/**************************************************************************/ /* */ /* IBM eServer i/pSeries Virtual Ethernet Device Driver */ /* Copyright (C) 2003 IBM Corp. */ /* Originally written by Dave Larson (larson1@us.ibm.com) */ /* Maintained by Santiago Leon (santil@us.ibm.com) */ /* */ /* This program is free software; you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with this program; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 */ /* USA */ /* */ /* This module contains the implementation of a virtual ethernet device */ /* for use with IBM i/pSeries LPAR Linux. It utilizes the logical LAN */ /* option of the RS/6000 Platform Architechture to interface with virtual */ /* ethernet NICs that are presented to the partition by the hypervisor. */ /* */ /**************************************************************************/ /* TODO: - remove frag processing code - no longer needed - add support for sysfs - possibly remove procfs support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ibmveth.h" #undef DEBUG #define ibmveth_printk(fmt, args...) \ printk(KERN_DEBUG "%s: " fmt, __FILE__, ## args) #define ibmveth_error_printk(fmt, args...) \ printk(KERN_ERR "(%s:%3.3d ua:%x) ERROR: " fmt, __FILE__, __LINE__ , adapter->vdev->unit_address, ## args) #ifdef DEBUG #define ibmveth_debug_printk_no_adapter(fmt, args...) \ printk(KERN_DEBUG "(%s:%3.3d): " fmt, __FILE__, __LINE__ , ## args) #define ibmveth_debug_printk(fmt, args...) \ printk(KERN_DEBUG "(%s:%3.3d ua:%x): " fmt, __FILE__, __LINE__ , adapter->vdev->unit_address, ## args) #define ibmveth_assert(expr) \ if(!(expr)) { \ printk(KERN_DEBUG "assertion failed (%s:%3.3d ua:%x): %s\n", __FILE__, __LINE__, adapter->vdev->unit_address, #expr); \ BUG(); \ } #else #define ibmveth_debug_printk_no_adapter(fmt, args...) #define ibmveth_debug_printk(fmt, args...) #define ibmveth_assert(expr) #endif static int ibmveth_open(struct net_device *dev); static int ibmveth_close(struct net_device *dev); static int ibmveth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); static int ibmveth_poll(struct net_device *dev, int *budget); static int ibmveth_start_xmit(struct sk_buff *skb, struct net_device *dev); static struct net_device_stats *ibmveth_get_stats(struct net_device *dev); static void ibmveth_set_multicast_list(struct net_device *dev); static int ibmveth_change_mtu(struct net_device *dev, int new_mtu); static void ibmveth_proc_register_driver(void); static void ibmveth_proc_unregister_driver(void); static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter); static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter); static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static inline void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter); static struct kobj_type ktype_veth_pool; #ifdef CONFIG_PROC_FS #define IBMVETH_PROC_DIR "net/ibmveth" static struct proc_dir_entry *ibmveth_proc_dir; #endif static const char ibmveth_driver_name[] = "ibmveth"; static const char ibmveth_driver_string[] = "IBM i/pSeries Virtual Ethernet Driver"; #define ibmveth_driver_version "1.03" MODULE_AUTHOR("Santiago Leon "); MODULE_DESCRIPTION("IBM i/pSeries Virtual Ethernet Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(ibmveth_driver_version); /* simple methods of getting data from the current rxq entry */ static inline int ibmveth_rxq_pending_buffer(struct ibmveth_adapter *adapter) { return (adapter->rx_queue.queue_addr[adapter->rx_queue.index].toggle == adapter->rx_queue.toggle); } static inline int ibmveth_rxq_buffer_valid(struct ibmveth_adapter *adapter) { return (adapter->rx_queue.queue_addr[adapter->rx_queue.index].valid); } static