/* * Copyright (c) 2017 Hisilicon Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include "hisi_sas.h" #define DRV_NAME "hisi_sas_v3_hw" /* global registers need init */ #define DLVRY_QUEUE_ENABLE 0x0 #define IOST_BASE_ADDR_LO 0x8 #define IOST_BASE_ADDR_HI 0xc #define ITCT_BASE_ADDR_LO 0x10 #define ITCT_BASE_ADDR_HI 0x14 #define IO_BROKEN_MSG_ADDR_LO 0x18 #define IO_BROKEN_MSG_ADDR_HI 0x1c #define PHY_CONTEXT 0x20 #define PHY_STATE 0x24 #define PHY_PORT_NUM_MA 0x28 #define PHY_CONN_RATE 0x30 #define ITCT_CLR 0x44 #define ITCT_CLR_EN_OFF 16 #define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF) #define ITCT_DEV_OFF 0 #define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF) #define IO_SATA_BROKEN_MSG_ADDR_LO 0x58 #define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c #define SATA_INITI_D2H_STORE_ADDR_LO 0x60 #define SATA_INITI_D2H_STORE_ADDR_HI 0x64 #define CFG_MAX_TAG 0x68 #define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84 #define HGC_SAS_TXFAIL_RETRY_CTRL 0x88 #define HGC_GET_ITV_TIME 0x90 #define DEVICE_MSG_WORK_MODE 0x94 #define OPENA_WT_CONTI_TIME 0x9c #define I_T_NEXUS_LOSS_TIME 0xa0 #define MAX_CON_TIME_LIMIT_TIME 0xa4 #define BUS_INACTIVE_LIMIT_TIME 0xa8 #define REJECT_TO_OPEN_LIMIT_TIME 0xac #define CQ_INT_CONVERGE_EN 0xb0 #define CFG_AGING_TIME 0xbc #define HGC_DFX_CFG2 0xc0 #define CFG_ABT_SET_QUERY_IPTT 0xd4 #define CFG_SET_ABORTED_IPTT_OFF 0 #define CFG_SET_ABORTED_IPTT_MSK (0xfff << CFG_SET_ABORTED_IPTT_OFF) #define CFG_SET_ABORTED_EN_OFF 12 #define CFG_ABT_SET_IPTT_DONE 0xd8 #define CFG_ABT_SET_IPTT_DONE_OFF 0 #define HGC_IOMB_PROC1_STATUS 0x104 #define CHNL_INT_STATUS 0x148 #define HGC_AXI_FIFO_ERR_INFO 0x154 #define AXI_ERR_INFO_OFF 0 #define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF) #define FIFO_ERR_INFO_OFF 8 #define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF) #define INT_COAL_EN 0x19c #define OQ_INT_COAL_TIME 0x1a0 #define OQ_INT_COAL_CNT 0x1a4 #define ENT_INT_COAL_TIME 0x1a8 #define ENT_INT_COAL_CNT 0x1ac #define OQ_INT_SRC 0x1b0 #define OQ_INT_SRC_MSK 0x1b4 #define ENT_INT_SRC1 0x1b8 #define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0 #define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF) #define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8 #define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF) #define ENT_INT_SRC2 0x1bc #define ENT_INT_SRC3 0x1c0 #define ENT_INT_SRC3_WP_DEPTH_OFF 8 #define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9 #define ENT_INT_SRC3_RP_DEPTH_OFF 10 #define ENT_INT_SRC3_AXI_OFF 11 #define ENT_INT_SRC3_FIFO_OFF 12 #define ENT_INT_SRC3_LM_OFF 14 #define ENT_INT_SRC3_ITC_INT_OFF 15 #define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF) #define ENT_INT_SRC3_ABT_OFF 16 #define ENT_INT_SRC_MSK1 0x1c4 #define ENT_INT_SRC_MSK2 0x1c8 #define ENT_INT_SRC_MSK3 0x1cc #define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31 #define CHNL_PHYUPDOWN_INT_MSK 0x1d0 #define CHNL_ENT_INT_MSK 0x1d4 #define HGC_COM_INT_MSK 0x1d8 #define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF) #define SAS_ECC_INTR 0x1e8 #define SAS_ECC_INTR_MSK 0x1ec #define HGC_ERR_STAT_EN 0x238 #define CQE_SEND_CNT 0x248 #define DLVRY_Q_0_BASE_ADDR_LO 0x260 #define DLVRY_Q_0_BASE_ADDR_HI 0x264 #define DLVRY_Q_0_DEPTH 0x268 #define DLVRY_Q_0_WR_PTR 0x26c #define DLVRY_Q_0_RD_PTR 0x270 #define HYPER_STREAM_ID_EN_CFG 0xc80 #define OQ0_INT_SRC_MSK 0xc90 #define COMPL_Q_0_BASE_ADDR_LO 0x4e0 #define COMPL_Q_0_BASE_ADDR_HI 0x4e4 #define COMPL_Q_0_DEPTH 0x4e8 #define COMPL_Q_0_WR_PTR 0x4ec #define COMPL_Q_0_RD_PTR 0x4f0 #define AWQOS_AWCACHE_CFG 0xc84 #define ARQOS_ARCACHE_CFG 0xc88 #define HILINK_ERR_DFX 0xe04 #define SAS_GPIO_CFG_0 0x1000 #define SAS_GPIO_CFG_1 0x1004 #define SAS_GPIO_TX_0_1 0x1040 #define SAS_CFG_DRIVE_VLD 0x1070 /* phy registers requiring init */ #define PORT_BASE (0x2000) #define PHY_CFG (PORT_BASE + 0x0) #define HARD_PHY_LINKRATE (PORT_BASE + 0x4) #define PHY_CFG_ENA_OFF 0 #define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF) #define PHY_CFG_DC_OPT_OFF 2 #define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF) #define PHY_CFG_PHY_RST_OFF 3 #define PHY_CFG_PHY_RST_MSK (0x1 << PHY_CFG_PHY_RST_OFF) #define PROG_PHY_LINK_RATE (PORT_BASE + 0x8) #define PHY_CTRL (PORT_BASE + 0x14) #define PHY_CTRL_RESET_OFF 0 #define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF) #define CMD_HDR_PIR_OFF 8 #define CMD_HDR_PIR_MSK (0x1 << CMD_HDR_PIR_OFF) #define SERDES_CFG (PORT_BASE + 0x1c) #define SL_CFG (PORT_BASE + 0x84) #define AIP_LIMIT (PORT_BASE + 0x90) #define SL_CONTROL (PORT_BASE + 0x94) #define SL_CONTROL_NOTIFY_EN_OFF 0 #define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF) #define SL_CTA_OFF 17 #define SL_CTA_MSK (0x1 << SL_CTA_OFF) #define RX_PRIMS_STATUS (PORT_BASE + 0x98) #define RX_BCAST_CHG_OFF 1 #define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF) #define TX_ID_DWORD0 (PORT_BASE + 0x9c) #define TX_ID_DWORD1 (PORT_BASE + 0xa0) #define TX_ID_DWORD2 (PORT_BASE + 0xa4) #define TX_ID_DWORD3 (PORT_BASE + 0xa8) #define TX_ID_DWORD4 (PORT_BASE + 0xaC) #define TX_ID_DWORD5 (PORT_BASE + 0xb0) #define TX_ID_DWORD6 (PORT_BASE + 0xb4) #define TXID_AUTO (PORT_BASE + 0xb8) #define CT3_OFF 1 #define CT3_MSK (0x1 << CT3_OFF) #define TX_HARDRST_OFF 2 #define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF) #define RX_IDAF_DWORD0 (PORT_BASE + 0xc4) #define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc) #define STP_LINK_TIMER (PORT_BASE + 0x120) #define STP_LINK_TIMEOUT_STATE (PORT_BASE + 0x124) #define CON_CFG_DRIVER (PORT_BASE + 0x130) #define SAS_SSP_CON_TIMER_CFG (PORT_BASE + 0x134) #define SAS_SMP_CON_TIMER_CFG (PORT_BASE + 0x138) #define SAS_STP_CON_TIMER_CFG (PORT_BASE + 0x13c) #define CHL_INT0 (PORT_BASE + 0x1b4) #define CHL_INT0_HOTPLUG_TOUT_OFF 0 #define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF) #define CHL_INT0_SL_RX_BCST_ACK_OFF 1 #define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF) #define CHL_INT0_SL_PHY_ENABLE_OFF 2 #define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF) #define CHL_INT0_NOT_RDY_OFF 4 #define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF) #define CHL_INT0_PHY_RDY_OFF 5 #define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF) #define CHL_INT1 (PORT_BASE + 0x1b8) #define CHL_INT1_DMAC_TX_ECC_ERR_OFF 15 #define CHL_INT1_DMAC_TX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_TX_ECC_ERR_OFF) #define CHL_INT1_DMAC_RX_ECC_ERR_OFF 17 #define CHL_INT1_DMAC_RX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_RX_ECC_ERR_OFF) #define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19 #define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20 #define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21 #define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22 #define CHL_INT2 (PORT_BASE + 0x1bc) #define CHL_INT2_SL_IDAF_TOUT_CONF_OFF 0 #define CHL_INT2_RX_DISP_ERR_OFF 28 #define CHL_INT2_RX_CODE_ERR_OFF 29 #define CHL_INT2_RX_INVLD_DW_OFF 30 #define CHL_INT2_STP_LINK_TIMEOUT_OFF 31 #define CHL_INT0_MSK (PORT_BASE + 0x1c0) #define CHL_INT1_MSK (PORT_BASE + 0x1c4) #define CHL_INT2_MSK (PORT_BASE + 0x1c8) #define SAS_EC_INT_COAL_TIME (PORT_BASE + 0x1cc) #define CHL_INT_COAL_EN (PORT_BASE + 0x1d0) #define SAS_RX_TRAIN_TIMER (PORT_BASE + 0x2a4) #define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0) #define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4) #define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8) #define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc) #define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0) #define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4) #define DMA_TX_STATUS (PORT_BASE + 0x2d0) #define DMA_TX_STATUS_BUSY_OFF 0 #define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF) #define DMA_RX_STATUS (PORT_BASE + 0x2e8) #define DMA_RX_STATUS_BUSY_OFF 0 #define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF) #define COARSETUNE_TIME (PORT_BASE + 0x304) #define ERR_CNT_DWS_LOST (PORT_BASE + 0x380) #define ERR_CNT_RESET_PROB (PORT_BASE + 0x384) #define ERR_CNT_INVLD_DW (PORT_BASE + 0x390) #define ERR_CNT_CODE_ERR (PORT_BASE + 0x394) #define ERR_CNT_DISP_ERR (PORT_BASE + 0x398) #define DEFAULT_ITCT_HW 2048 /* reset value, not reprogrammed */ #if (HISI_SAS_MAX_DEVICES > DEFAULT_ITCT_HW) #error Max ITCT exceeded #endif #define AXI_MASTER_CFG_BASE (0x5000) #define AM_CTRL_GLOBAL (0x0) #define AM_CTRL_SHUTDOWN_REQ_OFF 0 #define AM_CTRL_SHUTDOWN_REQ_MSK (0x1 << AM_CTRL_SHUTDOWN_REQ_OFF) #define AM_CURR_TRANS_RETURN (0x150) #define AM_CFG_MAX_TRANS (0x5010) #define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014) #define AXI_CFG (0x5100) #define AM_ROB_ECC_ERR_ADDR (0x510c) #define AM_ROB_ECC_ONEBIT_ERR_ADDR_OFF 0 #define AM_ROB_ECC_ONEBIT_ERR_ADDR_MSK (0xff << AM_ROB_ECC_ONEBIT_ERR_ADDR_OFF) #define AM_ROB_ECC_MULBIT_ERR_ADDR_OFF 8 #define AM_ROB_ECC_MULBIT_ERR_ADDR_MSK (0xff << AM_ROB_ECC_MULBIT_ERR_ADDR_OFF) /* RAS registers need init */ #define RAS_BASE (0x6000) #define SAS_RAS_INTR0 (RAS_BASE) #define SAS_RAS_INTR1 (RAS_BASE + 0x04) #define SAS_RAS_INTR0_MASK (RAS_BASE + 0x08) #define SAS_RAS_INTR1_MASK (RAS_BASE + 0x0c) #define CFG_SAS_RAS_INTR_MASK (RAS_BASE + 0x1c) #define SAS_RAS_INTR2 (RAS_BASE + 0x20) #define SAS_RAS_INTR2_MASK (RAS_BASE + 0x24) /* HW dma structures */ /* Delivery queue header */ /* dw0 */ #define CMD_HDR_ABORT_FLAG_OFF 0 #define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF) #define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2 #define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF) #define CMD_HDR_RESP_REPORT_OFF 5 #define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF) #define CMD_HDR_TLR_CTRL_OFF 6 #define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF) #define CMD_HDR_PORT_OFF 18 #define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF) #define CMD_HDR_PRIORITY_OFF 27 #define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF) #define CMD_HDR_CMD_OFF 29 #define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF) /* dw1 */ #define CMD_HDR_UNCON_CMD_OFF 3 #define CMD_HDR_DIR_OFF 5 #define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF) #define CMD_HDR_RESET_OFF 7 #define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF) #define CMD_HDR_VDTL_OFF 10 #define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF) #define CMD_HDR_FRAME_TYPE_OFF 11 #define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF) #define CMD_HDR_DEV_ID_OFF 16 #define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF) /* dw2 */ #define CMD_HDR_CFL_OFF 0 #define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF) #define CMD_HDR_NCQ_TAG_OFF 10 #define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF) #define CMD_HDR_MRFL_OFF 15 #define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF) #define CMD_HDR_SG_MOD_OFF 24 #define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF) /* dw3 */ #define CMD_HDR_IPTT_OFF 0 #define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF) /* dw6 */ #define CMD_HDR_DIF_SGL_LEN_OFF 0 #define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF) #define CMD_HDR_DATA_SGL_LEN_OFF 16 #define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF) /* dw7 */ #define CMD_HDR_ADDR_MODE_SEL_OFF 15 #define CMD_HDR_ADDR_MODE_SEL_MSK (1 << CMD_HDR_ADDR_MODE_SEL_OFF) #define CMD_HDR_ABORT_IPTT_OFF 16 #define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF) /* Completion header */ /* dw0 */ #define CMPLT_HDR_CMPLT_OFF 0 #define CMPLT_HDR_CMPLT_MSK (0x3 << CMPLT_HDR_CMPLT_OFF) #define CMPLT_HDR_ERROR_PHASE_OFF 2 #define CMPLT_HDR_ERROR_PHASE_MSK (0xff << CMPLT_HDR_ERROR_PHASE_OFF) #define CMPLT_HDR_RSPNS_XFRD_OFF 10 #define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF) #define CMPLT_HDR_ERX_OFF 12 #define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF) #define CMPLT_HDR_ABORT_STAT_OFF 13 #define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF) /* abort_stat */ #define STAT_IO_NOT_VALID 0x1 #define STAT_IO_NO_DEVICE 0x2 #define STAT_IO_COMPLETE 0x3 #define STAT_IO_ABORTED 0x4 /* dw1 */ #define CMPLT_HDR_IPTT_OFF 0 #define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF) #define CMPLT_HDR_DEV_ID_OFF 16 #define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF) /* dw3 */ #define CMPLT_HDR_IO_IN_TARGET_OFF 17 #define CMPLT_HDR_IO_IN_TARGET_MSK (0x1 << CMPLT_HDR_IO_IN_TARGET_OFF) /* ITCT header */ /* qw0 */ #define ITCT_HDR_DEV_TYPE_OFF 0 #define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF) #define ITCT_HDR_VALID_OFF 2 #define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF) #define ITCT_HDR_MCR_OFF 5 #define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF) #define ITCT_HDR_VLN_OFF 9 #define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF) #define ITCT_HDR_SMP_TIMEOUT_OFF 16 #define ITCT_HDR_AWT_CONTINUE_OFF 25 #define ITCT_HDR_PORT_ID_OFF 28 #define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF) /* qw2 */ #define ITCT_HDR_INLT_OFF 0 #define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF) #define ITCT_HDR_RTOLT_OFF 48 #define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF) struct hisi_sas_protect_iu_v3_hw { u32 dw0; u32 lbrtcv; u32 lbrtgv; u32 dw3; u32 dw4; u32 dw5; u32 rsv; }; struct hisi_sas_complete_v3_hdr { __le32 dw0; __le32 dw1; __le32 act; __le32 dw3; }; struct hisi_sas_err_record_v3 { /* dw0 */ __le32 trans_tx_fail_type; /* dw1 */ __le32 trans_rx_fail_type; /* dw2 */ __le16 dma_tx_err_type; __le16 sipc_rx_err_type; /* dw3 */ __le32 dma_rx_err_type; }; #define RX_DATA_LEN_UNDERFLOW_OFF 6 #define RX_DATA_LEN_UNDERFLOW_MSK (1 << RX_DATA_LEN_UNDERFLOW_OFF) #define HISI_SAS_COMMAND_ENTRIES_V3_HW 4096 #define HISI_SAS_MSI_COUNT_V3_HW 32 #define DIR_NO_DATA 0 #define DIR_TO_INI 1 #define DIR_TO_DEVICE 2 #define DIR_RESERVED 3 #define FIS_CMD_IS_UNCONSTRAINED(fis) \ ((fis.command == ATA_CMD_READ_LOG_EXT) || \ (fis.command == ATA_CMD_READ_LOG_DMA_EXT) || \ ((fis.command == ATA_CMD_DEV_RESET) && \ ((fis.control & ATA_SRST) != 0))) #define T10_INSRT_EN_OFF 0 #define T10_INSRT_EN_MSK (1 << T10_INSRT_EN_OFF) #define T10_RMV_EN_OFF 1 #define T10_RMV_EN_MSK (1 << T10_RMV_EN_OFF) #define T10_RPLC_EN_OFF 2 #define T10_RPLC_EN_MSK (1 << T10_RPLC_EN_OFF) #define T10_CHK_EN_OFF 3 #define T10_CHK_EN_MSK (1 << T10_CHK_EN_OFF) #define INCR_LBRT_OFF 5 #define INCR_LBRT_MSK (1 << INCR_LBRT_OFF) #define USR_DATA_BLOCK_SZ_OFF 20 #define USR_DATA_BLOCK_SZ_MSK (0x3 << USR_DATA_BLOCK_SZ_OFF) #define T10_CHK_MSK_OFF 16 #define T10_CHK_REF_TAG_MSK (0xf0 << T10_CHK_MSK_OFF) #define T10_CHK_APP_TAG_MSK (0xc << T10_CHK_MSK_OFF) #define BASE_VECTORS_V3_HW 16 #define MIN_AFFINE_VECTORS_V3_HW (BASE_VECTORS_V3_HW + 1) static bool hisi_sas_intr_conv; MODULE_PARM_DESC(intr_conv, "interrupt converge enable (0-1)"); /* permit overriding the host protection capabilities mask (EEDP/T10 PI) */ static int prot_mask; module_param(prot_mask, int, 0); MODULE_PARM_DESC(prot_mask, " host protection capabilities mask, def=0x0 "); static bool auto_affine_msi_experimental; module_param(auto_affine_msi_experimental, bool, 0444); MODULE_PARM_DESC(auto_affine_msi_experimental, "Enable auto-affinity of MSI IRQs as experimental:\n" "default is off"); static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl(regs); } static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl_relaxed(regs); } static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + off; writel(val, regs); } static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; writel(val, regs); } static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba, int phy_no, u32 off) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; return readl(regs); } #define hisi_sas_read32_poll_timeout(off, val, cond, delay_us, \ timeout_us) \ ({ \ void __iomem *regs = hisi_hba->regs + off; \ readl_poll_timeout(regs, val, cond, delay_us, timeout_us); \ }) #define hisi_sas_read32_poll_timeout_atomic(off, val, cond, delay_us, \ timeout_us) \ ({ \ void __iomem *regs = hisi_hba->regs + off; \ readl_poll_timeout_atomic(regs, val, cond, delay_us, timeout_us);\ }) static void init_reg_v3_hw(struct hisi_hba *hisi_hba) { struct pci_dev *pdev = hisi_hba->pci_dev; int i; /* Global registers init */ hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, (u32)((1ULL << hisi_hba->queue_count) - 1)); hisi_sas_write32(hisi_hba, CFG_MAX_TAG, 0xfff0400); hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x108); hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1); hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1); hisi_sas_write32(hisi_hba, CQ_INT_CONVERGE_EN, hisi_sas_intr_conv); hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0xffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xfefefefe); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xfefefefe); if (pdev->revision >= 0x21) hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffff7aff); else hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xfffe20ff); hisi_sas_write32(hisi_hba, CHNL_PHYUPDOWN_INT_MSK, 0x0); hisi_sas_write32(hisi_hba, CHNL_ENT_INT_MSK, 0x0); hisi_sas_write32(hisi_hba, HGC_COM_INT_MSK, 0x0); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0x0); hisi_sas_write32(hisi_hba, AWQOS_AWCACHE_CFG, 0xf0f0); hisi_sas_write32(hisi_hba, ARQOS_ARCACHE_CFG, 0xf0f0); for (i = 0; i < hisi_hba->queue_count; i++) hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0); hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1); for (i = 0; i < hisi_hba->n_phy; i++) { struct hisi_sas_phy *phy = &hisi_hba->phy[i]; struct asd_sas_phy *sas_phy = &phy->sas_phy; u32 prog_phy_link_rate = 0x800; if (!sas_phy->phy || (sas_phy->phy->maximum_linkrate < SAS_LINK_RATE_1_5_GBPS)) { prog_phy_link_rate = 0x855; } else { enum sas_linkrate max = sas_phy->phy->maximum_linkrate; prog_phy_link_rate = hisi_sas_get_prog_phy_linkrate_mask(max) | 0x800; } hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE, prog_phy_link_rate); hisi_sas_phy_write32(hisi_hba, i, SERDES_CFG, 0xffc00); hisi_sas_phy_write32(hisi_hba, i, SAS_RX_TRAIN_TIMER, 0x13e80); hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000); if (pdev->revision >= 0x21) hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff); else hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xff87ffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffbfe); hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x1); hisi_sas_phy_write32(hisi_hba, i, STP_LINK_TIMER, 0x7f7a120); hisi_sas_phy_write32(hisi_hba, i, CON_CFG_DRIVER, 0x2a0a01); hisi_sas_phy_write32(hisi_hba, i, SAS_SSP_CON_TIMER_CFG, 0x32); hisi_sas_phy_write32(hisi_hba, i, SAS_EC_INT_COAL_TIME, 0x30f4240); /* used for 12G negotiate */ hisi_sas_phy_write32(hisi_hba, i, COARSETUNE_TIME, 0x1e); hisi_sas_phy_write32(hisi_hba, i, AIP_LIMIT, 0x2ffff); } for (i = 0; i < hisi_hba->queue_count; i++) { /* Delivery queue */ hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); /* Completion queue */ hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); } /* itct */ hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO, lower_32_bits(hisi_hba->itct_dma)); hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI, upper_32_bits(hisi_hba->itct_dma)); /* iost */ hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO, lower_32_bits(hisi_hba->iost_dma)); hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI, upper_32_bits(hisi_hba->iost_dma)); /* breakpoint */ hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO, lower_32_bits(hisi_hba->breakpoint_dma)); hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI, upper_32_bits(hisi_hba->breakpoint_dma)); /* SATA broken msg */ hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO, lower_32_bits(hisi_hba->sata_breakpoint_dma)); hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI, upper_32_bits(hisi_hba->sata_breakpoint_dma)); /* SATA initial fis */ hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO, lower_32_bits(hisi_hba->initial_fis_dma)); hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI, upper_32_bits(hisi_hba->initial_fis_dma)); /* RAS registers init */ hisi_sas_write32(hisi_hba, SAS_RAS_INTR0_MASK, 0x0); hisi_sas_write32(hisi_hba, SAS_RAS_INTR1_MASK, 0x0); hisi_sas_write32(hisi_hba, SAS_RAS_INTR2_MASK, 0x0); hisi_sas_write32(hisi_hba, CFG_SAS_RAS_INTR_MASK, 0x0); /* LED registers init */ hisi_sas_write32(hisi_hba, SAS_CFG_DRIVE_VLD, 0x80000ff); hisi_sas_write32(hisi_hba, SAS_GPIO_TX_0_1, 0x80808080); hisi_sas_write32(hisi_hba, SAS_GPIO_TX_0_1 + 0x4, 0x80808080); /* Configure blink generator rate A to 1Hz and B to 4Hz */ hisi_sas_write32(hisi_hba, SAS_GPIO_CFG_1, 0x121700); hisi_sas_write32(hisi_hba, SAS_GPIO_CFG_0, 0x800000); } static void config_phy_opt_mode_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg &= ~PHY_CFG_DC_OPT_MSK; cfg |= 1 << PHY_CFG_DC_OPT_OFF; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void config_id_frame_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { struct sas_identify_frame identify_frame; u32 *identify_buffer; memset(&identify_frame, 0, sizeof(identify_frame)); identify_frame.dev_type = SAS_END_DEVICE; identify_frame.frame_type = 0; identify_frame._un1 = 1; identify_frame.initiator_bits = SAS_PROTOCOL_ALL; identify_frame.target_bits = SAS_PROTOCOL_NONE; memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); identify_frame.phy_id = phy_no; identify_buffer = (u32 *)(&identify_frame); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0, __swab32(identify_buffer[0])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1, __swab32(identify_buffer[1])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2, __swab32(identify_buffer[2])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3, __swab32(identify_buffer[3])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4, __swab32(identify_buffer[4])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5, __swab32(identify_buffer[5])); } static void setup_itct_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { struct domain_device *device = sas_dev->sas_device; struct device *dev = hisi_hba->dev; u64 qw0, device_id = sas_dev->device_id; struct hisi_sas_itct *itct = &hisi_hba->itct[device_id]; struct domain_device *parent_dev = device->parent; struct asd_sas_port *sas_port = device->port; struct hisi_sas_port *port = to_hisi_sas_port(sas_port); u64 sas_addr; memset(itct, 0, sizeof(*itct)); /* qw0 */ qw0 = 0; switch (sas_dev->dev_type) { case SAS_END_DEVICE: case SAS_EDGE_EXPANDER_DEVICE: case SAS_FANOUT_EXPANDER_DEVICE: qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF; break; case SAS_SATA_DEV: case SAS_SATA_PENDING: if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF; else qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF; break; default: dev_warn(dev, "setup itct: unsupported dev type (%d)\n", sas_dev->dev_type); } qw0 |= ((1 << ITCT_HDR_VALID_OFF) | (device->linkrate << ITCT_HDR_MCR_OFF) | (1 << ITCT_HDR_VLN_OFF) | (0xfa << ITCT_HDR_SMP_TIMEOUT_OFF) | (1 << ITCT_HDR_AWT_CONTINUE_OFF) | (port->id << ITCT_HDR_PORT_ID_OFF)); itct->qw0 = cpu_to_le64(qw0); /* qw1 */ memcpy(&sas_addr, device->sas_addr, SAS_ADDR_SIZE); itct->sas_addr = cpu_to_le64(__swab64(sas_addr)); /* qw2 */ if (!dev_is_sata(device)) itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) | (0x1ULL << ITCT_HDR_RTOLT_OFF)); } static void clear_itct_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { DECLARE_COMPLETION_ONSTACK(completion); u64 dev_id = sas_dev->device_id; struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id]; u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); sas_dev->completion = &completion; /* clear the itct interrupt state */ if (ENT_INT_SRC3_ITC_INT_MSK & reg_val) hisi_sas_write32(hisi_hba, ENT_INT_SRC3, ENT_INT_SRC3_ITC_INT_MSK); /* clear the itct table */ reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK); hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val); wait_for_completion(sas_dev->completion); memset(itct, 0, sizeof(struct hisi_sas_itct)); } static void dereg_device_v3_hw(struct hisi_hba *hisi_hba, struct domain_device *device) { struct hisi_sas_slot *slot, *slot2; struct hisi_sas_device *sas_dev = device->lldd_dev; u32 cfg_abt_set_query_iptt; cfg_abt_set_query_iptt = hisi_sas_read32(hisi_hba, CFG_ABT_SET_QUERY_IPTT); list_for_each_entry_safe(slot, slot2, &sas_dev->list, entry) { cfg_abt_set_query_iptt &= ~CFG_SET_ABORTED_IPTT_MSK; cfg_abt_set_query_iptt |= (1 << CFG_SET_ABORTED_EN_OFF) | (slot->idx << CFG_SET_ABORTED_IPTT_OFF); hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT, cfg_abt_set_query_iptt); } cfg_abt_set_query_iptt &= ~(1 << CFG_SET_ABORTED_EN_OFF); hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT, cfg_abt_set_query_iptt); hisi_sas_write32(hisi_hba, CFG_ABT_SET_IPTT_DONE, 1 << CFG_ABT_SET_IPTT_DONE_OFF); } static int reset_hw_v3_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; int ret; u32 val; hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0); /* Disable all of the PHYs */ hisi_sas_stop_phys(hisi_hba); udelay(50); /* Ensure axi bus idle */ ret = hisi_sas_read32_poll_timeout(AXI_CFG, val, !val, 20000, 1000000); if (ret) { dev_err(dev, "axi bus is not idle, ret = %d!\n", ret); return -EIO; } if (ACPI_HANDLE(dev)) { acpi_status s; s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL); if (ACPI_FAILURE(s)) { dev_err(dev, "Reset failed\n"); return -EIO; } } else { dev_err(dev, "no reset method!\n"); return -EINVAL; } return 0; } static int hw_init_v3_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; int rc; rc = reset_hw_v3_hw(hisi_hba); if (rc) { dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc); return rc; } msleep(100); init_reg_v3_hw(hisi_hba); return 0; } static void enable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg |= PHY_CFG_ENA_MSK; cfg &= ~PHY_CFG_PHY_RST_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void disable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); u32 state; cfg &= ~PHY_CFG_ENA_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); mdelay(50); state = hisi_sas_read32(hisi_hba, PHY_STATE); if (state & BIT(phy_no)) { cfg |= PHY_CFG_PHY_RST_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } } static void start_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { config_id_frame_v3_hw(hisi_hba, phy_no); config_phy_opt_mode_v3_hw(hisi_hba, phy_no); enable_phy_v3_hw(hisi_hba, phy_no); } static void phy_hard_reset_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; u32 txid_auto; disable_phy_v3_hw(hisi_hba, phy_no); if (phy->identify.device_type == SAS_END_DEVICE) { txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto | TX_HARDRST_MSK); } msleep(100); start_phy_v3_hw(hisi_hba, phy_no); } static enum sas_linkrate phy_get_max_linkrate_v3_hw(void) { return SAS_LINK_RATE_12_0_GBPS; } static void phys_init_v3_hw(struct hisi_hba *hisi_hba) { int i; for (i = 0; i < hisi_hba->n_phy; i++) { struct hisi_sas_phy *phy = &hisi_hba->phy[i]; struct asd_sas_phy *sas_phy = &phy->sas_phy; if (!sas_phy->phy->enabled) continue; start_phy_v3_hw(hisi_hba, i); } } static void sl_notify_ssp_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 sl_control; sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control |= SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); msleep(1); sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); } static int get_wideport_bitmap_v3_hw(struct hisi_hba *hisi_hba, int port_id) { int i, bitmap = 0; u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); for (i = 0; i < hisi_hba->n_phy; i++) if (phy_state & BIT(i)) if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id) bitmap |= BIT(i); return bitmap; } /** * The callpath to this function and upto writing the write * queue pointer should be safe from interruption. */ static int get_free_slot_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_dq *dq) { struct device *dev = hisi_hba->dev; int queue = dq->id; u32 r, w; w = dq->wr_point; r = hisi_sas_read32_relaxed(hisi_hba, DLVRY_Q_0_RD_PTR + (queue * 0x14)); if (r == (w+1) % HISI_SAS_QUEUE_SLOTS) { dev_warn(dev, "full queue=%d r=%d w=%d\n", queue, r, w); return -EAGAIN; } dq->wr_point = (dq->wr_point + 1) % HISI_SAS_QUEUE_SLOTS; return w; } static void start_delivery_v3_hw(struct hisi_sas_dq *dq) { struct hisi_hba *hisi_hba = dq->hisi_hba; struct hisi_sas_slot *s, *s1, *s2 = NULL; int dlvry_queue = dq->id; int wp; list_for_each_entry_safe(s, s1, &dq->list, delivery) { if (!s->ready) break; s2 = s; list_del(&s->delivery); } if (!s2) return; /* * Ensure that memories for slots built on other CPUs is observed. */ smp_rmb(); wp = (s2->dlvry_queue_slot + 1) % HISI_SAS_QUEUE_SLOTS; hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), wp); } static void prep_prd_sge_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, struct hisi_sas_cmd_hdr *hdr, struct scatterlist *scatter, int n_elem) { struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot); struct scatterlist *sg; int i; for_each_sg(scatter, sg, n_elem, i) { struct hisi_sas_sge *entry = &sge_page->sge[i]; entry->addr = cpu_to_le64(sg_dma_address(sg)); entry->page_ctrl_0 = entry->page_ctrl_1 = 0; entry->data_len = cpu_to_le32(sg_dma_len(sg)); entry->data_off = 0; } hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot)); hdr->sg_len |= cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF); } static void prep_prd_sge_dif_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, struct hisi_sas_cmd_hdr *hdr, struct scatterlist *scatter, int n_elem) { struct hisi_sas_sge_dif_page *sge_dif_page; struct scatterlist *sg; int i; sge_dif_page = hisi_sas_sge_dif_addr_mem(slot); for_each_sg(scatter, sg, n_elem, i) { struct hisi_sas_sge *entry = &sge_dif_page->sge[i]; entry->addr = cpu_to_le64(sg_dma_address(sg)); entry->page_ctrl_0 = 0; entry->page_ctrl_1 = 0; entry->data_len = cpu_to_le32(sg_dma_len(sg)); entry->data_off = 0; } hdr->dif_prd_table_addr = cpu_to_le64(hisi_sas_sge_dif_addr_dma(slot)); hdr->sg_len |= cpu_to_le32(n_elem << CMD_HDR_DIF_SGL_LEN_OFF); } static u32 get_prot_chk_msk_v3_hw(struct scsi_cmnd *scsi_cmnd) { unsigned char prot_flags = scsi_cmnd->prot_flags; if (prot_flags & SCSI_PROT_REF_CHECK) return T10_CHK_APP_TAG_MSK; return T10_CHK_REF_TAG_MSK | T10_CHK_APP_TAG_MSK; } static void fill_prot_v3_hw(struct scsi_cmnd *scsi_cmnd, struct hisi_sas_protect_iu_v3_hw *prot) { unsigned char prot_op = scsi_get_prot_op(scsi_cmnd); unsigned int interval = scsi_prot_interval(scsi_cmnd); u32 lbrt_chk_val = t10_pi_ref_tag(scsi_cmnd->request); switch (prot_op) { case SCSI_PROT_READ_INSERT: prot->dw0 |= T10_INSRT_EN_MSK; prot->lbrtgv = lbrt_chk_val; break; case SCSI_PROT_READ_STRIP: prot->dw0 |= (T10_RMV_EN_MSK | T10_CHK_EN_MSK); prot->lbrtcv = lbrt_chk_val; prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd); break; case SCSI_PROT_READ_PASS: prot->dw0 |= T10_CHK_EN_MSK; prot->lbrtcv = lbrt_chk_val; prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd); break; case SCSI_PROT_WRITE_INSERT: prot->dw0 |= T10_INSRT_EN_MSK; prot->lbrtgv = lbrt_chk_val; break; case SCSI_PROT_WRITE_STRIP: prot->dw0 |= (T10_RMV_EN_MSK | T10_CHK_EN_MSK); prot->lbrtcv = lbrt_chk_val; break; case SCSI_PROT_WRITE_PASS: prot->dw0 |= T10_CHK_EN_MSK; prot->lbrtcv = lbrt_chk_val; prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd); break; default: WARN(1, "prot_op(0x%x) is not valid\n", prot_op); break; } switch (interval) { case 512: break; case 4096: prot->dw0 |= (0x1 << USR_DATA_BLOCK_SZ_OFF); break; case 520: prot->dw0 |= (0x2 << USR_DATA_BLOCK_SZ_OFF); break; default: WARN(1, "protection interval (0x%x) invalid\n", interval); break; } prot->dw0 |= INCR_LBRT_MSK; } static void prep_ssp_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct hisi_sas_device *sas_dev = device->lldd_dev; struct hisi_sas_port *port = slot->port; struct sas_ssp_task *ssp_task = &task->ssp_task; struct scsi_cmnd *scsi_cmnd = ssp_task->cmd; struct hisi_sas_tmf_task *tmf = slot->tmf; int has_data = 0, priority = !!tmf; unsigned char prot_op; u8 *buf_cmd; u32 dw1 = 0, dw2 = 0, len = 0; hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) | (2 << CMD_HDR_TLR_CTRL_OFF) | (port->id << CMD_HDR_PORT_OFF) | (priority << CMD_HDR_PRIORITY_OFF) | (1 << CMD_HDR_CMD_OFF)); /* ssp */ dw1 = 1 << CMD_HDR_VDTL_OFF; if (tmf) { dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF; dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF; } else { prot_op = scsi_get_prot_op(scsi_cmnd); dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF; switch (scsi_cmnd->sc_data_direction) { case DMA_TO_DEVICE: has_data = 1; dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; break; case DMA_FROM_DEVICE: has_data = 1; dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; break; default: dw1 &= ~CMD_HDR_DIR_MSK; } } /* map itct entry */ dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr) + 3) / 4) << CMD_HDR_CFL_OFF) | ((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) | (2 << CMD_HDR_SG_MOD_OFF); hdr->dw2 = cpu_to_le32(dw2); hdr->transfer_tags = cpu_to_le32(slot->idx); if (has_data) { prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter, slot->n_elem); if (scsi_prot_sg_count(scsi_cmnd)) prep_prd_sge_dif_v3_hw(hisi_hba, slot, hdr, scsi_prot_sglist(scsi_cmnd), slot->n_elem_dif); } hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot)); hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) + sizeof(struct ssp_frame_hdr); memcpy(buf_cmd, &task->ssp_task.LUN, 8); if (!tmf) { buf_cmd[9] = ssp_task->task_attr | (ssp_task->task_prio << 3); memcpy(buf_cmd + 12, scsi_cmnd->cmnd, scsi_cmnd->cmd_len); } else { buf_cmd[10] = tmf->tmf; switch (tmf->tmf) { case TMF_ABORT_TASK: case TMF_QUERY_TASK: buf_cmd[12] = (tmf->tag_of_task_to_be_managed >> 8) & 0xff; buf_cmd[13] = tmf->tag_of_task_to_be_managed & 0xff; break; default: break; } } if (has_data && (prot_op != SCSI_PROT_NORMAL)) { struct hisi_sas_protect_iu_v3_hw prot; u8 *buf_cmd_prot; hdr->dw7 |= cpu_to_le32(1 << CMD_HDR_ADDR_MODE_SEL_OFF); dw1 |= CMD_HDR_PIR_MSK; buf_cmd_prot = hisi_sas_cmd_hdr_addr_mem(slot) + sizeof(struct ssp_frame_hdr) + sizeof(struct ssp_command_iu); memset(&prot, 0, sizeof(struct hisi_sas_protect_iu_v3_hw)); fill_prot_v3_hw(scsi_cmnd, &prot); memcpy(buf_cmd_prot, &prot, sizeof(struct hisi_sas_protect_iu_v3_hw)); /* * For READ, we need length of info read to memory, while for * WRITE we need length of data written to the disk. */ if (prot_op == SCSI_PROT_WRITE_INSERT || prot_op == SCSI_PROT_READ_INSERT || prot_op == SCSI_PROT_WRITE_PASS || prot_op == SCSI_PROT_READ_PASS) { unsigned int interval = scsi_prot_interval(scsi_cmnd); unsigned int ilog2_interval = ilog2(interval); len = (task->total_xfer_len >> ilog2_interval) * 8; } } hdr->dw1 = cpu_to_le32(dw1); hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len + len); } static void prep_smp_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct hisi_sas_port *port = slot->port; struct scatterlist *sg_req; struct hisi_sas_device *sas_dev = device->lldd_dev; dma_addr_t req_dma_addr; unsigned int req_len; /* req */ sg_req = &task->smp_task.smp_req; req_len = sg_dma_len(sg_req); req_dma_addr = sg_dma_address(sg_req); /* create header */ /* dw0 */ hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) | (1 << CMD_HDR_PRIORITY_OFF) | /* high pri */ (2 << CMD_HDR_CMD_OFF)); /* smp */ /* map itct entry */ hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) | (1 << CMD_HDR_FRAME_TYPE_OFF) | (DIR_NO_DATA << CMD_HDR_DIR_OFF)); /* dw2 */ hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) | (HISI_SAS_MAX_SMP_RESP_SZ / 4 << CMD_HDR_MRFL_OFF)); hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF); hdr->cmd_table_addr = cpu_to_le64(req_dma_addr); hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); } static void prep_ata_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct domain_device *device = task->dev; struct domain_device *parent_dev = device->parent; struct hisi_sas_device *sas_dev = device->lldd_dev; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct asd_sas_port *sas_port = device->port; struct hisi_sas_port *port = to_hisi_sas_port(sas_port); u8 *buf_cmd; int has_data = 0, hdr_tag = 0; u32 dw1 = 0, dw2 = 0; hdr->dw0 = cpu_to_le32(port->id << CMD_HDR_PORT_OFF); if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) hdr->dw0 |= cpu_to_le32(3 << CMD_HDR_CMD_OFF); else hdr->dw0 |= cpu_to_le32(4 << CMD_HDR_CMD_OFF); switch (task->data_dir) { case DMA_TO_DEVICE: has_data = 1; dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; break; case DMA_FROM_DEVICE: has_data = 1; dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; break; default: dw1 &= ~CMD_HDR_DIR_MSK; } if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) && (task->ata_task.fis.control & ATA_SRST)) dw1 |= 1 << CMD_HDR_RESET_OFF; dw1 |= (hisi_sas_get_ata_protocol( &task->ata_task.fis, task->data_dir)) << CMD_HDR_FRAME_TYPE_OFF; dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; if (FIS_CMD_IS_UNCONSTRAINED(task->ata_task.fis)) dw1 |= 1 << CMD_HDR_UNCON_CMD_OFF; hdr->dw1 = cpu_to_le32(dw1); /* dw2 */ if (task->ata_task.use_ncq && hisi_sas_get_ncq_tag(task, &hdr_tag)) { task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF; } dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF | 2 << CMD_HDR_SG_MOD_OFF; hdr->dw2 = cpu_to_le32(dw2); /* dw3 */ hdr->transfer_tags = cpu_to_le32(slot->idx); if (has_data) prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter, slot->n_elem); hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot)); hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot)); buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot); if (likely(!task->ata_task.device_control_reg_update)) task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */ /* fill in command FIS */ memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); } static void prep_abort_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int device_id, int abort_flag, int tag_to_abort) { struct sas_task *task = slot->task; struct domain_device *dev = task->dev; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct hisi_sas_port *port = slot->port; /* dw0 */ hdr->dw0 = cpu_to_le32((5 << CMD_HDR_CMD_OFF) | /*abort*/ (port->id << CMD_HDR_PORT_OFF) | (dev_is_sata(dev) << CMD_HDR_ABORT_DEVICE_TYPE_OFF) | (abort_flag << CMD_HDR_ABORT_FLAG_OFF)); /* dw1 */ hdr->dw1 = cpu_to_le32(device_id << CMD_HDR_DEV_ID_OFF); /* dw7 */ hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF); hdr->transfer_tags = cpu_to_le32(slot->idx); } static irqreturn_t phy_up_v3_hw(int phy_no, struct hisi_hba *hisi_hba) { int i; irqreturn_t res; u32 context, port_id, link_rate; struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct device *dev = hisi_hba->dev; unsigned long flags; del_timer(&phy->timer); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1); port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); port_id = (port_id >> (4 * phy_no)) & 0xf; link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); link_rate = (link_rate >> (phy_no * 4)) & 0xf; if (port_id == 0xf) { dev_err(dev, "phyup: phy%d invalid portid\n", phy_no); res = IRQ_NONE; goto end; } sas_phy->linkrate = link_rate; phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); /* Check for SATA dev */ context = hisi_sas_read32(hisi_hba, PHY_CONTEXT); if (context & (1 << phy_no)) { struct hisi_sas_initial_fis *initial_fis; struct dev_to_host_fis *fis; u8 attached_sas_addr[SAS_ADDR_SIZE] = {0}; dev_info(dev, "phyup: phy%d link_rate=%d(sata)\n", phy_no, link_rate); initial_fis = &hisi_hba->initial_fis[phy_no]; fis = &initial_fis->fis; /* check ERR bit of Status Register */ if (fis->status & ATA_ERR) { dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n", phy_no, fis->status); hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET); res = IRQ_NONE; goto end; } sas_phy->oob_mode = SATA_OOB_MODE; attached_sas_addr[0] = 0x50; attached_sas_addr[7] = phy_no; memcpy(sas_phy->attached_sas_addr, attached_sas_addr, SAS_ADDR_SIZE); memcpy(sas_phy->frame_rcvd, fis, sizeof(struct dev_to_host_fis)); phy->phy_type |= PORT_TYPE_SATA; phy->identify.device_type = SAS_SATA_DEV; phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; } else { u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd; struct sas_identify_frame *id = (struct sas_identify_frame *)frame_rcvd; dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate); for (i = 0; i < 6; i++) { u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no, RX_IDAF_DWORD0 + (i * 4)); frame_rcvd[i] = __swab32(idaf); } sas_phy->oob_mode = SAS_OOB_MODE; memcpy(sas_phy->attached_sas_addr, &id->sas_addr, SAS_ADDR_SIZE); phy->phy_type |= PORT_TYPE_SAS; phy->identify.device_type = id->dev_type; phy->frame_rcvd_size = sizeof(struct sas_identify_frame); if (phy->identify.device_type == SAS_END_DEVICE) phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; else if (phy->identify.device_type != SAS_PHY_UNUSED) phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; } phy->port_id = port_id; phy->phy_attached = 1; hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP); res = IRQ_HANDLED; spin_lock_irqsave(&phy->lock, flags); if (phy->reset_completion) { phy->in_reset = 0; complete(phy->reset_completion); } spin_unlock_irqrestore(&phy->lock, flags); end: hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_SL_PHY_ENABLE_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0); return res; } static irqreturn_t phy_down_v3_hw(int phy_no, struct hisi_hba *hisi_hba) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; u32 phy_state, sl_ctrl, txid_auto; struct device *dev = hisi_hba->dev; del_timer(&phy->timer); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1); phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state); hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0); sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_ctrl&(~SL_CTA_MSK)); txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto | CT3_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0); return IRQ_HANDLED; } static irqreturn_t phy_bcast_v3_hw(int phy_no, struct hisi_hba *hisi_hba) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_ha_struct *sas_ha = &hisi_hba->sha; u32 bcast_status; hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1); bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS); if ((bcast_status & RX_BCAST_CHG_MSK) && !test_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags)) sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_SL_RX_BCST_ACK_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0); return IRQ_HANDLED; } static irqreturn_t int_phy_up_down_bcast_v3_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_msk; int phy_no = 0; irqreturn_t res = IRQ_NONE; irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS) & 0x11111111; while (irq_msk) { if (irq_msk & 1) { u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); int rdy = phy_state & (1 << phy_no); if (rdy) { if (irq_value & CHL_INT0_SL_PHY_ENABLE_MSK) /* phy up */ if (phy_up_v3_hw(phy_no, hisi_hba) == IRQ_HANDLED) res = IRQ_HANDLED; if (irq_value & CHL_INT0_SL_RX_BCST_ACK_MSK) /* phy bcast */ if (phy_bcast_v3_hw(phy_no, hisi_hba) == IRQ_HANDLED) res = IRQ_HANDLED; } else { if (irq_value & CHL_INT0_NOT_RDY_MSK) /* phy down */ if (phy_down_v3_hw(phy_no, hisi_hba) == IRQ_HANDLED) res = IRQ_HANDLED; } } irq_msk >>= 4; phy_no++; } return res; } static const struct hisi_sas_hw_error port_axi_error[] = { { .irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF), .msg = "dma_tx_axi_wr_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF), .msg = "dma_tx_axi_rd_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF), .msg = "dma_rx_axi_wr_err", }, { .irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF), .msg = "dma_rx_axi_rd_err", }, }; static void handle_chl_int1_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1); u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1_MSK); struct device *dev = hisi_hba->dev; int i; irq_value &= ~irq_msk; if (!irq_value) return; for (i = 0; i < ARRAY_SIZE(port_axi_error); i++) { const struct hisi_sas_hw_error *error = &port_axi_error[i]; if (!