// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Huawei Ltd. * Author: Jiang Liu * * Copyright (C) 2014-2016 Zi Shen Lim */ #include #include #include #include #include #include #include #include #include #define AARCH64_INSN_SF_BIT BIT(31) #define AARCH64_INSN_N_BIT BIT(22) #define AARCH64_INSN_LSL_12 BIT(22) static int __kprobes aarch64_get_imm_shift_mask(enum aarch64_insn_imm_type type, u32 *maskp, int *shiftp) { u32 mask; int shift; switch (type) { case AARCH64_INSN_IMM_26: mask = BIT(26) - 1; shift = 0; break; case AARCH64_INSN_IMM_19: mask = BIT(19) - 1; shift = 5; break; case AARCH64_INSN_IMM_16: mask = BIT(16) - 1; shift = 5; break; case AARCH64_INSN_IMM_14: mask = BIT(14) - 1; shift = 5; break; case AARCH64_INSN_IMM_12: mask = BIT(12) - 1; shift = 10; break; case AARCH64_INSN_IMM_9: mask = BIT(9) - 1; shift = 12; break; case AARCH64_INSN_IMM_7: mask = BIT(7) - 1; shift = 15; break; case AARCH64_INSN_IMM_6: case AARCH64_INSN_IMM_S: mask = BIT(6) - 1; shift = 10; break; case AARCH64_INSN_IMM_R: mask = BIT(6) - 1; shift = 16; break; case AARCH64_INSN_IMM_N: mask = 1; shift = 22; break; default: return -EINVAL; } *maskp = mask; *shiftp = shift; return 0; } #define ADR_IMM_HILOSPLIT 2 #define ADR_IMM_SIZE SZ_2M #define ADR_IMM_LOMASK ((1 << ADR_IMM_HILOSPLIT) - 1) #define ADR_IMM_HIMASK ((ADR_IMM_SIZE >> ADR_IMM_HILOSPLIT) - 1) #define ADR_IMM_LOSHIFT 29 #define ADR_IMM_HISHIFT 5 u64 aarch64_insn_decode_immediate(enum aarch64_insn_imm_type type, u32 insn) { u32 immlo, immhi, mask; int shift; switch (type) { case AARCH64_INSN_IMM_ADR: shift = 0; immlo = (insn >> ADR_IMM_LOSHIFT) & ADR_IMM_LOMASK; immhi = (insn >> ADR_IMM_HISHIFT) & ADR_IMM_HIMASK; insn = (immhi << ADR_IMM_HILOSPLIT) | immlo; mask = ADR_IMM_SIZE - 1; break; default: if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) { pr_err("%s: unknown immediate encoding %d\n", __func__, type); return 0; } } return (insn >> shift) & mask; } u32 __kprobes aarch64_insn_encode_immediate(enum aarch64_insn_imm_type type, u32 insn, u64 imm) { u32 immlo, immhi, mask; int shift; if (insn == AARCH64_BREAK_FAULT) return AARCH64_BREAK_FAULT; switch (type) { case AARCH64_INSN_IMM_ADR: shift = 0; immlo = (imm & ADR_IMM_LOMASK) << ADR_IMM_LOSHIFT; imm >>= ADR_IMM_HILOSPLIT; immhi = (imm & ADR_IMM_HIMASK) << ADR_IMM_HISHIFT; imm = immlo | immhi; mask = ((ADR_IMM_LOMASK << ADR_IMM_LOSHIFT) | (ADR_IMM_HIMASK << ADR_IMM_HISHIFT)); break; default: if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) { pr_err("%s: unknown immediate encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } } /* Update the immediate field. */ insn &= ~(mask << shift); insn |= (imm & mask) << shift; return insn; } u32 aarch64_insn_decode_register(enum aarch64_insn_register_type type, u32 insn) { int shift; switch (type) { case AARCH64_INSN_REGTYPE_RT: case AARCH64_INSN_REGTYPE_RD: shift = 0; break; case AARCH64_INSN_REGTYPE_RN: shift = 5; break; case AARCH64_INSN_REGTYPE_RT2: case AARCH64_INSN_REGTYPE_RA: shift = 10; break; case AARCH64_INSN_REGTYPE_RM: shift = 16; break; default: pr_err("%s: unknown register type encoding %d\n", __func__, type); return 0; } return (insn >> shift) & GENMASK(4, 0); } static u32 aarch64_insn_encode_register(enum aarch64_insn_register_type type, u32 insn, enum aarch64_insn_register reg) { int shift; if (insn == AARCH64_BREAK_FAULT) return AARCH64_BREAK_FAULT; if (reg < AARCH64_INSN_REG_0 || reg > AARCH64_INSN_REG_SP) { pr_err("%s: unknown register encoding %d\n", __func__, reg); return AARCH64_BREAK_FAULT; } switch (type) { case AARCH64_INSN_REGTYPE_RT: case AARCH64_INSN_REGTYPE_RD: shift = 0; break; case