inline int ibmveth_rxq_frame_offset(struct ibmveth_adapter *adapter) { return (adapter->rx_queue.queue_addr[adapter->rx_queue.index].offset); } static inline int ibmveth_rxq_frame_length(struct ibmveth_adapter *adapter) { return (adapter->rx_queue.queue_addr[adapter->rx_queue.index].length); } /* setup the initial settings for a buffer pool */ static void ibmveth_init_buffer_pool(struct ibmveth_buff_pool *pool, u32 pool_index, u32 pool_size, u32 buff_size, u32 pool_active) { pool->size = pool_size; pool->index = pool_index; pool->buff_size = buff_size; pool->threshold = pool_size / 2; pool->active = pool_active; } /* allocate and setup an buffer pool - called during open */ static int ibmveth_alloc_buffer_pool(struct ibmveth_buff_pool *pool) { int i; pool->free_map = kmalloc(sizeof(u16) * pool->size, GFP_KERNEL); if(!pool->free_map) { return -1; } pool->dma_addr = kmalloc(sizeof(dma_addr_t) * pool->size, GFP_KERNEL); if(!pool->dma_addr) { kfree(pool->free_map); pool->free_map = NULL; return -1; } pool->skbuff = kmalloc(sizeof(void*) * pool->size, GFP_KERNEL); if(!pool->skbuff) { kfree(pool->dma_addr); pool->dma_addr = NULL; kfree(pool->free_map); pool->free_map = NULL; return -1; } memset(pool->skbuff, 0, sizeof(void*) * pool->size); memset(pool->dma_addr, 0, sizeof(dma_addr_t) * pool->size); for(i = 0; i < pool->size; ++i) { pool->free_map[i] = i; } atomic_set(&pool->available, 0); pool->producer_index = 0; pool->consumer_index = 0; return 0; } /* replenish the buffers for a pool. note that we don't need to * skb_reserve these since they are used for incoming... */ static void ibmveth_replenish_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool) { u32 i; u32 count = pool->size - atomic_read(&pool->available); u32 buffers_added = 0; mb(); for(i = 0; i < count; ++i) { struct sk_buff *skb; unsigned int free_index, index; u64 correlator; union ibmveth_buf_desc desc; unsigned long lpar_rc; dma_addr_t dma_addr; skb = alloc_skb(pool->buff_size, GFP_ATOMIC); if(!skb) { ibmveth_debug_printk("replenish: unable to allocate skb\n"); adapter->replenish_no_mem++; break; } free_index = pool->consumer_index++ % pool->size; index = pool->free_map[free_index]; ibmveth_assert(index != IBM_VETH_INVALID_MAP); ibmveth_assert(pool->skbuff[index] == NULL); dma_addr = dma_map_single(&adapter->vdev->dev, skb->data, pool->buff_size, DMA_FROM_DEVICE); pool->free_map[free_index] = IBM_VETH_INVALID_MAP; pool->dma_addr[index] = dma_addr; pool->skbuff[index] = skb; correlator = ((u64)pool->index << 32) | index; *(u64*)skb->data = correlator; desc.desc = 0; desc.fields.valid = 1; desc.fields.length = pool->buff_size; desc.fields.address = dma_addr; lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); if(lpar_rc != H_SUCCESS) { pool->free_map[free_index] = index; pool->skbuff[index] = NULL; pool->consumer_index--; dma_unmap_single(&adapter->vdev->dev, pool->dma_addr[index], pool->buff_size, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); adapter->replenish_add_buff_failure++; break; } else { buffers_added++; adapter->replenish_add_buff_success++; } } mb(); atomic_add(buffers_added, &(pool->available)); } /* replenish routine */ static void ibmveth_replenish_task(struct ibmveth_adapter *adapter) { int i; adapter->replenish_task_cycles++; for(i = 0; i < IbmVethNumBufferPools; i++) if(adapter->rx_buff_pool[i].active) ibmveth_replenish_buffer_pool(adapter, &adapter->rx_buff_pool[i]); adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8); } /* empty and free ana buffer pool - also used to do cleanup in error paths */ static void