(irq_value & error->irq_msk)) continue; dev_err(dev, "%s error (phy%d 0x%x) found!\n", error->msg, phy_no, irq_value); queue_work(hisi_hba->wq, &hisi_hba->rst_work); } hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT1, irq_value); } static void phy_get_events_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_phy *sphy = sas_phy->phy; unsigned long flags; u32 reg_value; spin_lock_irqsave(&phy->lock, flags); /* loss dword sync */ reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DWS_LOST); sphy->loss_of_dword_sync_count += reg_value; /* phy reset problem */ reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_RESET_PROB); sphy->phy_reset_problem_count += reg_value; /* invalid dword */ reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_INVLD_DW); sphy->invalid_dword_count += reg_value; /* disparity err */ reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DISP_ERR); sphy->running_disparity_error_count += reg_value; /* code violation error */ reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_CODE_ERR); phy->code_violation_err_count += reg_value; spin_unlock_irqrestore(&phy->lock, flags); } static void handle_chl_int2_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2_MSK); u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2); struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct pci_dev *pci_dev = hisi_hba->pci_dev; struct device *dev = hisi_hba->dev; static const u32 msk = BIT(CHL_INT2_RX_DISP_ERR_OFF) | BIT(CHL_INT2_RX_CODE_ERR_OFF) | BIT(CHL_INT2_RX_INVLD_DW_OFF); irq_value &= ~irq_msk; if (!irq_value) return; if (irq_value & BIT(CHL_INT2_SL_IDAF_TOUT_CONF_OFF)) { dev_warn(dev, "phy%d identify timeout\n", phy_no); hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET); } if (irq_value & BIT(CHL_INT2_STP_LINK_TIMEOUT_OFF)) { u32 reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, STP_LINK_TIMEOUT_STATE); dev_warn(dev, "phy%d stp link timeout (0x%x)\n", phy_no, reg_value); if (reg_value & BIT(4)) hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET); } if (pci_dev->revision > 0x20 && (irq_value & msk)) { struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_phy *sphy = sas_phy->phy; phy_get_events_v3_hw(hisi_hba, phy_no); if (irq_value & BIT(CHL_INT2_RX_INVLD_DW_OFF)) dev_info(dev, "phy%d invalid dword cnt: %u\n", phy_no, sphy->invalid_dword_count); if (irq_value & BIT(CHL_INT2_RX_CODE_ERR_OFF)) dev_info(dev, "phy%d code violation cnt: %u\n", phy_no, phy->code_violation_err_count); if (irq_value & BIT(CHL_INT2_RX_DISP_ERR_OFF)) dev_info(dev, "phy%d disparity error cnt: %u\n", phy_no, sphy->running_disparity_error_count); } if ((irq_value & BIT(CHL_INT2_RX_INVLD_DW_OFF)) && (pci_dev->revision == 0x20)) { u32 reg_value; int rc; rc = hisi_sas_read32_poll_timeout_atomic( HILINK_ERR_DFX, reg_value, !((reg_value >> 8) & BIT(phy_no)), 1000, 10000); if (rc) hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET); } hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, irq_value); } static void handle_chl_int0_v3_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); if (irq_value0 & CHL_INT0_PHY_RDY_MSK) hisi_sas_phy_oob_ready(hisi_hba, phy_no); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, irq_value0 & (~CHL_INT0_SL_RX_BCST_ACK_MSK) & (~CHL_INT0_SL_PHY_ENABLE_MSK) & (~CHL_INT0_NOT_RDY_MSK)); } static irqreturn_t int_chnl_int_v3_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_msk; int phy_no = 0; irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS) & 0xeeeeeeee; while (irq_msk) { if (irq_msk & (2 << (phy_no * 4))) handle_chl_int0_v3_hw(hisi_hba, phy_no); if (irq_msk & (4 << (phy_no * 4))) handle_chl_int1_v3_hw(hisi_hba, phy_no); if (irq_msk & (8 << (phy_no * 4))) handle_chl_int2_v3_hw(hisi_hba, phy_no); irq_msk &= ~(0xe << (phy_no * 4)); phy_no++; } return IRQ_HANDLED; } static const struct hisi_sas_hw_error axi_error[] = { { .msk = BIT(0), .msg = "IOST_AXI_W_ERR" }, { .msk = BIT(1), .msg = "IOST_AXI_R_ERR" }, { .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" }, { .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" }, { .msk = BIT(4), .msg = "SATA_AXI_W_ERR" }, { .msk = BIT(5), .msg = "SATA_AXI_R_ERR" }, { .msk = BIT(6), .msg = "DQE_AXI_R_ERR" }, { .msk = BIT(7), .msg = "CQE_AXI_W_ERR" }, {}, }; static const struct hisi_sas_hw_error fifo_error[] = { { .msk = BIT(8), .msg = "CQE_WINFO_FIFO" }, { .msk = BIT(9), .msg = "CQE_MSG_FIFIO" }, { .msk = BIT(10), .msg = "GETDQE_FIFO" }, { .msk = BIT(11), .msg = "CMDP_FIFO" }, { .msk = BIT(12), .msg = "AWTCTRL_FIFO" }, {}, }; static const struct hisi_sas_hw_error fatal_axi_error[] = { { .irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF), .msg = "write pointer and depth", }, { .irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF), .msg = "iptt no match slot", }, { .irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF), .msg = "read pointer and depth", }, { .irq_msk = BIT(ENT_INT_SRC3_AXI_OFF), .reg = HGC_AXI_FIFO_ERR_INFO, .sub = axi_error, }, { .irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF), .reg = HGC_AXI_FIFO_ERR_INFO, .sub = fifo_error, }, { .irq_msk = BIT(ENT_INT_SRC3_LM_OFF), .msg = "LM add/fetch list", }, { .irq_msk = BIT(ENT_INT_SRC3_ABT_OFF), .msg = "SAS_HGC_ABT fetch LM list", }, }; static irqreturn_t fatal_axi_int_v3_hw(int irq_no, void *p) { u32 irq_value, irq_msk; struct hisi_hba *hisi_hba = p; struct device *dev = hisi_hba->dev; struct pci_dev *pdev = hisi_hba->pci_dev; int i; irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0x1df00); irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); irq_value &= ~irq_msk; for (i = 0; i < ARRAY_SIZE(fatal_axi_error); i++) { const struct hisi_sas_hw_error *error = &fatal_axi_error[i]; if (!(irq_value & error->irq_msk)) continue; if (error->sub) { const struct hisi_sas_hw_error *sub = error->sub; u32 err_value = hisi_sas_read32(hisi_hba, error->reg); for (; sub->msk || sub->msg; sub++) { if (!(err_value & sub->msk)) continue; dev_err(dev, "%s error (0x%x) found!\n", sub->msg, irq_value); queue_work(hisi_hba->wq, &hisi_hba->rst_work); } } else { dev_err(dev, "%s error (0x%x) found!\n", error->msg, irq_value); queue_work(hisi_hba->wq, &hisi_hba->rst_work); } if (pdev->revision < 0x21) { u32 reg_val; reg_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL); reg_val |= AM_CTRL_SHUTDOWN_REQ_MSK; hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, reg_val); } } if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) { u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR); u32 dev_id = reg_val & ITCT_DEV_MSK; struct hisi_sas_device *sas_dev = &hisi_hba->devices[dev_id]; hisi_sas_write32(hisi_hba, ITCT_CLR, 0); dev_dbg(dev, "clear ITCT ok\n"); complete(sas_dev->completion); } hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value & 0x1df00); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk); return IRQ_HANDLED; } static void slot_err_v3_hw(struct hisi_hba *hisi_hba, struct sas_task *task, struct hisi_sas_slot *slot) { struct task_status_struct *ts = &task->task_status; struct hisi_sas_complete_v3_hdr *complete_queue = hisi_hba->complete_hdr[slot->cmplt_queue]; struct hisi_sas_complete_v3_hdr *complete_hdr = &complete_queue[slot->cmplt_queue_slot]; struct hisi_sas_err_record_v3 *record = hisi_sas_status_buf_addr_mem(slot); u32 dma_rx_err_type = le32_to_cpu(record->dma_rx_err_type); u32 trans_tx_fail_type = le32_to_cpu(record->trans_tx_fail_type); u32 dw3 = le32_to_cpu(complete_hdr->dw3); switch (task->task_proto) { case SAS_PROTOCOL_SSP: if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) { ts->residual = trans_tx_fail_type; ts->stat = SAS_DATA_UNDERRUN; } else if (dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) { ts->stat = SAS_QUEUE_FULL; slot->abort = 1; } else { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; } break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) { ts->residual = trans_tx_fail_type; ts->stat = SAS_DATA_UNDERRUN; } else if (dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) { ts->stat = SAS_PHY_DOWN; slot->abort = 1; } else { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; } hisi_sas_sata_done(task, slot); break; case SAS_PROTOCOL_SMP: ts->stat = SAM_STAT_CHECK_CONDITION; break; default: break; } } static int slot_complete_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct hisi_sas_device *sas_dev; struct device *dev = hisi_hba->dev; struct task_status_struct *ts; struct domain_device *device; struct sas_ha_struct *ha; enum exec_status sts; struct hisi_sas_complete_v3_hdr *complete_queue = hisi_hba->complete_hdr[slot->cmplt_queue]; struct hisi_sas_complete_v3_hdr *complete_hdr = &complete_queue[slot->cmplt_queue_slot]; unsigned long flags; bool is_internal = slot->is_internal; u32 dw0, dw1, dw3; if (unlikely(!task || !task->lldd_task || !task->dev)) return -EINVAL; ts = &task->task_status; device = task->dev; ha = device->port->ha; sas_dev = device->lldd_dev; spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags &= ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); spin_unlock_irqrestore(&task->task_state_lock, flags); memset(ts, 0, sizeof(*ts)); ts->resp = SAS_TASK_COMPLETE; if (unlikely(!sas_dev)) { dev_dbg(dev, "slot complete: port has not device\n"); ts->stat = SAS_PHY_DOWN; goto out; } dw0 = le32_to_cpu(complete_hdr->dw0); dw1 = le32_to_cpu(complete_hdr->dw1); dw3 = le32_to_cpu(complete_hdr->dw3); /* * Use SAS+TMF status codes */ switch ((dw0 & CMPLT_HDR_ABORT_STAT_MSK) >> CMPLT_HDR_ABORT_STAT_OFF) { case STAT_IO_ABORTED: /* this IO has been aborted by abort command */ ts->stat = SAS_ABORTED_TASK; goto out; case STAT_IO_COMPLETE: /* internal abort command complete */ ts->stat = TMF_RESP_FUNC_SUCC; goto out; case STAT_IO_NO_DEVICE: ts->stat = TMF_RESP_FUNC_COMPLETE; goto out; case STAT_IO_NOT_VALID: /* * abort single IO, the controller can't find the IO */ ts->stat = TMF_RESP_FUNC_FAILED; goto out; default: break; } /* check for erroneous completion */ if ((dw0 & CMPLT_HDR_CMPLT_MSK) == 0x3) { u32 *error_info = hisi_sas_status_buf_addr_mem(slot); slot_err_v3_hw(hisi_hba, task, slot); if (ts->stat != SAS_DATA_UNDERRUN) dev_info(dev, "erroneous completion iptt=%d task=%p dev id=%d " "CQ hdr: 0x%x 0x%x 0x%x 0x%x " "Error info: 0x%x 0x%x 0x%x 0x%x\n", slot->idx, task, sas_dev->device_id, dw0, dw1, complete_hdr->act, dw3, error_info[0], error_info[1], error_info[2], error_info[3]); if (unlikely(slot->abort)) return ts->stat; goto out; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: { struct ssp_response_iu *iu = hisi_sas_status_buf_addr_mem(slot) + sizeof(struct hisi_sas_err_record); sas_ssp_task_response(dev, task, iu); break; } case SAS_PROTOCOL_SMP: { struct scatterlist *sg_resp = &task->smp_task.smp_resp; void *to; ts->stat = SAM_STAT_GOOD; to = kmap_atomic(sg_page(sg_resp)); dma_unmap_sg(dev, &task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); dma_unmap_sg(dev, &task->smp_task.smp_req, 1, DMA_TO_DEVICE); memcpy(to + sg_resp->offset, hisi_sas_status_buf_addr_mem(slot) + sizeof(struct