AARCH64_INSN_REGTYPE_RN: shift = 5; break; case AARCH64_INSN_REGTYPE_RT2: case AARCH64_INSN_REGTYPE_RA: shift = 10; break; case AARCH64_INSN_REGTYPE_RM: case AARCH64_INSN_REGTYPE_RS: shift = 16; break; default: pr_err("%s: unknown register type encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn &= ~(GENMASK(4, 0) << shift); insn |= reg << shift; return insn; } static const u32 aarch64_insn_ldst_size[] = { [AARCH64_INSN_SIZE_8] = 0, [AARCH64_INSN_SIZE_16] = 1, [AARCH64_INSN_SIZE_32] = 2, [AARCH64_INSN_SIZE_64] = 3, }; static u32 aarch64_insn_encode_ldst_size(enum aarch64_insn_size_type type, u32 insn) { u32 size; if (type < AARCH64_INSN_SIZE_8 || type > AARCH64_INSN_SIZE_64) { pr_err("%s: unknown size encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } size = aarch64_insn_ldst_size[type]; insn &= ~GENMASK(31, 30); insn |= size << 30; return insn; } static inline long label_imm_common(unsigned long pc, unsigned long addr, long range) { long offset; if ((pc & 0x3) || (addr & 0x3)) { pr_err("%s: A64 instructions must be word aligned\n", __func__); return range; } offset = ((long)addr - (long)pc); if (offset < -range || offset >= range) { pr_err("%s: offset out of range\n", __func__); return range; } return offset; } u32 __kprobes aarch64_insn_gen_branch_imm(unsigned long pc, unsigned long addr, enum aarch64_insn_branch_type type) { u32 insn; long offset; /* * B/BL support [-128M, 128M) offset * ARM64 virtual address arrangement guarantees all kernel and module * texts are within +/-128M. */ offset = label_imm_common(pc, addr, SZ_128M); if (offset >= SZ_128M) return AARCH64_BREAK_FAULT; switch (type) { case AARCH64_INSN_BRANCH_LINK: insn = aarch64_insn_get_bl_value(); break; case AARCH64_INSN_BRANCH_NOLINK: insn = aarch64_insn_get_b_value(); break; default: pr_err("%s: unknown branch encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn, offset >> 2); } u32 aarch64_insn_gen_comp_branch_imm(unsigned long pc, unsigned long addr, enum aarch64_insn_register reg, enum aarch64_insn_variant variant, enum aarch64_insn_branch_type type) { u32 insn; long offset; offset = label_imm_common(pc, addr, SZ_1M); if (offset >= SZ_1M) return AARCH64_BREAK_FAULT; switch (type) { case AARCH64_INSN_BRANCH_COMP_ZERO: insn = aarch64_insn_get_cbz_value(); break; case AARCH64_INSN_BRANCH_COMP_NONZERO: insn = aarch64_insn_get_cbnz_value(); break; default: pr_err("%s: unknown branch encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn, offset >> 2); } u32 aarch64_insn_gen_cond_branch_imm(unsigned long pc, unsigned long addr, enum aarch64_insn_condition cond) { u32 insn; long offset; offset = label_imm_common(pc, addr, SZ_1M); insn = aarch64_insn_get_bcond_value(); if (cond < AARCH64_INSN_COND_EQ || cond > AARCH64_INSN_COND_AL) { pr_err("%s: unknown condition encoding %d\n", __func__, cond); return AARCH64_BREAK_FAULT; } insn |= cond; return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn, offset >> 2); } u32 __kprobes aarch64_insn_gen_hint(enum aarch64_insn_hint_cr_op op) { return aarch64_insn_get_hint_value() | op; } u32 __kprobes aarch64_insn_gen_nop(void) { return aarch64_insn_gen_hint(AARCH64_INSN_HINT_NOP); } u32 aarch64_insn_gen_branch_reg(enum aarch64_insn_register reg, enum aarch64_insn_branch_type type) { u32 insn; switch (type) { case AARCH64_INSN_BRANCH_NOLINK: insn = aarch64_insn_get_br_value(); break; case AARCH64_INSN_BRANCH_LINK: insn = aarch64_insn_get_blr_value(); break; case AARCH64_INSN_BRANCH_RETURN: insn = aarch64_insn_get_ret_value(); break; default: pr_err("%s: unknown branch encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, reg); } u32 aarch64_insn_gen_load_store_reg(enum