ibmveth_free_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool) { int i; kfree(pool->free_map); pool->free_map = NULL; if(pool->skbuff && pool->dma_addr) { for(i = 0; i < pool->size; ++i) { struct sk_buff *skb = pool->skbuff[i]; if(skb) { dma_unmap_single(&adapter->vdev->dev, pool->dma_addr[i], pool->buff_size, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); pool->skbuff[i] = NULL; } } } if(pool->dma_addr) { kfree(pool->dma_addr); pool->dma_addr = NULL; } if(pool->skbuff) { kfree(pool->skbuff); pool->skbuff = NULL; } } /* remove a buffer from a pool */ static void ibmveth_remove_buffer_from_pool(struct ibmveth_adapter *adapter, u64 correlator) { unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; unsigned int free_index; struct sk_buff *skb; ibmveth_assert(pool < IbmVethNumBufferPools); ibmveth_assert(index < adapter->rx_buff_pool[pool].size); skb = adapter->rx_buff_pool[pool].skbuff[index]; ibmveth_assert(skb != NULL); adapter->rx_buff_pool[pool].skbuff[index] = NULL; dma_unmap_single(&adapter->vdev->dev, adapter->rx_buff_pool[pool].dma_addr[index], adapter->rx_buff_pool[pool].buff_size, DMA_FROM_DEVICE); free_index = adapter->rx_buff_pool[pool].producer_index++ % adapter->rx_buff_pool[pool].size; adapter->rx_buff_pool[pool].free_map[free_index] = index; mb(); atomic_dec(&(adapter->rx_buff_pool[pool].available)); } /* get the current buffer on the rx queue */ static inline struct sk_buff *ibmveth_rxq_get_buffer(struct ibmveth_adapter *adapter) { u64 correlator = adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator; unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; ibmveth_assert(pool < IbmVethNumBufferPools); ibmveth_assert(index < adapter->rx_buff_pool[pool].size); return adapter->rx_buff_pool[pool].skbuff[index]; } /* recycle the current buffer on the rx queue */ static void ibmveth_rxq_recycle_buffer(struct ibmveth_adapter *adapter) { u32 q_index = adapter->rx_queue.index; u64 correlator = adapter->rx_queue.queue_addr[q_index].correlator; unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; union ibmveth_buf_desc desc; unsigned long lpar_rc; ibmveth_assert(pool < IbmVethNumBufferPools); ibmveth_assert(index < adapter->rx_buff_pool[pool].size); if(!adapter->rx_buff_pool[pool].active) { ibmveth_rxq_harvest_buffer(adapter); ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[pool]); return; } desc.desc = 0; desc.fields.valid = 1; desc.fields.length = adapter->rx_buff_pool[pool].buff_size; desc.fields.address = adapter->rx_buff_pool[pool].dma_addr[index]; lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); if(lpar_rc != H_SUCCESS) { ibmveth_debug_printk("h_add_logical_lan_buffer failed during recycle rc=%ld", lpar_rc); ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator); } if(++adapter->rx_queue.index == adapter->rx_queue.num_slots) { adapter->rx_queue.index = 0; adapter->rx_queue.toggle = !adapter->rx_queue.toggle; } } static inline void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter) { ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator); if(++adapter->rx_queue.index == adapter->rx_queue.num_slots) { adapter->rx_queue.index = 0; adapter->rx_queue.toggle = !adapter->rx_queue.toggle; } } static void ibmveth_cleanup(struct ibmveth_adapter *adapter) { int i; if(adapter->buffer_list_addr != NULL) { if(!dma_mapping_error(adapter->buffer_list_dma)) { dma_unmap_single(&adapter->vdev->dev, adapter->buffer_list_dma, 4096, DMA_BIDIRECTIONAL); adapter->buffer_list_dma = DMA_ERROR_CODE; } free_page((unsigned long)adapter->buffer_list_addr); adapter->buffer_list_addr = NULL; } if(adapter->filter_list_addr != NULL) { if(!dma_mapping_error(adapter->filter_list_dma)) { dma_unmap_single(&adapter->vdev->dev, adapter->filter_list_dma, 4096, DMA_BIDIRECTIONAL); adapter->filter_list_dma = DMA_ERROR_CODE; } free_page((unsigned long)adapter->filter_list_addr); adapter->filter_list_addr = NULL; } if(adapter->rx_queue.queue_addr != NULL) { if(!dma_mapping_error(adapter->rx_queue.queue_dma)) { dma_unmap_single(&adapter->vdev->dev, adapter->rx_queue.queue_dma, adapter->rx_queue.queue_len, DMA_BIDIRECTIONAL); adapter->rx_queue.queue_dma = DMA_ERROR_CODE; } kfree(adapter->rx_queue.queue_addr); adapter->rx_queue.queue_addr = NULL; } for(i = 0; irx_buff_pool[i].active) ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[i]); } static int ibmveth_register_logical_lan(struct ibmveth_adapter *adapter, union ibmveth_buf_desc rxq_desc, u64 mac_address) { int rc, try_again = 1; /* After a kexec the adapter will still be open, so our attempt to * open it will fail. So if we get a failure we free the adapter and * try again, but only once. */ retry: rc = h_register_logical_lan(adapter->vdev->unit_address, adapter->buffer_list_dma, rxq_desc.desc, adapter->filter_list_dma, mac_address); if (rc != H_SUCCESS && try_again) { do { rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(rc) || (rc == H_BUSY)); try_again = 0; goto retry; } return rc; } static int ibmveth_open(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev->priv; u64 mac_address = 0; int rxq_entries = 1; unsigned long lpar_rc; int rc; union ibmveth_buf_desc rxq_desc; int i; ibmveth_debug_printk("open starting\n"); for(i = 0; irx_buff_pool[i].size; adapter->buffer_list_addr = (void*) get_zeroed_page(GFP_KERNEL); adapter->filter_list_addr = (void*) get_zeroed_page(GFP_KERNEL); if(!adapter->buffer_list_addr || !adapter->filter_list_addr) { ibmveth_error_printk("unable to allocate filter or buffer list pages\n"); ibmveth_cleanup(adapter); return -ENOMEM; } adapter->rx_queue.queue_len = sizeof(struct ibmveth_rx_q_entry) * rxq_entries; adapter->rx_queue.queue_addr = kmalloc(adapter->rx_queue.queue_len, GFP_KERNEL); if(!adapter->rx_queue.queue_addr) { ibmveth_error_printk("unable to allocate rx queue pages\n"); ibmveth_cleanup(adapter); return -ENOMEM; } adapter->buffer_list_dma = dma_map_single(&adapter->vdev->dev, adapter->buffer_list_addr, 4096, DMA_BIDIRECTIONAL); adapter->filter_list_dma = dma_map_single(&adapter->vdev->dev, adapter->filter_list_addr, 4096, DMA_BIDIRECTIONAL); adapter->rx_queue.queue_dma = dma_map_single(&adapter->vdev->dev, adapter->rx_queue.queue_addr, adapter->rx_queue.queue_len, DMA_BIDIRECTIONAL); if((dma_mapping_error(adapter->buffer_list_dma) ) || (dma_mapping_error(adapter->filter_list_dma)) || (dma_mapping_error(adapter->rx_queue.queue_dma))) { ibmveth_error_printk("unable to map filter or buffer list pages\n"); ibmveth_cleanup(adapter); return -ENOMEM; } adapter->rx_queue.index = 0; adapter->rx_queue.num_slots = rxq_entries; adapter->rx_queue.toggle = 1; memcpy(&mac_address, netdev->dev_addr, netdev->addr_len); mac_address = mac_address >> 16; rxq_desc.desc = 0; rxq_desc.fields.valid = 1; rxq_desc.fields.length = adapter->rx_queue.queue_len; rxq_desc.fields.address = adapter->rx_queue.queue_dma; ibmveth_debug_printk("buffer list @ 0x%p\n", adapter->buffer_list_addr); ibmveth_debug_printk("filter list @ 0x%p\n", adapter->filter_list_addr); ibmveth_debug_printk("receive q @ 0x%p\n", adapter->rx_queue.queue_addr); h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); lpar_rc = ibmveth_register_logical_lan(adapter, rxq_desc, mac_address); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_register_logical_lan failed with %ld\n", lpar_rc); ibmveth_error_printk("buffer