hisi_sas_err_record), sg_dma_len(sg_resp)); kunmap_atomic(to); break; } case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: ts->stat = SAM_STAT_GOOD; hisi_sas_sata_done(task, slot); break; default: ts->stat = SAM_STAT_CHECK_CONDITION; break; } if (!slot->port->port_attached) { dev_warn(dev, "slot complete: port %d has removed\n", slot->port->sas_port.id); ts->stat = SAS_PHY_DOWN; } out: sts = ts->stat; spin_lock_irqsave(&task->task_state_lock, flags); if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { spin_unlock_irqrestore(&task->task_state_lock, flags); dev_info(dev, "slot complete: task(%p) aborted\n", task); return SAS_ABORTED_TASK; } task->task_state_flags |= SAS_TASK_STATE_DONE; spin_unlock_irqrestore(&task->task_state_lock, flags); hisi_sas_slot_task_free(hisi_hba, task, slot); if (!is_internal && (task->task_proto != SAS_PROTOCOL_SMP)) { spin_lock_irqsave(&device->done_lock, flags); if (test_bit(SAS_HA_FROZEN, &ha->state)) { spin_unlock_irqrestore(&device->done_lock, flags); dev_info(dev, "slot complete: task(%p) ignored\n ", task); return sts; } spin_unlock_irqrestore(&device->done_lock, flags); } if (task->task_done) task->task_done(task); return sts; } static void cq_tasklet_v3_hw(unsigned long val) { struct hisi_sas_cq *cq = (struct hisi_sas_cq *)val; struct hisi_hba *hisi_hba = cq->hisi_hba; struct hisi_sas_slot *slot; struct hisi_sas_complete_v3_hdr *complete_queue; u32 rd_point = cq->rd_point, wr_point; int queue = cq->id; complete_queue = hisi_hba->complete_hdr[queue]; wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR + (0x14 * queue)); while (rd_point != wr_point) { struct hisi_sas_complete_v3_hdr *complete_hdr; struct device *dev = hisi_hba->dev; u32 dw1; int iptt; complete_hdr = &complete_queue[rd_point]; dw1 = le32_to_cpu(complete_hdr->dw1); iptt = dw1 & CMPLT_HDR_IPTT_MSK; if (likely(iptt < HISI_SAS_COMMAND_ENTRIES_V3_HW)) { slot = &hisi_hba->slot_info[iptt]; slot->cmplt_queue_slot = rd_point; slot->cmplt_queue = queue; slot_complete_v3_hw(hisi_hba, slot); } else dev_err(dev, "IPTT %d is invalid, discard it.\n", iptt); if (++rd_point >= HISI_SAS_QUEUE_SLOTS) rd_point = 0; } /* update rd_point */ cq->rd_point = rd_point; hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point); } static irqreturn_t cq_interrupt_v3_hw(int irq_no, void *p) { struct hisi_sas_cq *cq = p; struct hisi_hba *hisi_hba = cq->hisi_hba; int queue = cq->id; hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue); tasklet_schedule(&cq->tasklet); return IRQ_HANDLED; } static void setup_reply_map_v3_hw(struct hisi_hba *hisi_hba, int nvecs) { const struct cpumask *mask; int queue, cpu; for (queue = 0; queue < nvecs; queue++) { struct hisi_sas_cq *cq = &hisi_hba->cq[queue]; mask = pci_irq_get_affinity(hisi_hba->pci_dev, queue + BASE_VECTORS_V3_HW); if (!mask) goto fallback; cq->pci_irq_mask = mask; for_each_cpu(cpu, mask) hisi_hba->reply_map[cpu] = queue; } return; fallback: for_each_possible_cpu(cpu) hisi_hba->reply_map[cpu] = cpu % hisi_hba->queue_count; /* Don't clean all CQ masks */ } static int interrupt_init_v3_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; struct pci_dev *pdev = hisi_hba->pci_dev; int vectors, rc; int i, k; int max_msi = HISI_SAS_MSI_COUNT_V3_HW, min_msi; if (auto_affine_msi_experimental) { struct irq_affinity desc = { .pre_vectors = BASE_VECTORS_V3_HW, }; min_msi = MIN_AFFINE_VECTORS_V3_HW; hisi_hba->reply_map = devm_kcalloc(dev, nr_cpu_ids, sizeof(unsigned int), GFP_KERNEL); if (!hisi_hba->reply_map) return -ENOMEM; vectors = pci_alloc_irq_vectors_affinity(hisi_hba->pci_dev, min_msi, max_msi, PCI_IRQ_MSI | PCI_IRQ_AFFINITY, &desc); if (vectors < 0) return -ENOENT; setup_reply_map_v3_hw(hisi_hba, vectors - BASE_VECTORS_V3_HW); } else { min_msi = max_msi; vectors = pci_alloc_irq_vectors(hisi_hba->pci_dev, min_msi, max_msi, PCI_IRQ_MSI); if (vectors < 0) return vectors; } hisi_hba->cq_nvecs = vectors - BASE_VECTORS_V3_HW; rc = devm_request_irq(dev, pci_irq_vector(pdev, 1), int_phy_up_down_bcast_v3_hw, 0, DRV_NAME " phy", hisi_hba); if (rc) { dev_err(dev, "could not request phy interrupt, rc=%d\n", rc); rc = -ENOENT; goto free_irq_vectors; } rc = devm_request_irq(dev, pci_irq_vector(pdev, 2), int_chnl_int_v3_hw, 0, DRV_NAME " channel", hisi_hba); if (rc) { dev_err(dev, "could not request chnl interrupt, rc=%d\n", rc); rc = -ENOENT; goto free_phy_irq; } rc = devm_request_irq(dev, pci_irq_vector(pdev, 11), fatal_axi_int_v3_hw, 0, DRV_NAME " fatal", hisi_hba); if (rc) { dev_err(dev, "could not request fatal interrupt, rc=%d\n", rc); rc = -ENOENT; goto free_chnl_interrupt; } /* Init tasklets for cq only */ for (i = 0; i < hisi_hba->cq_nvecs; i++) { struct hisi_sas_cq *cq = &hisi_hba->cq[i]; struct tasklet_struct *t = &cq->tasklet; int nr = hisi_sas_intr_conv ? 16 : 16 + i; unsigned long irqflags = hisi_sas_intr_conv ? IRQF_SHARED : 0; rc = devm_request_irq(dev, pci_irq_vector(pdev, nr), cq_interrupt_v3_hw, irqflags, DRV_NAME " cq", cq); if (rc) { dev_err(dev, "could not request cq%d interrupt, rc=%d\n", i, rc); rc = -ENOENT; goto free_cq_irqs; } tasklet_init(t, cq_tasklet_v3_hw, (unsigned long)cq); } return 0; free_cq_irqs: for (k = 0; k < i; k++) { struct hisi_sas_cq *cq = &hisi_hba->cq[k]; int nr = hisi_sas_intr_conv ? 16 : 16 + k; free_irq(pci_irq_vector(pdev, nr), cq); } free_irq(pci_irq_vector(pdev, 11), hisi_hba); free_chnl_interrupt: free_irq(pci_irq_vector(pdev, 2), hisi_hba); free_phy_irq: free_irq(pci_irq_vector(pdev, 1), hisi_hba); free_irq_vectors: pci_free_irq_vectors(pdev); return rc; } static int hisi_sas_v3_init(struct hisi_hba *hisi_hba) { int rc; rc = hw_init_v3_hw(hisi_hba); if (rc) return rc; rc = interrupt_init_v3_hw(hisi_hba); if (rc) return rc; return 0; } static void phy_set_linkrate_v3_hw(struct hisi_hba *hisi_hba, int phy_no, struct sas_phy_linkrates *r) { enum sas_linkrate max = r->maximum_linkrate; u32 prog_phy_link_rate = 0x800; prog_phy_link_rate |= hisi_sas_get_prog_phy_linkrate_mask(max); hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE, prog_phy_link_rate); } static void interrupt_disable_v3_hw(struct hisi_hba *hisi_hba) { struct pci_dev *pdev = hisi_hba->pci_dev; int i; synchronize_irq(pci_irq_vector(pdev, 1)); synchronize_irq(pci_irq_vector(pdev, 2)); synchronize_irq(pci_irq_vector(pdev, 11)); for (i = 0; i < hisi_hba->queue_count; i++) { hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1); synchronize_irq(pci_irq_vector(pdev, i + 16)); } hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff); for (i = 0; i < hisi_hba->n_phy; i++) { hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x1); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x1); hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x1); } } static u32 get_phys_state_v3_hw(struct hisi_hba *hisi_hba) { return hisi_sas_read32(hisi_hba, PHY_STATE); } static int disable_host_v3_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; u32 status, reg_val; int rc; interrupt_disable_v3_hw(hisi_hba); hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0); hisi_sas_kill_tasklets(hisi_hba); hisi_sas_stop_phys(hisi_hba); mdelay(10); reg_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL); reg_val |= AM_CTRL_SHUTDOWN_REQ_MSK; hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, reg_val); /* wait until bus idle */ rc = hisi_sas_read32_poll_timeout(AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN, status, status == 0x3, 10, 100); if (rc) { dev_err(dev, "axi bus is not idle, rc=%d\n", rc); return rc; } return 0; } static int soft_reset_v3_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; int rc; rc = disable_host_v3_hw(hisi_hba); if (rc) { dev_err(dev, "soft reset: disable host failed rc=%d\n", rc); return rc; } hisi_sas_init_mem(hisi_hba); return hw_init_v3_hw(hisi_hba); } static int write_gpio_v3_hw(struct hisi_hba *hisi_hba, u8 reg_type, u8 reg_index, u8 reg_count, u8 *write_data) { struct device *dev = hisi_hba->dev; u32 *data = (u32 *)write_data; int i; switch (reg_type) { case SAS_GPIO_REG_TX: if ((reg_index + reg_count) > ((hisi_hba->n_phy + 3) / 4)) { dev_err(dev, "write gpio: invalid reg range[%d, %d]\n", reg_index, reg_index + reg_count - 1); return -EINVAL; } for (i = 0; i < reg_count; i++) hisi_sas_write32(hisi_hba, SAS_GPIO_TX_0_1 + (reg_index + i) * 4, data[i]); break; default: dev_err(dev, "write gpio: unsupported or bad reg type %d\n", reg_type); return -EINVAL; } return 0; } static int wait_cmds_complete_timeout_v3_hw(struct hisi_hba *hisi_hba, int delay_ms, int timeout_ms) { struct device *dev = hisi_hba->dev; int entries, entries_old = 0, time; for (time = 0; time < timeout_ms; time += delay_ms) { entries = hisi_sas_read32(hisi_hba, CQE_SEND_CNT); if (entries == entries_old) break; entries_old = entries; msleep(delay_ms); } if (time >= timeout_ms) return -ETIMEDOUT; dev_dbg(dev, "wait commands complete %dms\n", time); return 0; } static ssize_t intr_conv_v3_hw_show(struct device *dev, struct device_attribute *attr, char *buf) { return scnprintf(buf, PAGE_SIZE, "%u\n", hisi_sas_intr_conv); } static DEVICE_ATTR_RO(intr_conv_v3_hw); static void config_intr_coal_v3_hw(struct hisi_hba *hisi_hba) { /* config those registers between enable and disable PHYs */ hisi_sas_stop_phys(hisi_hba); if (hisi_hba->intr_coal_ticks == 0 || hisi_hba->intr_coal_count == 0) { hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1); } else { hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x3); hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, hisi_hba->intr_coal_ticks); hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, hisi_hba->intr_coal_count); } phys_init_v3_hw(hisi_hba); } static ssize_t intr_coal_ticks_v3_hw_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct hisi_hba *hisi_hba = shost_priv(shost); return scnprintf(buf, PAGE_SIZE, "%u\n", hisi_hba->intr_coal_ticks); } static ssize_t intr_coal_ticks_v3_hw_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct hisi_hba *hisi_hba = shost_priv(shost); u32 intr_coal_ticks; int ret; ret = kstrtou32(buf, 10, &intr_coal_ticks); if (ret) { dev_err(dev, "Input data of interrupt coalesce unmatch\n"); return -EINVAL; } if (intr_coal_ticks >= BIT(24)) { dev_err(dev, "intr_coal_ticks must be less than 2^24!\n"); return -EINVAL; } hisi_hba->intr_coal_ticks = intr_coal_ticks; config_intr_coal_v3_hw(hisi_hba); return count; } static DEVICE_ATTR_RW(intr_coal_ticks_v3_hw); static ssize_t intr_coal_count_v3_hw_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct hisi_hba *hisi_hba = shost_priv(shost); return scnprintf(buf, PAGE_SIZE, "%u\n", hisi_hba->intr_coal_count); } static ssize_t intr_coal_count_v3_hw_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct hisi_hba *hisi_hba = shost_priv(shost); u32 intr_coal_count; int ret; ret = kstrtou32(buf, 10, &intr_coal_count); if (ret) { dev_err(dev, "Input data of interrupt coalesce unmatch\n"); return -EINVAL; } if (intr_coal_count >= BIT(8)) { dev_err(dev, "intr_coal_count must be less than 2^8!