// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) * * Copyright (C) 2008 Atmel Corporation * * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. * The only Atmel DMA Controller that is not covered by this driver is the one * found on AT91SAM9263. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "at_hdmac_regs.h" #include "dmaengine.h" /* * Glossary * -------- * * at_hdmac : Name of the ATmel AHB DMA Controller * at_dma_ / atdma : ATmel DMA controller entity related * atc_ / atchan : ATmel DMA Channel entity related */ #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ |ATC_DIF(AT_DMA_MEM_IF)) #define ATC_DMA_BUSWIDTHS\ (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) #define ATC_MAX_DSCR_TRIALS 10 /* * Initial number of descriptors to allocate for each channel. This could * be increased during dma usage. */ static unsigned int init_nr_desc_per_channel = 64; module_param(init_nr_desc_per_channel, uint, 0644); MODULE_PARM_DESC(init_nr_desc_per_channel, "initial descriptors per channel (default: 64)"); /** * struct at_dma_platform_data - Controller configuration parameters * @nr_channels: Number of channels supported by hardware (max 8) * @cap_mask: dma_capability flags supported by the platform */ struct at_dma_platform_data { unsigned int nr_channels; dma_cap_mask_t cap_mask; }; /** * struct at_dma_slave - Controller-specific information about a slave * @dma_dev: required DMA master device * @cfg: Platform-specific initializer for the CFG register */ struct at_dma_slave { struct device *dma_dev; u32 cfg; }; /* prototypes */ static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); static void atc_issue_pending(struct dma_chan *chan); /*----------------------------------------------------------------------*/ static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, size_t len) { unsigned int width; if (!((src | dst | len) & 3)) width = 2; else if (!((src | dst | len) & 1)) width = 1; else width = 0; return width; } static struct at_desc *atc_first_active(struct at_dma_chan *atchan) { return list_first_entry(&atchan->active_list, struct at_desc, desc_node); } static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) { return list_first_entry(&atchan->queue, struct at_desc, desc_node); } /** * atc_alloc_descriptor - allocate and return an initialized descriptor * @chan: the channel to allocate descriptors for * @gfp_flags: GFP allocation flags * * Note: The ack-bit is positioned in the descriptor flag at creation time * to make initial allocation more convenient. This bit will be cleared * and control will be given to client at usage time (during * preparation functions). */ static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, gfp_t gfp_flags) { struct at_desc *desc = NULL; struct at_dma *atdma = to_at_dma(chan->device); dma_addr_t phys; desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); if (desc) { INIT_LIST_HEAD(&desc->tx_list); dma_async_tx_descriptor_init(&desc->txd, chan); /* txd.flags will be overwritten in prep functions */ desc->txd.flags = DMA_CTRL_ACK; desc->txd.tx_submit = atc_tx_submit; desc->txd.phys = phys; } return desc; } /** * atc_desc_get - get an unused descriptor from free_list * @atchan: channel we want a new descriptor for */ static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) { struct at_desc *desc, *_desc; struct at_desc *ret = NULL; unsigned long flags; unsigned int i = 0; spin_lock_irqsave(&atchan->lock, flags); list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { i++; if (async_tx_test_ack(&desc->txd)) { list_del(&desc->desc_node); ret = desc; break; } dev_dbg(chan2dev(&atchan->chan_common), "desc %p not ACKed\n", desc); } spin_unlock_irqrestore(&atchan->lock, flags); dev_vdbg(chan2dev(&atchan->chan_common), "scanned %u descriptors on freelist\n", i); /* no more descriptor available in initial pool: create one more */ if (!ret) ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT); return ret; } /** * atc_desc_put - move a descriptor, including any children, to the free list * @atchan: channel we work on * @desc: descriptor, at the head of a chain, to move to free list */ static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) { if (desc) { struct at_desc *child; unsigned long flags; spin_lock_irqsave(&atchan->lock, flags); list_for_each_entry(child, &desc->tx_list, desc_node) dev_vdbg(chan2dev(&atchan->chan_common), "moving child desc %p to freelist\n", child); list_splice_init(&desc->tx_list, &atchan->free_list); dev_vdbg(chan2dev(&atchan->chan_common), "moving desc %p to freelist\n", desc); list_add(&desc->desc_node, &atchan->free_list); spin_unlock_irqrestore(&atchan->lock, flags); } } /** * atc_desc_chain - build chain adding a descriptor * @first: address of first descriptor of the chain * @prev: address of previous descriptor of the chain * @desc: descriptor to queue * * Called from prep_* functions */ static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, struct at_desc *desc) { if (!(*first)) { *first = desc; } else { /* inform the HW lli about chaining */ (*prev)->lli.dscr = desc->txd.phys; /* insert the link descriptor to the LD ring */ list_add_tail(&desc->desc_node, &(*first)->tx_list); } *prev = desc; } /** * atc_dostart - starts the DMA engine for real * @atchan: the channel we want to start * @first: first descriptor in the list we want to begin with * * Called with atchan->lock held and bh disabled */ static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) { struct at_dma *atdma = to_at_dma(atchan->chan_common.device); /* ASSERT: channel is idle */ if (atc_chan_is_enabled(atchan)) { dev_err(chan2dev(&atchan->chan_common), "BUG: Attempted to start non-idle channel\n"); dev_err(chan2dev(&atchan->chan_common), " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", channel_readl(atchan, SADDR), channel_readl(atchan, DADDR), channel_readl(atchan, CTRLA), channel_readl(atchan, CTRLB), channel_readl(atchan, DSCR)); /* The tasklet will hopefully advance the queue... */ return; } vdbg_dump_regs(atchan); channel_writel(atchan, SADDR, 0); channel_writel(atchan, DADDR, 0); channel_writel(atchan, CTRLA, 0); channel_writel(atchan, CTRLB, 0); channel_writel(atchan, DSCR, first->txd.phys); channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | ATC_SPIP_BOUNDARY(first->boundary)); channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | ATC_DPIP_BOUNDARY(first->boundary)); /* Don't allow CPU to reorder channel enable. */ wmb(); dma_writel(atdma, CHER, atchan->mask); vdbg_dump_regs(atchan); } /* * atc_get_desc_by_cookie - get the descriptor of a cookie * @atchan: the DMA channel * @cookie: the cookie to get the descriptor for */ static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, dma_cookie_t cookie) { struct at_desc *desc, *_desc; list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { if (desc->txd.cookie == cookie) return desc; } list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { if (desc->txd.cookie == cookie) return desc; } return NULL; } /** * atc_calc_bytes_left - calculates the number of bytes left according to the * value read from CTRLA. * * @current_len: the number of bytes left before reading CTRLA * @ctrla: the value of CTRLA */ static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla) { u32 btsize = (ctrla & ATC_BTSIZE_MAX); u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); /* * According to the datasheet, when reading the Control A Register * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the * number of transfers completed on the Source Interface. * So btsize is always a number of source width transfers. */ return current_len - (btsize << src_width); } /** * atc_get_llis_residue - Get residue for a hardware linked list transfer * * Calculate the residue by removing the length of the child descriptors already * transferred from the total length. To get the current child descriptor we can * use the value of the channel's DSCR register and compare it against the value * of the hardware linked list structure of each child descriptor. * * The CTRLA register provides us with the amount of data already read from the * source for the current child descriptor. So we can compute a more accurate * residue by also removing the number of bytes corresponding to this amount of * data. * * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a * race condition may occur: the first read register may refer to one child * descriptor whereas the second read may refer to a later child descriptor in * the list because of the DMA transfer progression inbetween the two reads. * * One solution could have been to pause the DMA transfer, read the DSCR and * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some * drawbacks: * - If the DMA transfer is paused, RX overruns or TX underruns are more likey * to occur depending on the system latency. Taking the USART driver as an * example, it uses a cyclic DMA transfer to read data from the Receive * Holding Register (RHR) to avoid RX overruns since the RHR is not protected * by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the * residue would break the USART driver design. * - The atc_pause() function masks interrupts but we'd rather avoid to do so * for system latency purpose. * * Then we'd rather use another solution: the DSCR is read a first time, the * CTRLA is read in turn, next the DSCR is read a second time. If the two * consecutive read values of the DSCR are the same then we assume both refers * to the very same child descriptor as well as the CTRLA value read inbetween * does. For cyclic tranfers, the assumption is that a full loop is "not so * fast". If the two DSCR values are different, we read again the CTRLA then the * DSCR till two consecutive read values from DSCR are equal or till the * maximum trials is reach. This algorithm is very unlikely not to find a stable * value for DSCR. * @atchan: pointer to an atmel hdmac channel. * @desc: pointer to the descriptor for which the residue is calculated. * @residue: residue to be set to dma_tx_state. * Returns 0 on success, -errno otherwise. */ static int atc_get_llis_residue(struct at_dma_chan *atchan, struct at_desc *desc, u32 *residue) { struct at_desc *child; u32 len, ctrla, dscr; unsigned int i; len = desc->total_len; dscr = channel_readl(atchan, DSCR); rmb(); /* ensure DSCR is read before CTRLA */ ctrla = channel_readl(atchan, CTRLA); for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) { u32 new_dscr; rmb(); /* ensure DSCR is read after CTRLA */ new_dscr = channel_readl(atchan, DSCR); /* * If the DSCR register value has not changed inside the DMA * controller since the previous read, we assume that both the * dscr and ctrla values refers to the very same descriptor. */ if (likely(new_dscr == dscr)) break; /* * DSCR has changed inside the DMA controller, so the previouly * read value of CTRLA may refer to an already processed * descriptor hence could be outdated. We need to update ctrla * to match the current descriptor. */ dscr = new_dscr; rmb(); /* ensure DSCR is read before CTRLA */ ctrla = channel_readl(atchan, CTRLA); } if (unlikely(i == ATC_MAX_DSCR_TRIALS)) return -ETIMEDOUT; /* For the first descriptor we can be more accurate. */ if (desc->lli.dscr == dscr) { *residue = atc_calc_bytes_left(len, ctrla); return 0; } len -= desc->len; list_for_each_entry(child, &desc->tx_list, desc_node) { if (child->lli.dscr == dscr) break; len -= child->len; } /* * For the current descriptor in the chain we can calculate the * remaining bytes using the channel's register. */ *residue = atc_calc_bytes_left(len, ctrla); return 0; } /** * atc_get_residue - get the number of bytes residue for a cookie. * The residue is passed by address and updated on success. * @chan: DMA channel * @cookie: transaction identifier to check status of * @residue: residue to be updated. * Return 0 on success, -errono otherwise. */ static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie, u32 *residue) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_desc *desc_first = atc_first_active(atchan); struct at_desc *desc; u32 len, ctrla; /* * If the cookie doesn't match to the currently running transfer then * we can return the total length of the associated DMA transfer, * because it is still queued. */ desc = atc_get_desc_by_cookie(atchan, cookie); if (desc == NULL) return -EINVAL; else if (desc != desc_first) return desc->total_len; if (desc_first->lli.dscr) /* hardware linked list transfer */ return atc_get_llis_residue(atchan, desc_first, residue); /* single transfer */ len = desc_first->total_len; ctrla = channel_readl(atchan, CTRLA); *residue = atc_calc_bytes_left(len, ctrla); return 0; } /** * atc_chain_complete - finish work for one transaction chain * @atchan: channel we work on * @desc: descriptor at the head of the chain we want do complete */ static void atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) { struct dma_async_tx_descriptor *txd = &desc->txd; struct at_dma *atdma = to_at_dma(atchan->chan_common.device); unsigned long flags; dev_vdbg(chan2dev(&atchan->chan_common), "descriptor %u complete\n", txd->cookie); spin_lock_irqsave(&atchan->lock, flags); /* mark the descriptor as complete for non cyclic cases only */ if (!atc_chan_is_cyclic(atchan)) dma_cookie_complete(txd); spin_unlock_irqrestore(&atchan->lock, flags); dma_descriptor_unmap(txd); /* for cyclic transfers, * no need to replay callback function while stopping */ if (!atc_chan_is_cyclic(atchan)) dmaengine_desc_get_callback_invoke(txd, NULL); dma_run_dependencies(txd); spin_lock_irqsave(&atchan->lock, flags); /* move children to free_list */ list_splice_init(&desc->tx_list, &atchan->free_list); /* add myself to free_list */ list_add(&desc->desc_node, &atchan->free_list); spin_unlock_irqrestore(&atchan->lock, flags); /* If the transfer was a memset, free our temporary buffer */ if (desc->memset_buffer) { dma_pool_free(atdma->memset_pool, desc->memset_vaddr, desc->memset_paddr); desc->memset_buffer = false; } } /** * atc_advance_work - at the end of a transaction, move forward * @atchan: channel where the transaction ended */ static void atc_advance_work(struct at_dma_chan *atchan) { struct at_desc *desc; unsigned long flags; dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); spin_lock_irqsave(&atchan->lock, flags); if (atc_chan_is_enabled(atchan) || list_empty(&atchan->active_list)) return spin_unlock_irqrestore(&atchan->lock, flags); desc = atc_first_active(atchan); /* Remove the transfer node from the active list. */ list_del_init(&desc->desc_node); spin_unlock_irqrestore(&atchan->lock, flags); atc_chain_complete(atchan, desc); /* advance work */ spin_lock_irqsave(&atchan->lock, flags); if (!list_empty(&atchan->active_list)) { desc = atc_first_queued(atchan); list_move_tail(&desc->desc_node, &atchan->active_list); atc_dostart(atchan, desc); } spin_unlock_irqrestore(&atchan->lock, flags); } /** * atc_handle_error - handle errors reported by DMA controller * @atchan: channel where error occurs */ static void atc_handle_error(struct at_dma_chan *atchan) { struct at_desc *bad_desc; struct at_desc *desc; struct at_desc *child; unsigned long flags; spin_lock_irqsave(&atchan->lock, flags); /* * The descriptor currently at the head of the active list is * broked. Since we don't have any way to report errors, we'll * just have to scream loudly and try to carry on. */ bad_desc = atc_first_active(atchan); list_del_init(&bad_desc->desc_node); /* Try to restart the controller */ if (!list_empty(&atchan->active_list)) { desc = atc_first_queued(atchan); list_move_tail(&desc->desc_node, &atchan->active_list); atc_dostart(atchan, desc); } spin_unlock_irqrestore(&atchan->lock, flags); /* * KERN_CRITICAL may seem harsh, but since this only happens * when someone submits a bad physical address in a * descriptor, we should consider ourselves lucky that the * controller flagged an error instead of scribbling over * random memory locations. */ dev_crit(chan2dev(&atchan->chan_common), "Bad descriptor submitted for DMA!\n"); dev_crit(chan2dev(&atchan->chan_common), " cookie: %d\n", bad_desc->txd.cookie); atc_dump_lli(atchan, &bad_desc->lli); list_for_each_entry(child, &bad_desc->tx_list, desc_node) atc_dump_lli(atchan, &child->lli); /* Pretend the descriptor completed successfully */ atc_chain_complete(atchan, bad_desc); } /** * atc_handle_cyclic - at the end of a period, run callback function * @atchan: channel used for cyclic operations */ static void atc_handle_cyclic(struct at_dma_chan *atchan) { struct at_desc *first = atc_first_active(atchan); struct dma_async_tx_descriptor *txd = &first->txd; dev_vdbg(chan2dev(&atchan->chan_common), "new cyclic period llp 0x%08x\n", channel_readl(atchan, DSCR)); dmaengine_desc_get_callback_invoke(txd, NULL); } /*-- IRQ & Tasklet ---------------------------------------------------*/ static void atc_tasklet(struct tasklet_struct *t) { struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet); if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) return atc_handle_error(atchan); if (atc_chan_is_cyclic(atchan)) return atc_handle_cyclic(atchan); atc_advance_work(atchan); } static irqreturn_t at_dma_interrupt(int irq, void *dev_id) { struct at_dma *atdma = dev_id; struct at_dma_chan *atchan; int i; u32 status, pending, imr; int ret = IRQ_NONE; do { imr = dma_readl(atdma, EBCIMR); status = dma_readl(atdma, EBCISR); pending = status & imr; if (!pending) break; dev_vdbg(atdma->dma_common.dev, "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", status, imr, pending); for (i = 0; i < atdma->dma_common.chancnt; i++) { atchan = &atdma->chan[i]; if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { if (pending & AT_DMA_ERR(i)) { /* Disable channel on AHB error */ dma_writel(atdma, CHDR, AT_DMA_RES(i) | atchan->mask); /* Give information to tasklet */ set_bit(ATC_IS_ERROR, &atchan->status); } tasklet_schedule(&atchan->tasklet); ret = IRQ_HANDLED; } } } while (pending); return ret; } /*-- DMA Engine API --------------------------------------------------*/ /** * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine * @tx: descriptor at the head of the transaction chain * * Queue chain if DMA engine is working already * * Cookie increment and adding to active_list or queue must be atomic */ static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) { struct at_desc *desc = txd_to_at_desc(tx); struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); dma_cookie_t cookie; unsigned long flags; spin_lock_irqsave(&atchan->lock, flags); cookie = dma_cookie_assign(tx); list_add_tail(&desc->desc_node, &atchan->queue); spin_unlock_irqrestore(&atchan->lock, flags); dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", desc->txd.cookie); return cookie; } /** * atc_prep_dma_interleaved - prepare memory to memory interleaved operation * @chan: the channel to prepare operation on * @xt: Interleaved transfer template * @flags: tx descriptor status flags */ static struct dma_async_tx_descriptor * atc_prep_dma_interleaved(struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct data_chunk *first; struct at_desc *desc = NULL; size_t xfer_count; unsigned int dwidth; u32 ctrla; u32 ctrlb; size_t len = 0; int i; if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) return NULL; first = xt->sgl; dev_info(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", __func__, &xt->src_start, &xt->dst_start, xt->numf, xt->frame_size, flags); /* * The controller can only "skip" X bytes every Y bytes, so we * need to make sure we are given a template that fit that * description, ie a template with chunks