aarch64_insn_register reg, enum aarch64_insn_register base, enum aarch64_insn_register offset, enum aarch64_insn_size_type size, enum aarch64_insn_ldst_type type) { u32 insn; switch (type) { case AARCH64_INSN_LDST_LOAD_REG_OFFSET: insn = aarch64_insn_get_ldr_reg_value(); break; case AARCH64_INSN_LDST_STORE_REG_OFFSET: insn = aarch64_insn_get_str_reg_value(); break; default: pr_err("%s: unknown load/store encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_ldst_size(size, insn); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, base); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, offset); } u32 aarch64_insn_gen_load_store_imm(enum aarch64_insn_register reg, enum aarch64_insn_register base, unsigned int imm, enum aarch64_insn_size_type size, enum aarch64_insn_ldst_type type) { u32 insn; u32 shift; if (size < AARCH64_INSN_SIZE_8 || size > AARCH64_INSN_SIZE_64) { pr_err("%s: unknown size encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } shift = aarch64_insn_ldst_size[size]; if (imm & ~(BIT(12 + shift) - BIT(shift))) { pr_err("%s: invalid imm: %d\n", __func__, imm); return AARCH64_BREAK_FAULT; } imm >>= shift; switch (type) { case AARCH64_INSN_LDST_LOAD_IMM_OFFSET: insn = aarch64_insn_get_ldr_imm_value(); break; case AARCH64_INSN_LDST_STORE_IMM_OFFSET: insn = aarch64_insn_get_str_imm_value(); break; default: pr_err("%s: unknown load/store encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_ldst_size(size, insn); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, base); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_12, insn, imm); } u32 aarch64_insn_gen_load_literal(unsigned long pc, unsigned long addr, enum aarch64_insn_register reg, bool is64bit) { u32 insn; long offset; offset = label_imm_common(pc, addr, SZ_1M); if (offset >= SZ_1M) return AARCH64_BREAK_FAULT; insn = aarch64_insn_get_ldr_lit_value(); if (is64bit) insn |= BIT(30); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn, offset >> 2); } u32 aarch64_insn_gen_load_store_pair(enum aarch64_insn_register reg1, enum aarch64_insn_register reg2, enum aarch64_insn_register base, int offset, enum aarch64_insn_variant variant, enum aarch64_insn_ldst_type type) { u32 insn; int shift; switch (type) { case AARCH64_INSN_LDST_LOAD_PAIR_PRE_INDEX: insn = aarch64_insn_get_ldp_pre_value(); break; case AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX: insn = aarch64_insn_get_stp_pre_value(); break; case AARCH64_INSN_LDST_LOAD_PAIR_POST_INDEX: insn = aarch64_insn_get_ldp_post_value(); break; case AARCH64_INSN_LDST_STORE_PAIR_POST_INDEX: insn = aarch64_insn_get_stp_post_value(); break; default: pr_err("%s: unknown load/store encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if ((offset & 0x3) || (offset < -256) || (offset > 252)) { pr_err("%s: offset must be multiples of 4 in the range of [-256, 252] %d\n", __func__, offset); return AARCH64_BREAK_FAULT; } shift = 2; break; case AARCH64_INSN_VARIANT_64BIT: if ((offset & 0x7) || (offset < -512) || (offset > 504)) { pr_err("%s: offset must be multiples of 8 in the range of [-512, 504] %d\n", __func__, offset); return AARCH64_BREAK_FAULT; } shift = 3; insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg1); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT2, insn, reg2); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, base); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_7, insn, offset >> shift); } u32 aarch64_insn_gen_load_store_ex(enum aarch64_insn_register reg, enum aarch64_insn_register base, enum aarch64_insn_register state, enum aarch64_insn_size_type size, enum aarch64_insn_ldst_type type) { u32 insn; switch (type) { case AARCH64_INSN_LDST_LOAD_EX: case AARCH64_INSN_LDST_LOAD_ACQ_EX: insn = aarch64_insn_get_load_ex_value(); if (type == AARCH64_INSN_LDST_LOAD_ACQ_EX) insn |= BIT(15); break; case AARCH64_INSN_LDST_STORE_EX: case AARCH64_INSN_LDST_STORE_REL_EX: insn = aarch64_insn_get_store_ex_value(); if (type == AARCH64_INSN_LDST_STORE_REL_EX) insn |= BIT(15); break; default: pr_err("%s: unknown load/store exclusive encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_ldst_size(size, insn); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, base); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT2, insn, AARCH64_INSN_REG_ZR); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RS, insn, state); } #ifdef CONFIG_ARM64_LSE_ATOMICS static u32 aarch64_insn_encode_ldst_order(enum aarch64_insn_mem_order_type type, u32 insn) { u32 order; switch (type) { case AARCH64_INSN_MEM_ORDER_NONE: order = 0; break; case AARCH64_INSN_MEM_ORDER_ACQ: order = 2; break; case AARCH64_INSN_MEM_ORDER_REL: order = 1; break; case AARCH64_INSN_MEM_ORDER_ACQREL: order = 3; break; default: pr_err("%s: unknown mem order %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn &= ~GENMASK(23, 22); insn |= order << 22; return insn; } u32 aarch64_insn_gen_atomic_ld_op(enum aarch64_insn_register result, enum aarch64_insn_register address, enum aarch64_insn_register value, enum aarch64_insn_size_type size, enum aarch64_insn_mem_atomic_op op, enum aarch64_insn_mem_order_type order) { u32 insn; switch (op) { case AARCH64_INSN_MEM_ATOMIC_ADD: insn = aarch64_insn_get_ldadd_value(); break; case AARCH64_INSN_MEM_ATOMIC_CLR: insn = aarch64_insn_get_ldclr_value(); break; case AARCH64_INSN_MEM_ATOMIC_EOR: insn = aarch64_insn_get_ldeor_value(); break; case AARCH64_INSN_MEM_ATOMIC_SET: insn = aarch64_insn_get_ldset_value(); break; case AARCH64_INSN_MEM_ATOMIC_SWP: insn = aarch64_insn_get_swp_value(); break; default: pr_err("%s: unimplemented mem atomic op %d\n", __func__, op); return AARCH64_BREAK_FAULT; } switch (size) { case AARCH64_INSN_SIZE_32: case AARCH64_INSN_SIZE_64: break; default: pr_err("%s: unimplemented size encoding %d\n", __func__, size); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_ldst_size(size, insn); insn = aarch64_insn_encode_ldst_order(order, insn); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, result); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, address); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RS, insn, value); } static u32 aarch64_insn_encode_cas_order(enum aarch64_insn_mem_order_type type, u32 insn) { u32 order; switch (type) { case AARCH64_INSN_MEM_ORDER_NONE: order = 0; break; case AARCH64_INSN_MEM_ORDER_ACQ: order = BIT(22); break; case AARCH64_INSN_MEM_ORDER_REL: order = BIT(15); break; case AARCH64_INSN_MEM_ORDER_ACQREL: order = BIT(15) | BIT(22); break; default: pr_err("%s: unknown mem order %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn &= ~(BIT(15) | BIT(22)); insn |= order; return insn; } u32 aarch64_insn_gen_cas(enum aarch64_insn_register result, enum aarch64_insn_register address, enum aarch64_insn_register value, enum aarch64_insn_size_type size, enum aarch64_insn_mem_order_type order) { u32 insn; switch (size) { case AARCH64_INSN_SIZE_32: case AARCH64_INSN_SIZE_64: break; default: pr_err("%s: unimplemented size encoding %d\n", __func__, size); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_get_cas_value(); insn = aarch64_insn_encode_ldst_size(size, insn); insn = aarch64_insn_encode_cas_order(order, insn); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, result); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, address); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RS, insn, value); } #endif