\n"); return -EINVAL; } hisi_hba->intr_coal_count = intr_coal_count; config_intr_coal_v3_hw(hisi_hba); return count; } static DEVICE_ATTR_RW(intr_coal_count_v3_hw); static struct device_attribute *host_attrs_v3_hw[] = { &dev_attr_phy_event_threshold, &dev_attr_intr_conv_v3_hw, &dev_attr_intr_coal_ticks_v3_hw, &dev_attr_intr_coal_count_v3_hw, NULL }; static const struct hisi_sas_debugfs_reg_lu debugfs_port_reg_lu[] = { HISI_SAS_DEBUGFS_REG(PHY_CFG), HISI_SAS_DEBUGFS_REG(HARD_PHY_LINKRATE), HISI_SAS_DEBUGFS_REG(PROG_PHY_LINK_RATE), HISI_SAS_DEBUGFS_REG(PHY_CTRL), HISI_SAS_DEBUGFS_REG(SL_CFG), HISI_SAS_DEBUGFS_REG(AIP_LIMIT), HISI_SAS_DEBUGFS_REG(SL_CONTROL), HISI_SAS_DEBUGFS_REG(RX_PRIMS_STATUS), HISI_SAS_DEBUGFS_REG(TX_ID_DWORD0), HISI_SAS_DEBUGFS_REG(TX_ID_DWORD1), HISI_SAS_DEBUGFS_REG(TX_ID_DWORD2), HISI_SAS_DEBUGFS_REG(TX_ID_DWORD3), HISI_SAS_DEBUGFS_REG(TX_ID_DWORD4), HISI_SAS_DEBUGFS_REG(TX_ID_DWORD5), HISI_SAS_DEBUGFS_REG(TX_ID_DWORD6), HISI_SAS_DEBUGFS_REG(TXID_AUTO), HISI_SAS_DEBUGFS_REG(RX_IDAF_DWORD0), HISI_SAS_DEBUGFS_REG(RXOP_CHECK_CFG_H), HISI_SAS_DEBUGFS_REG(STP_LINK_TIMER), HISI_SAS_DEBUGFS_REG(STP_LINK_TIMEOUT_STATE), HISI_SAS_DEBUGFS_REG(CON_CFG_DRIVER), HISI_SAS_DEBUGFS_REG(SAS_SSP_CON_TIMER_CFG), HISI_SAS_DEBUGFS_REG(SAS_SMP_CON_TIMER_CFG), HISI_SAS_DEBUGFS_REG(SAS_STP_CON_TIMER_CFG), HISI_SAS_DEBUGFS_REG(CHL_INT0), HISI_SAS_DEBUGFS_REG(CHL_INT1), HISI_SAS_DEBUGFS_REG(CHL_INT2), HISI_SAS_DEBUGFS_REG(CHL_INT0_MSK), HISI_SAS_DEBUGFS_REG(CHL_INT1_MSK), HISI_SAS_DEBUGFS_REG(CHL_INT2_MSK), HISI_SAS_DEBUGFS_REG(SAS_EC_INT_COAL_TIME), HISI_SAS_DEBUGFS_REG(CHL_INT_COAL_EN), HISI_SAS_DEBUGFS_REG(SAS_RX_TRAIN_TIMER), HISI_SAS_DEBUGFS_REG(PHY_CTRL_RDY_MSK), HISI_SAS_DEBUGFS_REG(PHYCTRL_NOT_RDY_MSK), HISI_SAS_DEBUGFS_REG(PHYCTRL_DWS_RESET_MSK), HISI_SAS_DEBUGFS_REG(PHYCTRL_PHY_ENA_MSK), HISI_SAS_DEBUGFS_REG(SL_RX_BCAST_CHK_MSK), HISI_SAS_DEBUGFS_REG(PHYCTRL_OOB_RESTART_MSK), HISI_SAS_DEBUGFS_REG(DMA_TX_STATUS), HISI_SAS_DEBUGFS_REG(DMA_RX_STATUS), HISI_SAS_DEBUGFS_REG(COARSETUNE_TIME), HISI_SAS_DEBUGFS_REG(ERR_CNT_DWS_LOST), HISI_SAS_DEBUGFS_REG(ERR_CNT_RESET_PROB), HISI_SAS_DEBUGFS_REG(ERR_CNT_INVLD_DW), HISI_SAS_DEBUGFS_REG(ERR_CNT_CODE_ERR), HISI_SAS_DEBUGFS_REG(ERR_CNT_DISP_ERR), {} }; static const struct hisi_sas_debugfs_reg debugfs_port_reg = { .lu = debugfs_port_reg_lu, .count = 0x100, .base_off = PORT_BASE, .read_port_reg = hisi_sas_phy_read32, }; static const struct hisi_sas_debugfs_reg_lu debugfs_global_reg_lu[] = { HISI_SAS_DEBUGFS_REG(DLVRY_QUEUE_ENABLE), HISI_SAS_DEBUGFS_REG(PHY_CONTEXT), HISI_SAS_DEBUGFS_REG(PHY_STATE), HISI_SAS_DEBUGFS_REG(PHY_PORT_NUM_MA), HISI_SAS_DEBUGFS_REG(PHY_CONN_RATE), HISI_SAS_DEBUGFS_REG(ITCT_CLR), HISI_SAS_DEBUGFS_REG(IO_SATA_BROKEN_MSG_ADDR_LO), HISI_SAS_DEBUGFS_REG(IO_SATA_BROKEN_MSG_ADDR_HI), HISI_SAS_DEBUGFS_REG(SATA_INITI_D2H_STORE_ADDR_LO), HISI_SAS_DEBUGFS_REG(SATA_INITI_D2H_STORE_ADDR_HI), HISI_SAS_DEBUGFS_REG(CFG_MAX_TAG), HISI_SAS_DEBUGFS_REG(HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL), HISI_SAS_DEBUGFS_REG(HGC_SAS_TXFAIL_RETRY_CTRL), HISI_SAS_DEBUGFS_REG(HGC_GET_ITV_TIME), HISI_SAS_DEBUGFS_REG(DEVICE_MSG_WORK_MODE), HISI_SAS_DEBUGFS_REG(OPENA_WT_CONTI_TIME), HISI_SAS_DEBUGFS_REG(I_T_NEXUS_LOSS_TIME), HISI_SAS_DEBUGFS_REG(MAX_CON_TIME_LIMIT_TIME), HISI_SAS_DEBUGFS_REG(BUS_INACTIVE_LIMIT_TIME), HISI_SAS_DEBUGFS_REG(REJECT_TO_OPEN_LIMIT_TIME), HISI_SAS_DEBUGFS_REG(CQ_INT_CONVERGE_EN), HISI_SAS_DEBUGFS_REG(CFG_AGING_TIME), HISI_SAS_DEBUGFS_REG(HGC_DFX_CFG2), HISI_SAS_DEBUGFS_REG(CFG_ABT_SET_QUERY_IPTT), HISI_SAS_DEBUGFS_REG(CFG_ABT_SET_IPTT_DONE), HISI_SAS_DEBUGFS_REG(HGC_IOMB_PROC1_STATUS), HISI_SAS_DEBUGFS_REG(CHNL_INT_STATUS), HISI_SAS_DEBUGFS_REG(HGC_AXI_FIFO_ERR_INFO), HISI_SAS_DEBUGFS_REG(INT_COAL_EN), HISI_SAS_DEBUGFS_REG(OQ_INT_COAL_TIME), HISI_SAS_DEBUGFS_REG(OQ_INT_COAL_CNT), HISI_SAS_DEBUGFS_REG(ENT_INT_COAL_TIME), HISI_SAS_DEBUGFS_REG(ENT_INT_COAL_CNT), HISI_SAS_DEBUGFS_REG(OQ_INT_SRC), HISI_SAS_DEBUGFS_REG(OQ_INT_SRC_MSK), HISI_SAS_DEBUGFS_REG(ENT_INT_SRC1), HISI_SAS_DEBUGFS_REG(ENT_INT_SRC2), HISI_SAS_DEBUGFS_REG(ENT_INT_SRC3), HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK1), HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK2), HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK3), HISI_SAS_DEBUGFS_REG(CHNL_PHYUPDOWN_INT_MSK), HISI_SAS_DEBUGFS_REG(CHNL_ENT_INT_MSK), HISI_SAS_DEBUGFS_REG(HGC_COM_INT_MSK), HISI_SAS_DEBUGFS_REG(SAS_ECC_INTR), HISI_SAS_DEBUGFS_REG(SAS_ECC_INTR_MSK), HISI_SAS_DEBUGFS_REG(HGC_ERR_STAT_EN), HISI_SAS_DEBUGFS_REG(CQE_SEND_CNT), HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_DEPTH), HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_WR_PTR), HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_RD_PTR), HISI_SAS_DEBUGFS_REG(HYPER_STREAM_ID_EN_CFG), HISI_SAS_DEBUGFS_REG(OQ0_INT_SRC_MSK), HISI_SAS_DEBUGFS_REG(COMPL_Q_0_DEPTH), HISI_SAS_DEBUGFS_REG(COMPL_Q_0_WR_PTR), HISI_SAS_DEBUGFS_REG(COMPL_Q_0_RD_PTR), HISI_SAS_DEBUGFS_REG(AWQOS_AWCACHE_CFG), HISI_SAS_DEBUGFS_REG(ARQOS_ARCACHE_CFG), HISI_SAS_DEBUGFS_REG(HILINK_ERR_DFX), HISI_SAS_DEBUGFS_REG(SAS_GPIO_CFG_0), HISI_SAS_DEBUGFS_REG(SAS_GPIO_CFG_1), HISI_SAS_DEBUGFS_REG(SAS_GPIO_TX_0_1), HISI_SAS_DEBUGFS_REG(SAS_CFG_DRIVE_VLD), {} }; static const struct hisi_sas_debugfs_reg debugfs_global_reg = { .lu = debugfs_global_reg_lu, .count = 0x800, .read_global_reg = hisi_sas_read32, }; static void debugfs_snapshot_prepare_v3_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; set_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags); hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0); if (wait_cmds_complete_timeout_v3_hw(hisi_hba, 100, 5000) == -ETIMEDOUT) dev_dbg(dev, "Wait commands complete timeout!\n"); hisi_sas_kill_tasklets(hisi_hba); } static void debugfs_snapshot_restore_v3_hw(struct hisi_hba *hisi_hba) { hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, (u32)((1ULL << hisi_hba->queue_count) - 1)); clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags); } static struct scsi_host_template sht_v3_hw = { .name = DRV_NAME, .module = THIS_MODULE, .queuecommand = sas_queuecommand, .target_alloc = sas_target_alloc, .slave_configure = hisi_sas_slave_configure, .scan_finished = hisi_sas_scan_finished, .scan_start = hisi_sas_scan_start, .change_queue_depth = sas_change_queue_depth, .bios_param = sas_bios_param, .this_id = -1, .sg_tablesize = HISI_SAS_SGE_PAGE_CNT, .sg_prot_tablesize = HISI_SAS_SGE_PAGE_CNT, .max_sectors = SCSI_DEFAULT_MAX_SECTORS, .eh_device_reset_handler = sas_eh_device_reset_handler, .eh_target_reset_handler = sas_eh_target_reset_handler, .target_destroy = sas_target_destroy, .ioctl = sas_ioctl, .shost_attrs = host_attrs_v3_hw, .tag_alloc_policy = BLK_TAG_ALLOC_RR, .host_reset = hisi_sas_host_reset, }; static const struct hisi_sas_hw hisi_sas_v3_hw = { .hw_init = hisi_sas_v3_init, .setup_itct = setup_itct_v3_hw, .max_command_entries = HISI_SAS_COMMAND_ENTRIES_V3_HW, .get_wideport_bitmap = get_wideport_bitmap_v3_hw, .complete_hdr_size = sizeof(struct hisi_sas_complete_v3_hdr), .clear_itct = clear_itct_v3_hw, .sl_notify_ssp = sl_notify_ssp_v3_hw, .prep_ssp = prep_ssp_v3_hw, .prep_smp = prep_smp_v3_hw, .prep_stp = prep_ata_v3_hw, .prep_abort = prep_abort_v3_hw, .get_free_slot = get_free_slot_v3_hw, .start_delivery = start_delivery_v3_hw, .slot_complete = slot_complete_v3_hw, .phys_init = phys_init_v3_hw, .phy_start = start_phy_v3_hw, .phy_disable = disable_phy_v3_hw, .phy_hard_reset = phy_hard_reset_v3_hw, .phy_get_max_linkrate = phy_get_max_linkrate_v3_hw, .phy_set_linkrate = phy_set_linkrate_v3_hw, .dereg_device = dereg_device_v3_hw, .soft_reset = soft_reset_v3_hw, .get_phys_state = get_phys_state_v3_hw, .get_events = phy_get_events_v3_hw, .write_gpio = write_gpio_v3_hw, .wait_cmds_complete_timeout = wait_cmds_complete_timeout_v3_hw, .debugfs_reg_global = &debugfs_global_reg, .debugfs_reg_port = &debugfs_port_reg, .snapshot_prepare = debugfs_snapshot_prepare_v3_hw, .snapshot_restore = debugfs_snapshot_restore_v3_hw, }; static struct Scsi_Host * hisi_sas_shost_alloc_pci(struct pci_dev *pdev) { struct Scsi_Host *shost; struct hisi_hba *hisi_hba; struct device *dev = &pdev->dev; shost = scsi_host_alloc(&sht_v3_hw, sizeof(*hisi_hba)); if (!shost) { dev_err(dev, "shost alloc failed\n"); return NULL; } hisi_hba = shost_priv(shost); INIT_WORK(&hisi_hba->rst_work, hisi_sas_rst_work_handler); INIT_WORK(&hisi_hba->debugfs_work, hisi_sas_debugfs_work_handler); hisi_hba->hw = &hisi_sas_v3_hw; hisi_hba->pci_dev = pdev; hisi_hba->dev = dev; hisi_hba->shost = shost; SHOST_TO_SAS_HA(shost) = &hisi_hba->sha; if (prot_mask & ~HISI_SAS_PROT_MASK) dev_err(dev, "unsupported protection mask 0x%x, using default (0x0)\n", prot_mask); else hisi_hba->prot_mask = prot_mask; timer_setup(&hisi_hba->timer, NULL, 0); if (hisi_sas_get_fw_info(hisi_hba) < 0) goto err_out; if (hisi_sas_alloc(hisi_hba)) { hisi_sas_free(hisi_hba); goto err_out; } return shost; err_out: scsi_host_put(shost); dev_err(dev, "shost alloc failed\n"); return NULL; } static int hisi_sas_v3_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct Scsi_Host *shost; struct hisi_hba *hisi_hba; struct device *dev = &pdev->dev; struct asd_sas_phy **arr_phy; struct asd_sas_port **arr_port; struct sas_ha_struct *sha; int rc, phy_nr, port_nr, i; rc = pci_enable_device(pdev); if (rc) goto err_out; pci_set_master(pdev); rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out_disable_device; rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (rc) rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (rc) { dev_err(dev, "No usable DMA addressing method\n"); rc = -ENODEV; goto err_out_regions; } shost = hisi_sas_shost_alloc_pci(pdev); if (!shost) { rc = -ENOMEM; goto err_out_regions; } sha = SHOST_TO_SAS_HA(shost); hisi_hba = shost_priv(shost); dev_set_drvdata(dev, sha); hisi_hba->regs = pcim_iomap(pdev, 5, 0); if (!hisi_hba->regs) { dev_err(dev, "cannot map register.\n"); rc = -ENOMEM; goto err_out_ha; } phy_nr = port_nr = hisi_hba->n_phy; arr_phy = devm_kcalloc(dev, phy_nr, sizeof(void *), GFP_KERNEL); arr_port = devm_kcalloc(dev, port_nr, sizeof(void *), GFP_KERNEL); if (!arr_phy || !arr_port) { rc = -ENOMEM; goto err_out_ha; } sha->sas_phy = arr_phy; sha->sas_port = arr_port; sha->core.shost = shost; sha->lldd_ha = hisi_hba; shost->transportt = hisi_sas_stt; shost->max_id = HISI_SAS_MAX_DEVICES; shost->max_lun = ~0; shost->max_channel = 1; shost->max_cmd_len = 16; shost->can_queue = hisi_hba->hw->max_command_entries - HISI_SAS_RESERVED_IPTT_CNT; shost->cmd_per_lun = hisi_hba->hw->max_command_entries - HISI_SAS_RESERVED_IPTT_CNT; sha->sas_ha_name = DRV_NAME; sha->dev = dev; sha->lldd_module = THIS_MODULE; sha->sas_addr = &hisi_hba->sas_addr[0]; sha->num_phys = hisi_hba->n_phy; sha->core.shost = hisi_hba->shost; for (i = 0; i < hisi_hba->n_phy; i++) { sha->sas_phy[i] = &hisi_hba->phy[i].sas_phy; sha->sas_port[i] = &hisi_hba->port[i].sas_port; } if (hisi_hba->prot_mask) { dev_info(dev, "Registering for DIF/DIX prot_mask=0x%x\n", prot_mask); scsi_host_set_prot(hisi_hba->shost, prot_mask); if (hisi_hba->prot_mask & HISI_SAS_DIX_PROT_MASK) scsi_host_set_guard(hisi_hba->shost, SHOST_DIX_GUARD_CRC); } if (hisi_sas_debugfs_enable) hisi_sas_debugfs_init(hisi_hba); rc = scsi_add_host(shost, dev); if (rc) goto err_out_ha; rc = sas_register_ha(sha); if (rc) goto err_out_register_ha; rc = hisi_hba->hw->hw_init(hisi_hba); if (rc) goto err_out_register_ha; scsi_scan_host(shost); return 0; err_out_register_ha: scsi_remove_host(shost); err_out_ha: scsi_host_put(shost); err_out_regions: pci_release_regions(pdev); err_out_disable_device: pci_disable_device(pdev); err_out: return rc; } static void hisi_sas_v3_destroy_irqs(struct pci_dev *pdev, struct hisi_hba *hisi_hba) { int i; free_irq(pci_irq_vector(pdev, 1), hisi_hba); free_irq(pci_irq_vector(pdev, 2), hisi_hba); free_irq(pci_irq_vector(pdev, 11), hisi_hba); for (i = 0; i < hisi_hba->cq_nvecs; i++) { struct hisi_sas_cq *cq = &hisi_hba->cq[i]; int nr = hisi_sas_intr_conv ? 