that always have the * same size, with the same ICGs. */ for (i = 0; i < xt->frame_size; i++) { struct data_chunk *chunk = xt->sgl + i; if ((chunk->size != xt->sgl->size) || (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { dev_err(chan2dev(chan), "%s: the controller can transfer only identical chunks\n", __func__); return NULL; } len += chunk->size; } dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len); xfer_count = len >> dwidth; if (xfer_count > ATC_BTSIZE_MAX) { dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); return NULL; } ctrla = ATC_SRC_WIDTH(dwidth) | ATC_DST_WIDTH(dwidth); ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | ATC_SRC_ADDR_MODE_INCR | ATC_DST_ADDR_MODE_INCR | ATC_SRC_PIP | ATC_DST_PIP | ATC_FC_MEM2MEM; /* create the transfer */ desc = atc_desc_get(atchan); if (!desc) { dev_err(chan2dev(chan), "%s: couldn't allocate our descriptor\n", __func__); return NULL; } desc->lli.saddr = xt->src_start; desc->lli.daddr = xt->dst_start; desc->lli.ctrla = ctrla | xfer_count; desc->lli.ctrlb = ctrlb; desc->boundary = first->size >> dwidth; desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; desc->txd.cookie = -EBUSY; desc->total_len = desc->len = len; /* set end-of-link to the last link descriptor of list*/ set_desc_eol(desc); desc->txd.flags = flags; /* client is in control of this ack */ return &desc->txd; } /** * atc_prep_dma_memcpy - prepare a memcpy operation * @chan: the channel to prepare operation on * @dest: operation virtual destination address * @src: operation virtual source address * @len: operation length * @flags: tx descriptor status flags */ static struct dma_async_tx_descriptor * atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_desc *desc = NULL; struct at_desc *first = NULL; struct at_desc *prev = NULL; size_t xfer_count; size_t offset; unsigned int src_width; unsigned int dst_width; u32 ctrla; u32 ctrlb; dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", &dest, &src, len, flags); if (unlikely(!len)) { dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); return NULL; } ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | ATC_SRC_ADDR_MODE_INCR | ATC_DST_ADDR_MODE_INCR | ATC_FC_MEM2MEM; /* * We can be a lot more clever here, but this should take care * of the most common optimization. */ src_width = dst_width = atc_get_xfer_width(src, dest, len); ctrla = ATC_SRC_WIDTH(src_width) | ATC_DST_WIDTH(dst_width); for (offset = 0; offset < len; offset += xfer_count << src_width) { xfer_count = min_t(size_t, (len - offset) >> src_width, ATC_BTSIZE_MAX); desc = atc_desc_get(atchan); if (!desc) goto err_desc_get; desc->lli.saddr = src + offset; desc->lli.daddr = dest + offset; desc->lli.ctrla = ctrla | xfer_count; desc->lli.ctrlb = ctrlb; desc->txd.cookie = 0; desc->len = xfer_count << src_width; atc_desc_chain(&first, &prev, desc); } /* First descriptor of the chain embedds additional information */ first->txd.cookie = -EBUSY; first->total_len = len; /* set end-of-link to the last link descriptor of list*/ set_desc_eol(desc); first->txd.flags = flags; /* client is in control of this ack */ return &first->txd; err_desc_get: atc_desc_put(atchan, first); return NULL; } static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, dma_addr_t psrc, dma_addr_t pdst, size_t len) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_desc *desc; size_t xfer_count; u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | ATC_SRC_ADDR_MODE_FIXED | ATC_DST_ADDR_MODE_INCR | ATC_FC_MEM2MEM; xfer_count = len >> 2; if (xfer_count > ATC_BTSIZE_MAX) { dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); return NULL; } desc = atc_desc_get(atchan); if (!desc) { dev_err(chan2dev(chan), "%s: can't get a descriptor\n", __func__); return NULL; } desc->lli.saddr = psrc; desc->lli.daddr = pdst; desc->lli.ctrla = ctrla | xfer_count; desc->lli.ctrlb = ctrlb; desc->txd.cookie = 0; desc->len = len; return desc; } /** * atc_prep_dma_memset - prepare a memcpy operation * @chan: the channel to prepare operation on * @dest: operation virtual destination address * @value: value to set memory buffer to * @len: operation length * @flags: tx descriptor status flags */ static struct dma_async_tx_descriptor * atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, size_t len, unsigned long flags) { struct at_dma *atdma = to_at_dma(chan->device); struct at_desc *desc; void __iomem *vaddr; dma_addr_t paddr; char fill_pattern; dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, &dest, value, len, flags); if (unlikely(!len)) { dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); return NULL; } if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", __func__); return NULL; } vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); if (!vaddr) { dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", __func__); return NULL; } /* Only the first byte of value is to be used according to dmaengine */ fill_pattern = (char)value; *(u32*)vaddr = (fill_pattern << 24) | (fill_pattern << 16) | (fill_pattern << 8) | fill_pattern; desc = atc_create_memset_desc(chan, paddr, dest, len); if (!desc) { dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", __func__); goto err_free_buffer; } desc->memset_paddr = paddr; desc->memset_vaddr = vaddr; desc->memset_buffer = true; desc->txd.cookie = -EBUSY; desc->total_len = len; /* set end-of-link on the descriptor */ set_desc_eol(desc); desc->txd.flags = flags; return &desc->txd; err_free_buffer: dma_pool_free(atdma->memset_pool, vaddr, paddr); return NULL; } static struct dma_async_tx_descriptor * atc_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, int value, unsigned long flags) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma *atdma = to_at_dma(chan->device); struct at_desc *desc = NULL, *first = NULL, *prev = NULL; struct scatterlist *sg; void __iomem *vaddr; dma_addr_t paddr; size_t total_len = 0; int i; dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, value, sg_len, flags); if (unlikely(!sgl || !sg_len)) { dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", __func__); return NULL; } vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); if (!vaddr) { dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", __func__); return NULL; } *(u32*)vaddr = value; for_each_sg(sgl, sg, sg_len, i) { dma_addr_t dest = sg_dma_address(sg); size_t len = sg_dma_len(sg); dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", __func__, &dest, len); if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { dev_err(chan2dev(chan), "%s: buffer is not aligned\n", __func__); goto err_put_desc; } desc = atc_create_memset_desc(chan, paddr, dest, len); if (!desc) goto err_put_desc; atc_desc_chain(&first, &prev, desc); total_len += len; } /* * Only set the buffer pointers on the last descriptor to * avoid free'ing while we have our transfer still going */ desc->memset_paddr = paddr; desc->memset_vaddr = vaddr; desc->memset_buffer = true; first->txd.cookie = -EBUSY; first->total_len = total_len; /* set end-of-link on the descriptor */ set_desc_eol(desc); first->txd.flags = flags; return &first->txd; err_put_desc: atc_desc_put(atchan, first); return NULL; } /** * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction * @chan: DMA channel * @sgl: scatterlist to transfer to/from * @sg_len: number of entries in @scatterlist * @direction: DMA direction * @flags: tx descriptor status flags * @context: transaction context (ignored) */ static struct dma_async_tx_descriptor * atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma_slave *atslave = chan->private; struct dma_slave_config *sconfig = &atchan->dma_sconfig; struct at_desc *first = NULL; struct at_desc *prev = NULL; u32 ctrla; u32 ctrlb; dma_addr_t reg; unsigned int reg_width; unsigned int mem_width; unsigned int i; struct scatterlist *sg; size_t total_len = 0; dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", sg_len, direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", flags); if (unlikely(!atslave || !sg_len)) { dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); return NULL; } ctrla = ATC_SCSIZE(sconfig->src_maxburst) | ATC_DCSIZE(sconfig->dst_maxburst); ctrlb = ATC_IEN; switch (direction) { case DMA_MEM_TO_DEV: reg_width = convert_buswidth(sconfig->dst_addr_width); ctrla |= ATC_DST_WIDTH(reg_width); ctrlb |= ATC_DST_ADDR_MODE_FIXED | ATC_SRC_ADDR_MODE_INCR | ATC_FC_MEM2PER | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); reg = sconfig->dst_addr; for_each_sg(sgl, sg, sg_len, i) { struct at_desc *desc; u32 len; u32 mem; desc = atc_desc_get(atchan); if (!desc) goto err_desc_get; mem = sg_dma_address(sg); len = sg_dma_len(sg); if (unlikely(!len)) { dev_dbg(chan2dev(chan), "prep_slave_sg: sg(%d) data length is zero\n", i); goto err; } mem_width = 2; if (unlikely(mem & 3 || len & 3)) mem_width = 0; desc->lli.saddr = mem; desc->lli.daddr = reg; desc->lli.ctrla = ctrla | ATC_SRC_WIDTH(mem_width) | len >> mem_width; desc->lli.ctrlb = ctrlb; desc->len = len; atc_desc_chain(&first, &prev, desc); total_len += len; } break; case DMA_DEV_TO_MEM: reg_width = convert_buswidth(sconfig->src_addr_width); ctrla |= ATC_SRC_WIDTH(reg_width); ctrlb |= ATC_DST_ADDR_MODE_INCR | ATC_SRC_ADDR_MODE_FIXED | ATC_FC_PER2MEM | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); reg = sconfig->src_addr; for_each_sg(sgl, sg, sg_len, i) { struct at_desc *desc; u32 len; u32 mem; desc = atc_desc_get(atchan); if (!desc) goto err_desc_get; mem = sg_dma_address(sg); len = sg_dma_len(sg); if (unlikely(!len)) { dev_dbg(chan2dev(chan), "prep_slave_sg: sg(%d) data length is zero\n", i); goto err; } mem_width = 2; if (unlikely(mem & 3 || len & 3)) mem_width = 0; desc->lli.saddr = reg; desc->lli.daddr = mem; desc->lli.ctrla = ctrla | ATC_DST_WIDTH(mem_width) | len >> reg_width; desc->lli.ctrlb = ctrlb; desc->len = len; atc_desc_chain(&first, &prev, desc); total_len += len; } break; default: return NULL; } /* set end-of-link to the last link descriptor of list*/ set_desc_eol(prev); /* First descriptor of the chain embedds additional information */ first->txd.cookie = -EBUSY; first->total_len = total_len; /* first link descriptor of list is responsible of flags */ first->txd.flags = flags; /* client is in control of this ack */ return &first->txd; err_desc_get: dev_err(chan2dev(chan), "not enough descriptors available\n"); err: atc_desc_put(atchan, first); return NULL; } /* * atc_dma_cyclic_check_values * Check for too big/unaligned periods and unaligned DMA buffer */ static int atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, size_t period_len) { if (period_len > (ATC_BTSIZE_MAX << reg_width)) goto err_out; if (unlikely(period_len & ((1 << reg_width) - 1))) goto err_out; if (unlikely(buf_addr & ((1 << reg_width) - 1))) goto err_out; return 0; err_out: return -EINVAL; } /* * atc_dma_cyclic_fill_desc - Fill one period descriptor */ static int atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, unsigned int period_index, dma_addr_t buf_addr, unsigned int reg_width, size_t period_len, enum dma_transfer_direction direction) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct dma_slave_config *sconfig = &atchan->dma_sconfig; u32 ctrla; /* prepare common CRTLA value */ ctrla = ATC_SCSIZE(sconfig->src_maxburst) | ATC_DCSIZE(sconfig->dst_maxburst) | ATC_DST_WIDTH(reg_width) | ATC_SRC_WIDTH(reg_width) | period_len >> reg_width; switch (direction) { case DMA_MEM_TO_DEV: desc->lli.saddr = buf_addr + (period_len * period_index); desc->lli.daddr = sconfig->dst_addr; desc->lli.ctrla = ctrla; desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED | ATC_SRC_ADDR_MODE_INCR | ATC_FC_MEM2PER | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); desc->len = period_len; break; case DMA_DEV_TO_MEM: desc->lli.saddr = sconfig->src_addr; desc->lli.daddr = buf_addr + (period_len * period_index); desc->lli.ctrla = ctrla; desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR | ATC_SRC_ADDR_MODE_FIXED | ATC_FC_PER2MEM | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); desc->len = period_len; break; default: return -EINVAL; } return 0; } /** * atc_prep_dma_cyclic - prepare the cyclic DMA transfer * @chan: the DMA channel to prepare * @buf_addr: physical DMA address where the buffer starts * @buf_len: total number of bytes for the entire buffer * @period_len: number of bytes for each period * @direction: transfer direction, to or from device * @flags: tx descriptor status flags */ static struct dma_async_tx_descriptor * atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma_slave *atslave = chan->private; struct dma_slave_config *sconfig = &atchan->dma_sconfig; struct at_desc *first = NULL; struct at_desc *prev = NULL; unsigned long was_cyclic; unsigned int reg_width; unsigned int periods = buf_len / period_len; unsigned int i; dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", &buf_addr, periods, buf_len, period_len); if (unlikely(!atslave || !buf_len || !period_len)) { dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); return NULL; } was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); if (was_cyclic) { dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); return NULL; } if (unlikely(!is_slave_direction(direction))) goto err_out; if (direction == DMA_MEM_TO_DEV) reg_width = convert_buswidth(sconfig->dst_addr_width); else reg_width = convert_buswidth(sconfig->src_addr_width); /* Check for too big/unaligned periods and unaligned DMA buffer */ if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) goto err_out; /* build cyclic linked list */ for (i = 0; i < periods; i++) { struct at_desc *desc; desc = atc_desc_get(atchan); if (!desc) goto err_desc_get; if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, reg_width, period_len, direction)) goto err_desc_get; atc_desc_chain(&first, &prev, desc); } /* lets make a cyclic list */ prev->lli.dscr = first->txd.phys; /* First descriptor of the chain embedds additional information */ first->txd.cookie = -EBUSY; first->total_len = buf_len; return &first->txd; err_desc_get: dev_err(chan2dev(chan), "not enough descriptors available\n"); atc_desc_put(atchan, first); err_out: clear_bit(ATC_IS_CYCLIC, &atchan->status); return NULL; } static int atc_config(struct dma_chan *chan, struct dma_slave_config *sconfig) { struct at_dma_chan *atchan = to_at_dma_chan(chan); dev_vdbg(chan2dev(chan), "%s\n", __func__); /* Check if it is chan is configured for slave transfers */ if (!chan->private) return -EINVAL; memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); convert_burst(&atchan->dma_sconfig.src_maxburst); convert_burst(&atchan->dma_sconfig.dst_maxburst); return 0; } static int atc_pause(struct dma_chan *chan) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma *atdma = to_at_dma(chan->device); int chan_id = atchan->chan_common.chan_id; unsigned long flags; dev_vdbg(chan2dev(chan), "%s\n", __func__); spin_lock_irqsave(&atchan->lock, flags); dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); set_bit(ATC_IS_PAUSED, &atchan->status); spin_unlock_irqrestore(&atchan->lock, flags); return 0; } static int atc_resume(struct dma_chan *chan) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma *atdma = to_at_dma(chan->device); int chan_id = atchan->chan_common.chan_id; unsigned long flags; dev_vdbg(chan2dev(chan), "%s\n", __func__); if (!atc_chan_is_paused(atchan)) return 0; spin_lock_irqsave(&atchan->lock, flags); dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); clear_bit(ATC_IS_PAUSED, &atchan->status); spin_unlock_irqrestore(&atchan->lock, flags); return 0; } static int atc_terminate_all(struct dma_chan *chan) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma *atdma = to_at_dma(chan->device); int chan_id = atchan->chan_common.chan_id; unsigned long flags; dev_vdbg(chan2dev(chan), "%s\n", __func__); /* * This is only called when something went wrong elsewhere, so * we don't really care about the data. Just disable the * channel. We still have to poll the channel enable bit due * to AHB/HSB limitations. */ spin_lock_irqsave(&atchan->lock, flags); /* disabling channel: must also remove suspend state */ dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); /* confirm that this channel is disabled */ while (dma_readl(atdma, CHSR) & atchan->mask) cpu_relax(); /* active_list entries will end up before queued entries */ list_splice_tail_init(&atchan->queue, &atchan->free_list); list_splice_tail_init(&atchan->active_list, &atchan->free_list); clear_bit(ATC_IS_PAUSED, &atchan->status); /* if channel dedicated to cyclic operations, free it */ clear_bit(ATC_IS_CYCLIC, &atchan->status); spin_unlock_irqrestore(&atchan->lock, flags); return 0; } /** * atc_tx_status - poll for transaction completion * @chan: DMA channel * @cookie: transaction identifier to check status of * @txstate: if not %NULL updated with transaction state * * If @txstate is passed in, upon return it reflect the driver * internal state and can be used with dma_async_is_complete() to check * the status of multiple cookies without re-checking hardware state. */ static enum dma_status atc_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct at_dma_chan *atchan = to_at_dma_chan(chan); unsigned long flags; enum dma_status dma_status; u32 residue; int ret; dma_status = dma_cookie_status(chan, cookie, txstate); if (dma_status == DMA_COMPLETE || !txstate) return dma_status; spin_lock_irqsave(&atchan->lock, flags); ret = atc_get_residue(chan, cookie, &residue); spin_unlock_irqrestore(&atchan->lock, flags); if (unlikely(ret < 0)) { dev_vdbg(chan2dev(chan), "get residual bytes error\n"); return DMA_ERROR; } else { dma_set_residue(txstate, residue); } dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n", dma_status, cookie, residue); return dma_status; } /** * atc_issue_pending - takes the first transaction descriptor in the pending * queue and starts the transfer. * @chan: target DMA channel */ static void atc_issue_pending(struct dma_chan *chan) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_desc *desc; unsigned long flags; dev_vdbg(chan2dev(chan), "issue_pending\n"); spin_lock_irqsave(&atchan->lock, flags); if (atc_chan_is_enabled(atchan) || list_empty(&atchan->queue)) return spin_unlock_irqrestore(&atchan->lock, flags); desc = atc_first_queued(atchan); list_move_tail(&desc->desc_node, &atchan->active_list); atc_dostart(atchan, desc); spin_unlock_irqrestore(&atchan->lock, flags); } /** * atc_alloc_chan_resources - allocate resources for DMA channel * @chan: allocate descriptor resources for this channel * * return - the number of allocated descriptors */ static int atc_alloc_chan_resources(struct dma_chan *chan) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma *atdma = to_at_dma(chan->device); struct at_desc *desc; struct at_dma_slave *atslave; int i; u32 cfg; dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); /* ASSERT: channel is idle */ if (atc_chan_is_enabled(atchan)) { dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); return -EIO; } if (!list_empty(&atchan->free_list)) { dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n"); return -EIO; } cfg = ATC_DEFAULT_CFG; atslave = chan->private; if (atslave) { /* * We need controller-specific data to set up slave * transfers. */ BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); /* if cfg configuration specified take it instead of default */ if (atslave->cfg) cfg = atslave->cfg; } /* Allocate initial pool of descriptors */ for (i = 0; i < init_nr_desc_per_channel; i++) { desc = atc_alloc_descriptor(chan, GFP_KERNEL); if (!desc) { dev_err(atdma->dma_common.dev, "Only %d initial