * generated by an encryption operation, CFB never uses the block * decryption function. */ #include <crypto/algapi.h> #include <crypto/internal/skcipher.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> static unsigned int crypto_cfb_bsize(struct crypto_skcipher *tfm) { return crypto_cipher_blocksize(skcipher_cipher_simple(tfm)); } static void crypto_cfb_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst) { crypto_cipher_encrypt_one(skcipher_cipher_simple(tfm), dst, src); } /* final encrypt and decrypt is the same */ static void crypto_cfb_final(struct skcipher_walk *walk, struct crypto_skcipher *tfm) { const unsigned long alignmask = crypto_skcipher_alignmask(tfm); u8 tmp[MAX_CIPHER_BLOCKSIZE + MAX_CIPHER_ALIGNMASK]; u8 *stream = PTR_ALIGN(tmp + 0, alignmask + 1); u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; u8 *iv = walk->iv; unsigned int nbytes = walk->nbytes; crypto_cfb_encrypt_one(tfm, iv, stream); crypto_xor_cpy(dst, stream, src, nbytes); } static int crypto_cfb_encrypt_segment(struct skcipher_walk *walk, struct crypto_skcipher *tfm) { const unsigned int bsize = crypto_cfb_bsize(tfm); unsigned int nbytes = walk->nbytes; u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; u8 *iv = walk->iv; do { crypto_cfb_encrypt_one(tfm, iv, dst); crypto_xor(dst, src, bsize); iv = dst; src += bsize; dst += bsize; } while ((nbytes -= bsize) >= bsize); memcpy(walk->iv, iv, bsize); return nbytes; } static int crypto_cfb_encrypt_inplace(struct skcipher_walk *walk, struct crypto_skcipher *tfm) { const unsigned int bsize = crypto_cfb_bsize(tfm); unsigned int nbytes = walk->nbytes; u8 *src = walk->src.virt.addr; u8 *iv = walk->iv; u8 tmp[MAX_CIPHER_BLOCKSIZE]; do { crypto_cfb_encrypt_one(tfm, iv, tmp); crypto_xor(src, tmp, bsize); iv = src; src += bsize; } while ((nbytes -= bsize) >= bsize); memcpy(walk->iv, iv, bsize); return nbytes; } static int crypto_cfb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_walk walk; unsigned int bsize = crypto_cfb_bsize(tfm); int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= bsize) { if (walk.src.virt.addr == walk.dst.virt.addr) err = crypto_cfb_encrypt_inplace(&walk, tfm); else err = crypto_cfb_encrypt_segment(&walk, tfm); err = skcipher_walk_done(&walk, err); } if (walk.nbytes) { crypto_cfb_final(&walk, tfm); err = skcipher_walk_done(&walk, 0); } return err; } static int crypto_cfb_decrypt_segment(struct skcipher_walk *walk, struct crypto_skcipher *tfm) { const unsigned int bsize = crypto_cfb_bsize(tfm); unsigned int nbytes = walk->nbytes; u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; u8 *iv = walk->iv; do { crypto_cfb_encrypt_one(tfm, iv, dst); crypto_xor(dst, src, bsize); iv = src; src += bsize; dst += bsize; } while ((nbytes -= bsize) >= bsize); memcpy(walk->iv, iv, bsize); return nbytes; } static int crypto_cfb_decrypt_inplace(struct skcipher_walk *walk, struct crypto_skcipher *tfm) { const unsigned int bsize = crypto_cfb_bsize(tfm); unsigned int nbytes = walk->nbytes; u8 *src = walk->src.virt.addr; u8 * const iv = walk->iv; u8 tmp[MAX_CIPHER_BLOCKSIZE]; do { crypto_cfb_encrypt_one(tfm, iv, tmp); memcpy(iv, src, bsize); crypto_xor(src, tmp, bsize); src += bsize; } while ((nbytes -= bsize) >= bsize); return nbytes; } static int crypto_cfb_decrypt_blocks(struct skcipher_walk *walk, struct crypto_skcipher *tfm) { if (walk->src.virt.addr == walk->dst.virt.addr) return crypto_cfb_decrypt_inplace(walk, tfm); else return crypto_cfb_decrypt_segment(walk, tfm); } static int crypto_cfb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_walk walk; const unsigned int bsize = crypto_cfb_bsize(tfm); int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= bsize) { err = crypto_cfb_decrypt_blocks(&walk, tfm); err = skcipher_walk_done(&walk, err); } if (walk.nbytes) { crypto_cfb_final(&walk, tfm); err = skcipher_walk_done(&walk, 0); } return err; } static int crypto_cfb_create(struct crypto_template *tmpl, struct rtattr **tb) { struct skcipher_instance *inst; struct crypto_alg *alg; int err; inst = skcipher_alloc_instance_simple(tmpl, tb, &alg); if (IS_ERR(inst)) return PTR_ERR(inst); /* CFB mode is a stream cipher. */ inst->alg.base.cra_blocksize = 1; /* * To simplify the implementation, configure the skcipher walk to only * give a partial block at the very end, never earlier. */ inst->alg.chunksize = alg->cra_blocksize; inst->alg.encrypt = crypto_cfb_encrypt; inst->alg.decrypt = crypto_cfb_decrypt; err = skcipher_register_instance(tmpl, inst); if (err) inst->free(inst); crypto_mod_put(alg); return err; } static struct crypto_template crypto_cfb_tmpl = { .name = "cfb", .create = crypto_cfb_create, .module = THIS_MODULE, }; static int __init crypto_cfb_module_init(void) { return crypto_register_template(&crypto_cfb_tmpl); } static void __exit crypto_cfb_module_exit(void) { crypto_unregister_template(&crypto_cfb_tmpl); } subsys_initcall(crypto_cfb_module_init); module_exit(crypto_cfb_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CFB block cipher mode of operation"); MODULE_ALIAS_CRYPTO("cfb");