u32 aarch64_insn_gen_add_sub_imm(enum aarch64_insn_register dst, enum aarch64_insn_register src, int imm, enum aarch64_insn_variant variant, enum aarch64_insn_adsb_type type) { u32 insn; switch (type) { case AARCH64_INSN_ADSB_ADD: insn = aarch64_insn_get_add_imm_value(); break; case AARCH64_INSN_ADSB_SUB: insn = aarch64_insn_get_sub_imm_value(); break; case AARCH64_INSN_ADSB_ADD_SETFLAGS: insn = aarch64_insn_get_adds_imm_value(); break; case AARCH64_INSN_ADSB_SUB_SETFLAGS: insn = aarch64_insn_get_subs_imm_value(); break; default: pr_err("%s: unknown add/sub encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } /* We can't encode more than a 24bit value (12bit + 12bit shift) */ if (imm & ~(BIT(24) - 1)) goto out; /* If we have something in the top 12 bits... */ if (imm & ~(SZ_4K - 1)) { /* ... and in the low 12 bits -> error */ if (imm & (SZ_4K - 1)) goto out; imm >>= 12; insn |= AARCH64_INSN_LSL_12; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_12, insn, imm); out: pr_err("%s: invalid immediate encoding %d\n", __func__, imm); return AARCH64_BREAK_FAULT; } u32 aarch64_insn_gen_bitfield(enum aarch64_insn_register dst, enum aarch64_insn_register src, int immr, int imms, enum aarch64_insn_variant variant, enum aarch64_insn_bitfield_type type) { u32 insn; u32 mask; switch (type) { case AARCH64_INSN_BITFIELD_MOVE: insn = aarch64_insn_get_bfm_value(); break; case AARCH64_INSN_BITFIELD_MOVE_UNSIGNED: insn = aarch64_insn_get_ubfm_value(); break; case AARCH64_INSN_BITFIELD_MOVE_SIGNED: insn = aarch64_insn_get_sbfm_value(); break; default: pr_err("%s: unknown bitfield encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: mask = GENMASK(4, 0); break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT | AARCH64_INSN_N_BIT; mask = GENMASK(5, 0); break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } if (immr & ~mask) { pr_err("%s: invalid immr encoding %d\n", __func__, immr); return AARCH64_BREAK_FAULT; } if (imms & ~mask) { pr_err("%s: invalid imms encoding %d\n", __func__, imms); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_R, insn, immr); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, imms); } u32 aarch64_insn_gen_movewide(enum aarch64_insn_register dst, int imm, int shift, enum aarch64_insn_variant variant, enum aarch64_insn_movewide_type type) { u32 insn; switch (type) { case AARCH64_INSN_MOVEWIDE_ZERO: insn = aarch64_insn_get_movz_value(); break; case AARCH64_INSN_MOVEWIDE_KEEP: insn = aarch64_insn_get_movk_value(); break; case AARCH64_INSN_MOVEWIDE_INVERSE: insn = aarch64_insn_get_movn_value(); break; default: pr_err("%s: unknown movewide encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } if (imm & ~(SZ_64K - 1)) { pr_err("%s: invalid immediate encoding %d\n", __func__, imm); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if (shift != 0 && shift != 16) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; if (shift != 0 && shift != 16 && shift != 32 && shift != 48) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn |= (shift >> 4) << 21; insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); } u32 aarch64_insn_gen_add_sub_shifted_reg(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg, int shift, enum aarch64_insn_variant variant, enum aarch64_insn_adsb_type type) { u32 insn; switch (type) { case AARCH64_INSN_ADSB_ADD: insn = aarch64_insn_get_add_value(); break; case AARCH64_INSN_ADSB_SUB: insn = aarch64_insn_get_sub_value(); break; case AARCH64_INSN_ADSB_ADD_SETFLAGS: insn = aarch64_insn_get_adds_value(); break; case AARCH64_INSN_ADSB_SUB_SETFLAGS: insn = aarch64_insn_get_subs_value(); break; default: pr_err("%s: unknown add/sub encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if (shift & ~(SZ_32 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; if (shift & ~(SZ_64 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift); } u32 aarch64_insn_gen_data1(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_variant variant, enum aarch64_insn_data1_type type) { u32 insn; switch (type) { case AARCH64_INSN_DATA1_REVERSE_16: insn = aarch64_insn_get_rev16_value(); break; case AARCH64_INSN_DATA1_REVERSE_32: insn = aarch64_insn_get_rev32_value(); break; case AARCH64_INSN_DATA1_REVERSE_64: if (variant != AARCH64_INSN_VARIANT_64BIT) { pr_err("%s: invalid variant for reverse64 %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_get_rev64_value(); break; default: pr_err("%s: unknown data1 encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); } u32 aarch64_insn_gen_data2(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg, enum aarch64_insn_variant variant, enum aarch64_insn_data2_type type) { u32 insn; switch (type) { case AARCH64_INSN_DATA2_UDIV: insn = aarch64_insn_get_udiv_value(); break; case AARCH64_INSN_DATA2_SDIV: insn = aarch64_insn_get_sdiv_value(); break; case AARCH64_INSN_DATA2_LSLV: insn = aarch64_insn_get_lslv_value(); break; case AARCH64_INSN_DATA2_LSRV: insn = aarch64_insn_get_lsrv_value(); break; case AARCH64_INSN_DATA2_ASRV: insn = aarch64_insn_get_asrv_value(); break; case AARCH64_INSN_DATA2_RORV: insn = aarch64_insn_get_rorv_value(); break; default: pr_err("%s: unknown data2 encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg); } u32 aarch64_insn_gen_data3(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg1, enum aarch64_insn_register reg2, enum aarch64_insn_variant variant, enum aarch64_insn_data3_type type) { u32 insn; switch (type) { case AARCH64_INSN_DATA3_MADD: insn = aarch64_insn_get_madd_value(); break; case AARCH64_INSN_DATA3_MSUB: insn = aarch64_insn_get_msub_value(); break; default: pr_err("%s: unknown data3 encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RA, insn, src); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, reg1); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg2); } u32 aarch64_insn_gen_logical_shifted_reg(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg, int shift, enum aarch64_insn_variant variant, enum aarch64_insn_logic_type type) { u32 insn; switch (type) { case AARCH64_INSN_LOGIC_AND: insn = aarch64_insn_get_and_value(); break; case AARCH64_INSN_LOGIC_BIC: insn = aarch64_insn_get_bic_value(); break; case AARCH64_INSN_LOGIC_ORR: insn = aarch64_insn_get_orr_value(); break; case AARCH64_INSN_LOGIC_ORN: insn = aarch64_insn_get_orn_value(); break; case AARCH64_INSN_LOGIC_EOR: insn = aarch64_insn_get_eor_value(); break; case AARCH64_INSN_LOGIC_EON: insn = aarch64_insn_get_eon_value(); break; case AARCH64_INSN_LOGIC_AND_SETFLAGS: insn = aarch64_insn_get_ands_value(); break; case AARCH64_INSN_LOGIC_BIC_SETFLAGS: insn = aarch64_insn_get_bics_value(); break; default: pr_err("%s: unknown logical encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if (shift & ~(SZ_32 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; if (shift & ~(SZ_64 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift); } /* * MOV (register) is architecturally an alias of ORR (shifted register) where * MOV <*d>, <*m> is equivalent to ORR <*d>, <*ZR>, <*m> */ u32 aarch64_insn_gen_move_reg(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_variant variant) { return aarch64_insn_gen_logical_shifted_reg(dst, AARCH64_INSN_REG_ZR, src, 0, variant, AARCH64_INSN_LOGIC_ORR); } u32 