descriptors\n", i); break; } list_add_tail(&desc->desc_node, &atchan->free_list); } dma_cookie_init(chan); /* channel parameters */ channel_writel(atchan, CFG, cfg); dev_dbg(chan2dev(chan), "alloc_chan_resources: allocated %d descriptors\n", i); return i; } /** * atc_free_chan_resources - free all channel resources * @chan: DMA channel */ static void atc_free_chan_resources(struct dma_chan *chan) { struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma *atdma = to_at_dma(chan->device); struct at_desc *desc, *_desc; LIST_HEAD(list); /* ASSERT: channel is idle */ BUG_ON(!list_empty(&atchan->active_list)); BUG_ON(!list_empty(&atchan->queue)); BUG_ON(atc_chan_is_enabled(atchan)); list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); list_del(&desc->desc_node); /* free link descriptor */ dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); } list_splice_init(&atchan->free_list, &list); atchan->status = 0; /* * Free atslave allocated in at_dma_xlate() */ kfree(chan->private); chan->private = NULL; dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); } #ifdef CONFIG_OF static bool at_dma_filter(struct dma_chan *chan, void *slave) { struct at_dma_slave *atslave = slave; if (atslave->dma_dev == chan->device->dev) { chan->private = atslave; return true; } else { return false; } } static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, struct of_dma *of_dma) { struct dma_chan *chan; struct at_dma_chan *atchan; struct at_dma_slave *atslave; dma_cap_mask_t mask; unsigned int per_id; struct platform_device *dmac_pdev; if (dma_spec->args_count != 2) return NULL; dmac_pdev = of_find_device_by_node(dma_spec->np); if (!dmac_pdev) return NULL; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); atslave = kmalloc(sizeof(*atslave), GFP_KERNEL); if (!atslave) { put_device(&dmac_pdev->dev); return NULL; } atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; /* * We can fill both SRC_PER and DST_PER, one of these fields will be * ignored depending on DMA transfer direction. */ per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); /* * We have to translate the value we get from the device tree since * the half FIFO configuration value had to be 0 to keep backward * compatibility. */ switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { case AT91_DMA_CFG_FIFOCFG_ALAP: atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; break; case AT91_DMA_CFG_FIFOCFG_ASAP: atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; break; case AT91_DMA_CFG_FIFOCFG_HALF: default: atslave->cfg |= ATC_FIFOCFG_HALFFIFO; } atslave->dma_dev = &dmac_pdev->dev; chan = dma_request_channel(mask, at_dma_filter, atslave); if (!chan) { put_device(&dmac_pdev->dev); kfree(atslave); return NULL; } atchan = to_at_dma_chan(chan); atchan->per_if = dma_spec->args[0] & 0xff; atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; return chan; } #else static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, struct of_dma *of_dma) { return NULL; } #endif /*-- Module Management -----------------------------------------------*/ /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ static struct at_dma_platform_data at91sam9rl_config = { .nr_channels = 2, }; static struct at_dma_platform_data at91sam9g45_config = { .nr_channels = 8, }; #if defined(CONFIG_OF) static const struct of_device_id atmel_dma_dt_ids[] = { { .compatible = "atmel,at91sam9rl-dma", .data = &at91sam9rl_config, }, { .compatible = "atmel,at91sam9g45-dma", .data = &at91sam9g45_config, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); #endif static const struct platform_device_id atdma_devtypes[] = { { .name = "at91sam9rl_dma", .driver_data = (unsigned long) &at91sam9rl_config, }, { .name = "at91sam9g45_dma", .driver_data = (unsigned long) &at91sam9g45_config, }, { /* sentinel */ } }; static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( struct platform_device *pdev) { if (pdev->dev.of_node) { const struct of_device_id *match; match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); if (match == NULL) return NULL; return match->data; } return (struct at_dma_platform_data *) platform_get_device_id(pdev)->driver_data; } /** * at_dma_off - disable DMA controller * @atdma: the Atmel HDAMC device */ static void at_dma_off(struct at_dma *atdma) { dma_writel(atdma, EN, 0); /* disable all interrupts */ dma_writel(atdma, EBCIDR, -1L); /* confirm that all channels are disabled */ while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) cpu_relax(); } static int __init at_dma_probe(struct platform_device *pdev) { struct at_dma *atdma; int irq; int err; int i; const struct at_dma_platform_data *plat_dat; /* setup platform data for each SoC */ dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); /* get DMA parameters from controller type */ plat_dat = at_dma_get_driver_data(pdev); if (!plat_dat) return -ENODEV; atdma = devm_kzalloc(&pdev->dev, struct_size(atdma, chan, plat_dat->nr_channels), GFP_KERNEL); if (!atdma) return -ENOMEM; atdma->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(atdma->regs)) return PTR_ERR(atdma->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; /* discover transaction capabilities */ atdma->dma_common.cap_mask = plat_dat->cap_mask; atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; atdma->clk = devm_clk_get(&pdev->dev, "dma_clk"); if (IS_ERR(atdma->clk)) return PTR_ERR(atdma->clk); err = clk_prepare_enable(atdma->clk); if (err) return err; /* force dma off, just in case */ at_dma_off(atdma); err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); if (err) goto err_irq; platform_set_drvdata(pdev, atdma); /* create a pool of consistent memory blocks for hardware descriptors */ atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", &pdev->dev, sizeof(struct at_desc), 4 /* word alignment */, 0); if (!atdma->dma_desc_pool) { dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); err = -ENOMEM; goto err_desc_pool_create; } /* create a pool of consistent memory blocks for memset blocks */ atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", &pdev->dev, sizeof(int), 4, 0); if (!atdma->memset_pool) { dev_err(&pdev->dev, "No memory for memset dma pool\n"); err = -ENOMEM; goto err_memset_pool_create; } /* clear any pending interrupt */ while (dma_readl(atdma, EBCISR)) cpu_relax(); /* initialize channels related values */ INIT_LIST_HEAD(&atdma->dma_common.channels); for (i = 0; i < plat_dat->nr_channels; i++) { struct at_dma_chan *atchan = &atdma->chan[i]; atchan->mem_if = AT_DMA_MEM_IF; atchan->per_if = AT_DMA_PER_IF; atchan->chan_common.device = &atdma->dma_common; dma_cookie_init(&atchan->chan_common); list_add_tail(&atchan->chan_common.device_node, &atdma->dma_common.channels); atchan->ch_regs = atdma->regs + ch_regs(i); spin_lock_init(&atchan->lock); atchan->mask = 1 << i; INIT_LIST_HEAD(&atchan->active_list); INIT_LIST_HEAD(&atchan->queue); INIT_LIST_HEAD(&atchan->free_list); tasklet_setup(&atchan->tasklet, atc_tasklet); atc_enable_chan_irq(atdma, i); } /* set base routines */ atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; atdma->dma_common.device_tx_status = atc_tx_status; atdma->dma_common.device_issue_pending = atc_issue_pending; atdma->dma_common.dev = &pdev->dev; /* set prep routines based on capability */ if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; } if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; /* controller can do slave DMA: can trigger cyclic transfers */ dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; atdma->dma_common.device_config = atc_config; atdma->dma_common.device_pause = atc_pause; atdma->dma_common.device_resume = atc_resume; atdma->dma_common.device_terminate_all = atc_terminate_all; atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; } dma_writel(atdma, EN, AT_DMA_ENABLE); dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", plat_dat->nr_channels); err = dma_async_device_register(&atdma->dma_common); if (err) { dev_err(&pdev->dev, "Unable to register: %d.\n", err); goto err_dma_async_device_register; } /* * Do not return an error if the dmac node is not present in order to * not break the existing way of requesting channel with * dma_request_channel(). */ if (pdev->dev.of_node) { err = of_dma_controller_register(pdev->dev.of_node, at_dma_xlate, atdma); if (err) { dev_err(&pdev->dev, "could not register of_dma_controller\n"); goto err_of_dma_controller_register; } } return 0; err_of_dma_controller_register: dma_async_device_unregister(&atdma->dma_common); err_dma_async_device_register: dma_pool_destroy(atdma->memset_pool); err_memset_pool_create: dma_pool_destroy(atdma->dma_desc_pool); err_desc_pool_create: free_irq(platform_get_irq(pdev, 0), atdma); err_irq: clk_disable_unprepare(atdma->clk); return err; } static int at_dma_remove(struct platform_device *pdev) { struct at_dma *atdma = platform_get_drvdata(pdev); struct dma_chan *chan, *_chan; at_dma_off(atdma); if (pdev->dev.of_node) of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&atdma->dma_common); dma_pool_destroy(atdma->memset_pool); dma_pool_destroy(atdma->dma_desc_pool); free_irq(platform_get_irq(pdev, 0), atdma); list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, device_node) { struct at_dma_chan *atchan = to_at_dma_chan(chan); /* Disable interrupts */ atc_disable_chan_irq(atdma, chan->chan_id); tasklet_kill(&atchan->tasklet); list_del(&chan->device_node); } clk_disable_unprepare(atdma->clk); return 0; } static void at_dma_shutdown(struct platform_device *pdev) { struct at_dma *atdma = platform_get_drvdata(pdev); at_dma_off(platform_get_drvdata(pdev)); clk_disable_unprepare(atdma->clk); } static int at_dma_prepare(struct device *dev) { struct at_dma *atdma = dev_get_drvdata(dev); struct dma_chan *chan, *_chan; list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, device_node) { struct at_dma_chan *atchan = to_at_dma_chan(chan); /* wait for transaction completion (except in cyclic case) */ if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) return -EAGAIN; } return 0; } static void atc_suspend_cyclic(struct at_dma_chan *atchan) { struct dma_chan *chan = &atchan->chan_common; /* Channel should be paused by user * do it anyway even if it is not done already */ if (!atc_chan_is_paused(atchan)) { dev_warn(chan2dev(chan), "cyclic channel not paused, should be done by channel user\n"); atc_pause(chan); } /* now preserve additional data for cyclic operations */ /* next descriptor address in the cyclic list */ atchan->save_dscr = channel_readl(atchan, DSCR); vdbg_dump_regs(atchan); } static int at_dma_suspend_noirq(struct device *dev) { struct at_dma *atdma = dev_get_drvdata(dev); struct dma_chan *chan, *_chan; /* preserve data */ list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, device_node) { struct at_dma_chan *atchan = to_at_dma_chan(chan); if (atc_chan_is_cyclic(atchan)) atc_suspend_cyclic(atchan); atchan->save_cfg = channel_readl(atchan, CFG); } atdma->save_imr = dma_readl(atdma, EBCIMR); /* disable DMA controller */ at_dma_off(atdma); clk_disable_unprepare(atdma->clk); return 0; } static void atc_resume_cyclic(struct at_dma_chan *atchan) { struct at_dma *atdma = to_at_dma(atchan->chan_common.device); /* restore channel status for cyclic descriptors list: * next descriptor in the cyclic list at the time of suspend */ channel_writel(atchan, SADDR, 0); channel_writel(atchan, DADDR, 0); channel_writel(atchan, CTRLA, 0); channel_writel(atchan, CTRLB, 0); channel_writel(atchan, DSCR, atchan->save_dscr); dma_writel(atdma, CHER, atchan->mask); /* channel pause status should be removed by channel user * We cannot take the initiative to do it here */ vdbg_dump_regs(atchan); } static int at_dma_resume_noirq(struct device *dev) { struct at_dma *atdma = dev_get_drvdata(dev); struct dma_chan *chan, *_chan; /* bring back DMA controller */ clk_prepare_enable(atdma->clk); dma_writel(atdma, EN, AT_DMA_ENABLE); /* clear any pending interrupt */ while (dma_readl(atdma, EBCISR)) cpu_relax(); /* restore saved data */ dma_writel(atdma, EBCIER, atdma->save_imr); list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, device_node) { struct at_dma_chan *atchan = to_at_dma_chan(chan); channel_writel(atchan, CFG, atchan->save_cfg); if (atc_chan_is_cyclic(atchan)) atc_resume_cyclic(atchan); } return 0; } static const struct dev_pm_ops at_dma_dev_pm_ops = { .prepare = at_dma_prepare, .suspend_noirq = at_dma_suspend_noirq, .resume_noirq = at_dma_resume_noirq, }; static struct platform_driver at_dma_driver = { .remove = at_dma_remove, .shutdown = at_dma_shutdown, .id_table = atdma_devtypes, .driver = { .name = "at_hdmac", .pm = &at_dma_dev_pm_ops, .of_match_table = of_match_ptr(atmel_dma_dt_ids), }, }; static int __init at_dma_init(void) { return platform_driver_probe(&at_dma_driver, at_dma_probe); } subsys_initcall(at_dma_init); static void __exit at_dma_exit(void) { platform_driver_unregister(&at_dma_driver); } module_exit(at_dma_exit); MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); MODULE_AUTHOR("Nicolas Ferre "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:at_hdmac");