16 : 16 + i; free_irq(pci_irq_vector(pdev, nr), cq); } pci_free_irq_vectors(pdev); } static void hisi_sas_v3_remove(struct pci_dev *pdev) { struct device *dev = &pdev->dev; struct sas_ha_struct *sha = dev_get_drvdata(dev); struct hisi_hba *hisi_hba = sha->lldd_ha; struct Scsi_Host *shost = sha->core.shost; hisi_sas_debugfs_exit(hisi_hba); if (timer_pending(&hisi_hba->timer)) del_timer(&hisi_hba->timer); sas_unregister_ha(sha); sas_remove_host(sha->core.shost); hisi_sas_v3_destroy_irqs(pdev, hisi_hba); hisi_sas_kill_tasklets(hisi_hba); pci_release_regions(pdev); pci_disable_device(pdev); hisi_sas_free(hisi_hba); scsi_host_put(shost); } static const struct hisi_sas_hw_error sas_ras_intr0_nfe[] = { { .irq_msk = BIT(19), .msg = "HILINK_INT" }, { .irq_msk = BIT(20), .msg = "HILINK_PLL0_OUT_OF_LOCK" }, { .irq_msk = BIT(21), .msg = "HILINK_PLL1_OUT_OF_LOCK" }, { .irq_msk = BIT(22), .msg = "HILINK_LOSS_OF_REFCLK0" }, { .irq_msk = BIT(23), .msg = "HILINK_LOSS_OF_REFCLK1" }, { .irq_msk = BIT(24), .msg = "DMAC0_TX_POISON" }, { .irq_msk = BIT(25), .msg = "DMAC1_TX_POISON" }, { .irq_msk = BIT(26), .msg = "DMAC2_TX_POISON" }, { .irq_msk = BIT(27), .msg = "DMAC3_TX_POISON" }, { .irq_msk = BIT(28), .msg = "DMAC4_TX_POISON" }, { .irq_msk = BIT(29), .msg = "DMAC5_TX_POISON" }, { .irq_msk = BIT(30), .msg = "DMAC6_TX_POISON" }, { .irq_msk = BIT(31), .msg = "DMAC7_TX_POISON" }, }; static const struct hisi_sas_hw_error sas_ras_intr1_nfe[] = { { .irq_msk = BIT(0), .msg = "RXM_CFG_MEM3_ECC2B_INTR" }, { .irq_msk = BIT(1), .msg = "RXM_CFG_MEM2_ECC2B_INTR" }, { .irq_msk = BIT(2), .msg = "RXM_CFG_MEM1_ECC2B_INTR" }, { .irq_msk = BIT(3), .msg = "RXM_CFG_MEM0_ECC2B_INTR" }, { .irq_msk = BIT(4), .msg = "HGC_CQE_ECC2B_INTR" }, { .irq_msk = BIT(5), .msg = "LM_CFG_IOSTL_ECC2B_INTR" }, { .irq_msk = BIT(6), .msg = "LM_CFG_ITCTL_ECC2B_INTR" }, { .irq_msk = BIT(7), .msg = "HGC_ITCT_ECC2B_INTR" }, { .irq_msk = BIT(8), .msg = "HGC_IOST_ECC2B_INTR" }, { .irq_msk = BIT(9), .msg = "HGC_DQE_ECC2B_INTR" }, { .irq_msk = BIT(10), .msg = "DMAC0_RAM_ECC2B_INTR" }, { .irq_msk = BIT(11), .msg = "DMAC1_RAM_ECC2B_INTR" }, { .irq_msk = BIT(12), .msg = "DMAC2_RAM_ECC2B_INTR" }, { .irq_msk = BIT(13), .msg = "DMAC3_RAM_ECC2B_INTR" }, { .irq_msk = BIT(14), .msg = "DMAC4_RAM_ECC2B_INTR" }, { .irq_msk = BIT(15), .msg = "DMAC5_RAM_ECC2B_INTR" }, { .irq_msk = BIT(16), .msg = "DMAC6_RAM_ECC2B_INTR" }, { .irq_msk = BIT(17), .msg = "DMAC7_RAM_ECC2B_INTR" }, { .irq_msk = BIT(18), .msg = "OOO_RAM_ECC2B_INTR" }, { .irq_msk = BIT(20), .msg = "HGC_DQE_POISON_INTR" }, { .irq_msk = BIT(21), .msg = "HGC_IOST_POISON_INTR" }, { .irq_msk = BIT(22), .msg = "HGC_ITCT_POISON_INTR" }, { .irq_msk = BIT(23), .msg = "HGC_ITCT_NCQ_POISON_INTR" }, { .irq_msk = BIT(24), .msg = "DMAC0_RX_POISON" }, { .irq_msk = BIT(25), .msg = "DMAC1_RX_POISON" }, { .irq_msk = BIT(26), .msg = "DMAC2_RX_POISON" }, { .irq_msk = BIT(27), .msg = "DMAC3_RX_POISON" }, { .irq_msk = BIT(28), .msg = "DMAC4_RX_POISON" }, { .irq_msk = BIT(29), .msg = "DMAC5_RX_POISON" }, { .irq_msk = BIT(30), .msg = "DMAC6_RX_POISON" }, { .irq_msk = BIT(31), .msg = "DMAC7_RX_POISON" }, }; static const struct hisi_sas_hw_error sas_ras_intr2_nfe[] = { { .irq_msk = BIT(0), .msg = "DMAC0_AXI_BUS_ERR" }, { .irq_msk = BIT(1), .msg = "DMAC1_AXI_BUS_ERR" }, { .irq_msk = BIT(2), .msg = "DMAC2_AXI_BUS_ERR" }, { .irq_msk = BIT(3), .msg = "DMAC3_AXI_BUS_ERR" }, { .irq_msk = BIT(4), .msg = "DMAC4_AXI_BUS_ERR" }, { .irq_msk = BIT(5), .msg = "DMAC5_AXI_BUS_ERR" }, { .irq_msk = BIT(6), .msg = "DMAC6_AXI_BUS_ERR" }, { .irq_msk = BIT(7), .msg = "DMAC7_AXI_BUS_ERR" }, { .irq_msk = BIT(8), .msg = "DMAC0_FIFO_OMIT_ERR" }, { .irq_msk = BIT(9), .msg = "DMAC1_FIFO_OMIT_ERR" }, { .irq_msk = BIT(10), .msg = "DMAC2_FIFO_OMIT_ERR" }, { .irq_msk = BIT(11), .msg = "DMAC3_FIFO_OMIT_ERR" }, { .irq_msk = BIT(12), .msg = "DMAC4_FIFO_OMIT_ERR" }, { .irq_msk = BIT(13), .msg = "DMAC5_FIFO_OMIT_ERR" }, { .irq_msk = BIT(14), .msg = "DMAC6_FIFO_OMIT_ERR" }, { .irq_msk = BIT(15), .msg = "DMAC7_FIFO_OMIT_ERR" }, { .irq_msk = BIT(16), .msg = "HGC_RLSE_SLOT_UNMATCH" }, { .irq_msk = BIT(17), .msg = "HGC_LM_ADD_FCH_LIST_ERR" }, { .irq_msk = BIT(18), .msg = "HGC_AXI_BUS_ERR" }, { .irq_msk = BIT(19), .msg = "HGC_FIFO_OMIT_ERR" }, }; static bool process_non_fatal_error_v3_hw(struct hisi_hba *hisi_hba) { struct device *dev = hisi_hba->dev; const struct hisi_sas_hw_error *ras_error; bool need_reset = false; u32 irq_value; int i; irq_value = hisi_sas_read32(hisi_hba, SAS_RAS_INTR0); for (i = 0; i < ARRAY_SIZE(sas_ras_intr0_nfe); i++) { ras_error = &sas_ras_intr0_nfe[i]; if (ras_error->irq_msk & irq_value) { dev_warn(dev, "SAS_RAS_INTR0: %s(irq_value=0x%x) found.\n", ras_error->msg, irq_value); need_reset = true; } } hisi_sas_write32(hisi_hba, SAS_RAS_INTR0, irq_value); irq_value = hisi_sas_read32(hisi_hba, SAS_RAS_INTR1); for (i = 0; i < ARRAY_SIZE(sas_ras_intr1_nfe); i++) { ras_error = &sas_ras_intr1_nfe[i]; if (ras_error->irq_msk & irq_value) { dev_warn(dev, "SAS_RAS_INTR1: %s(irq_value=0x%x) found.\n", ras_error->msg, irq_value); need_reset = true; } } hisi_sas_write32(hisi_hba, SAS_RAS_INTR1, irq_value); irq_value = hisi_sas_read32(hisi_hba, SAS_RAS_INTR2); for (i = 0; i < ARRAY_SIZE(sas_ras_intr2_nfe); i++) { ras_error = &sas_ras_intr2_nfe[i]; if (ras_error->irq_msk & irq_value) { dev_warn(dev, "SAS_RAS_INTR2: %s(irq_value=0x%x) found.\n", ras_error->msg, irq_value); need_reset = true; } } hisi_sas_write32(hisi_hba, SAS_RAS_INTR2, irq_value); return need_reset; } static pci_ers_result_t hisi_sas_error_detected_v3_hw(struct pci_dev *pdev, pci_channel_state_t state) { struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; struct device *dev = hisi_hba->dev; dev_info(dev, "PCI error: detected callback, state(%d)!!\n", state); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (process_non_fatal_error_v3_hw(hisi_hba)) return PCI_ERS_RESULT_NEED_RESET; return PCI_ERS_RESULT_CAN_RECOVER; } static pci_ers_result_t hisi_sas_mmio_enabled_v3_hw(struct pci_dev *pdev) { return PCI_ERS_RESULT_RECOVERED; } static pci_ers_result_t hisi_sas_slot_reset_v3_hw(struct pci_dev *pdev) { struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; struct device *dev = hisi_hba->dev; HISI_SAS_DECLARE_RST_WORK_ON_STACK(r); dev_info(dev, "PCI error: slot reset callback!!\n"); queue_work(hisi_hba->wq, &r.work); wait_for_completion(r.completion); if (r.done) return PCI_ERS_RESULT_RECOVERED; return PCI_ERS_RESULT_DISCONNECT; } static void hisi_sas_reset_prepare_v3_hw(struct pci_dev *pdev) { struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; struct device *dev = hisi_hba->dev; int rc; dev_info(dev, "FLR prepare\n"); set_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags); hisi_sas_controller_reset_prepare(hisi_hba); rc = disable_host_v3_hw(hisi_hba); if (rc) dev_err(dev, "FLR: disable host failed rc=%d\n", rc); } static void hisi_sas_reset_done_v3_hw(struct pci_dev *pdev) { struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; struct device *dev = hisi_hba->dev; int rc; hisi_sas_init_mem(hisi_hba); rc = hw_init_v3_hw(hisi_hba); if (rc) { dev_err(dev, "FLR: hw init failed rc=%d\n", rc); return; } hisi_sas_controller_reset_done(hisi_hba); dev_info(dev, "FLR done\n"); } enum { /* instances of the controller */ hip08, }; static int hisi_sas_v3_suspend(struct pci_dev *pdev, pm_message_t state) { struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; struct device *dev = hisi_hba->dev; struct Scsi_Host *shost = hisi_hba->shost; pci_power_t device_state; int rc; if (!pdev->pm_cap) { dev_err(dev, "PCI PM not supported\n"); return -ENODEV; } if (test_and_set_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags)) return -1; scsi_block_requests(shost); set_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags); flush_workqueue(hisi_hba->wq); rc = disable_host_v3_hw(hisi_hba); if (rc) { dev_err(dev, "PM suspend: disable host failed rc=%d\n", rc); clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags); clear_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags); scsi_unblock_requests(shost); return rc; } hisi_sas_init_mem(hisi_hba); device_state = pci_choose_state(pdev, state); dev_warn(dev, "entering operating state [D%d]\n", device_state); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, device_state); hisi_sas_release_tasks(hisi_hba); sas_suspend_ha(sha); return 0; } static int hisi_sas_v3_resume(struct pci_dev *pdev) { struct sas_ha_struct *sha = pci_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; struct Scsi_Host *shost = hisi_hba->shost; struct device *dev = hisi_hba->dev; unsigned int rc; pci_power_t device_state = pdev->current_state; dev_warn(dev, "resuming from operating state [D%d]\n", device_state); pci_set_power_state(pdev, PCI_D0); pci_enable_wake(pdev, PCI_D0, 0); pci_restore_state(pdev); rc = pci_enable_device(pdev); if (rc) dev_err(dev, "enable device failed during resume (%d)\n", rc); pci_set_master(pdev); scsi_unblock_requests(shost); clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags); sas_prep_resume_ha(sha); init_reg_v3_hw(hisi_hba); hisi_hba->hw->phys_init(hisi_hba); sas_resume_ha(sha); clear_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags); return 0; } static const struct pci_device_id sas_v3_pci_table[] = { { PCI_VDEVICE(HUAWEI, 0xa230), hip08 }, {} }; MODULE_DEVICE_TABLE(pci, sas_v3_pci_table); static const struct pci_error_handlers hisi_sas_err_handler = { .error_detected = hisi_sas_error_detected_v3_hw, .mmio_enabled = hisi_sas_mmio_enabled_v3_hw, .slot_reset = hisi_sas_slot_reset_v3_hw, .reset_prepare = hisi_sas_reset_prepare_v3_hw, .reset_done = hisi_sas_reset_done_v3_hw, }; static struct pci_driver sas_v3_pci_driver = { .name = DRV_NAME, .id_table = sas_v3_pci_table, .probe = hisi_sas_v3_probe, .remove = hisi_sas_v3_remove, .suspend = hisi_sas_v3_suspend, .resume = hisi_sas_v3_resume, .err_handler = &hisi_sas_err_handler, }; module_pci_driver(sas_v3_pci_driver); module_param_named(intr_conv, hisi_sas_intr_conv, bool, 0444); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Garry "); MODULE_DESCRIPTION("HISILICON SAS controller v3 hw driver based on pci device"); MODULE_ALIAS("pci:" DRV_NAME);