aarch64_insn_gen_adr(unsigned long pc, unsigned long addr, enum aarch64_insn_register reg, enum aarch64_insn_adr_type type) { u32 insn; s32 offset; switch (type) { case AARCH64_INSN_ADR_TYPE_ADR: insn = aarch64_insn_get_adr_value(); offset = addr - pc; break; case AARCH64_INSN_ADR_TYPE_ADRP: insn = aarch64_insn_get_adrp_value(); offset = (addr - ALIGN_DOWN(pc, SZ_4K)) >> 12; break; default: pr_err("%s: unknown adr encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } if (offset < -SZ_1M || offset >= SZ_1M) return AARCH64_BREAK_FAULT; insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_ADR, insn, offset); } /* * Decode the imm field of a branch, and return the byte offset as a * signed value (so it can be used when computing a new branch * target). */ s32 aarch64_get_branch_offset(u32 insn) { s32 imm; if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn)) { imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_26, insn); return (imm << 6) >> 4; } if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) || aarch64_insn_is_bcond(insn)) { imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_19, insn); return (imm << 13) >> 11; } if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn)) { imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_14, insn); return (imm << 18) >> 16; } /* Unhandled instruction */ BUG(); } /* * Encode the displacement of a branch in the imm field and return the * updated instruction. */ u32 aarch64_set_branch_offset(u32 insn, s32 offset) { if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn)) return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn, offset >> 2); if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) || aarch64_insn_is_bcond(insn)) return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn, offset >> 2); if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn)) return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_14, insn, offset >> 2); /* Unhandled instruction */ BUG(); } s32 aarch64_insn_adrp_get_offset(u32 insn) { BUG_ON(!aarch64_insn_is_adrp(insn)); return aarch64_insn_decode_immediate(AARCH64_INSN_IMM_ADR, insn) << 12; } u32 aarch64_insn_adrp_set_offset(u32 insn, s32 offset) { BUG_ON(!aarch64_insn_is_adrp(insn)); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_ADR, insn, offset >> 12); } /* * Extract the Op/CR data from a msr/mrs instruction. */ u32 aarch64_insn_extract_system_reg(u32 insn) { return (insn & 0x1FFFE0) >> 5; } bool aarch32_insn_is_wide(u32 insn) { return insn >= 0xe800; } /* * Macros/defines for extracting register numbers from instruction. */ u32 aarch32_insn_extract_reg_num(u32 insn, int offset) { return (insn & (0xf << offset)) >> offset; } #define OPC2_MASK 0x7 #define OPC2_OFFSET 5 u32 aarch32_insn_mcr_extract_opc2(u32 insn) { return (insn & (OPC2_MASK << OPC2_OFFSET)) >> OPC2_OFFSET; } #define CRM_MASK 0xf u32 aarch32_insn_mcr_extract_crm(u32 insn) { return insn & CRM_MASK; } static bool range_of_ones(u64 val) { /* Doesn't handle full ones or full zeroes */ u64 sval = val >> __ffs64(val); /* One of Sean Eron Anderson's bithack tricks */ return ((sval + 1) & (sval)) == 0; } static u32 aarch64_encode_immediate(u64 imm, enum aarch64_insn_variant variant, u32 insn) { unsigned int immr, imms, n, ones, ror, esz, tmp; u64 mask; switch (variant) { case AARCH64_INSN_VARIANT_32BIT: esz = 32; break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; esz = 64; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } mask = GENMASK(esz - 1, 0); /* Can't encode full zeroes, full ones, or value wider than the mask */ if (!imm || imm == mask || imm & ~mask) return AARCH64_BREAK_FAULT; /* * Inverse of Replicate(). Try to spot a repeating pattern * with a pow2 stride. */ for (tmp = esz / 2; tmp >= 2; tmp /= 2) { u64 emask = BIT(tmp) - 1; if ((imm & emask) != ((imm >> tmp) & emask)) break; esz = tmp; mask = emask; } /* N is only set if we're encoding a 64bit value */ n = esz == 64; /* Trim imm to the element size */ imm &= mask; /* That's how many ones we need to encode */ ones = hweight64(imm); /* * imms is set to (ones - 1), prefixed with a string of ones * and a zero if they fit. Cap it to 6 bits. */ imms = ones - 1; imms |= 0xf << ffs(esz); imms &= BIT(6) - 1; /* Compute the rotation */ if (range_of_ones(imm)) { /* * Pattern: 0..01..10..0 * * Compute how many rotate we need to align it right */ ror = __ffs64(imm); } else { /* * Pattern: 0..01..10..01..1 * * Fill the unused top bits with ones, and check if * the result is a valid immediate (all ones with a * contiguous ranges of zeroes). */ imm |= ~mask; if (!range_of_ones(~imm)) return AARCH64_BREAK_FAULT; /* * Compute the rotation to get a continuous set of * ones, with the first bit set at position 0 */ ror = fls64(~imm); } /* * immr is the number of bits we need to rotate back to the * original set of ones. Note that this is relative to the * element size... */ immr = (esz - ror) % esz; insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_N, insn, n); insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_R, insn, immr); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, imms); } u32 aarch64_insn_gen_logical_immediate(enum aarch64_insn_logic_type type, enum aarch64_insn_variant variant, enum aarch64_insn_register Rn, enum aarch64_insn_register Rd, u64 imm) { u32 insn; switch (type) { case AARCH64_INSN_LOGIC_AND: insn = aarch64_insn_get_and_imm_value(); break; case AARCH64_INSN_LOGIC_ORR: insn = aarch64_insn_get_orr_imm_value(); break; case AARCH64_INSN_LOGIC_EOR: insn = aarch64_insn_get_eor_imm_value(); break; case AARCH64_INSN_LOGIC_AND_SETFLAGS: insn = aarch64_insn_get_ands_imm_value(); break; default: pr_err("%s: unknown logical encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, Rd); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, Rn); return aarch64_encode_immediate(imm, variant, insn); } u32 aarch64_insn_gen_extr(enum aarch64_insn_variant variant, enum aarch64_insn_register Rm, enum aarch64_insn_register Rn, enum aarch64_insn_register Rd, u8 lsb) { u32 insn; insn = aarch64_insn_get_extr_value(); switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if (lsb > 31) return AARCH64_BREAK_FAULT; break; case AARCH64_INSN_VARIANT_64BIT: if (lsb > 63) return AARCH64_BREAK_FAULT; insn |= AARCH64_INSN_SF_BIT; insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_N, insn, 1); break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, lsb); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, Rd); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, Rn); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, Rm); } u32 aarch64_insn_gen_dmb(enum aarch64_insn_mb_type type) { u32 opt; u32 insn; switch (type) { case AARCH64_INSN_MB_SY: opt = 0xf; break; case AARCH64_INSN_MB_ST: opt = 0xe; break; case AARCH64_INSN_MB_LD: opt = 0xd; break; case AARCH64_INSN_MB_ISH: opt = 0xb; break; case AARCH64_INSN_MB_ISHST: opt = 0xa; break; case AARCH64_INSN_MB_ISHLD: opt = 0x9; break; case AARCH64_INSN_MB_NSH: opt = 0x7; break; case AARCH64_INSN_MB_NSHST: opt = 0x6; break; case AARCH64_INSN_MB_NSHLD: opt = 0x5; break; default: pr_err("%s: unknown dmb type %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_get_dmb_value(); insn &= ~GENMASK(11, 8); insn |= (opt << 8); return insn; }