TCE:0x%lx filter TCE:0x%lx rxq desc:0x%lx MAC:0x%lx\n", adapter->buffer_list_dma, adapter->filter_list_dma, rxq_desc.desc, mac_address); ibmveth_cleanup(adapter); return -ENONET; } for(i = 0; irx_buff_pool[i].active) continue; if (ibmveth_alloc_buffer_pool(&adapter->rx_buff_pool[i])) { ibmveth_error_printk("unable to alloc pool\n"); adapter->rx_buff_pool[i].active = 0; ibmveth_cleanup(adapter); return -ENOMEM ; } } ibmveth_debug_printk("registering irq 0x%x\n", netdev->irq); if((rc = request_irq(netdev->irq, &ibmveth_interrupt, 0, netdev->name, netdev)) != 0) { ibmveth_error_printk("unable to request irq 0x%x, rc %d\n", netdev->irq, rc); do { rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(rc) || (rc == H_BUSY)); ibmveth_cleanup(adapter); return rc; } ibmveth_debug_printk("initial replenish cycle\n"); ibmveth_interrupt(netdev->irq, netdev, NULL); netif_start_queue(netdev); ibmveth_debug_printk("open complete\n"); return 0; } static int ibmveth_close(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev->priv; long lpar_rc; ibmveth_debug_printk("close starting\n"); if (!adapter->pool_config) netif_stop_queue(netdev); free_irq(netdev->irq, netdev); do { lpar_rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(lpar_rc) || (lpar_rc == H_BUSY)); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_free_logical_lan failed with %lx, continuing with close\n", lpar_rc); } adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8); ibmveth_cleanup(adapter); ibmveth_debug_printk("close complete\n"); return 0; } static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { cmd->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE); cmd->advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_Autoneg | ADVERTISED_FIBRE); cmd->speed = SPEED_1000; cmd->duplex = DUPLEX_FULL; cmd->port = PORT_FIBRE; cmd->phy_address = 0; cmd->transceiver = XCVR_INTERNAL; cmd->autoneg = AUTONEG_ENABLE; cmd->maxtxpkt = 0; cmd->maxrxpkt = 1; return 0; } static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) { strncpy(info->driver, ibmveth_driver_name, sizeof(info->driver) - 1); strncpy(info->version, ibmveth_driver_version, sizeof(info->version) - 1); } static u32 netdev_get_link(struct net_device *dev) { return 1; } static const struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_settings = netdev_get_settings, .get_link = netdev_get_link, .get_sg = ethtool_op_get_sg, .get_tx_csum = ethtool_op_get_tx_csum, }; static int ibmveth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { return -EOPNOTSUPP; } #define page_offset(v) ((unsigned long)(v) & ((1 << 12) - 1)) static int ibmveth_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev->priv; union ibmveth_buf_desc desc[IbmVethMaxSendFrags]; unsigned long lpar_rc; int nfrags = 0, curfrag; unsigned long correlator; unsigned long flags; unsigned int retry_count; unsigned int tx_dropped = 0; unsigned int tx_bytes = 0; unsigned int tx_packets = 0; unsigned int tx_send_failed = 0; unsigned int tx_map_failed = 0; if ((skb_shinfo(skb)->nr_frags + 1) > IbmVethMaxSendFrags) { tx_dropped++; goto out; } memset(&desc, 0, sizeof(desc)); /* nfrags = number of frags after the initial fragment */ nfrags = skb_shinfo(skb)->nr_frags; if(nfrags) adapter->tx_multidesc_send++; /* map the initial fragment */ desc[0].fields.length = nfrags ? skb->len - skb->data_len : skb->len; desc[0].fields.address = dma_map_single(&adapter->vdev->dev, skb->data, desc[0].fields.length, DMA_TO_DEVICE); desc[0].fields.valid = 1; if(dma_mapping_error(desc[0].fields.address)) { ibmveth_error_printk("tx: unable to map initial fragment\n"); tx_map_failed++; tx_dropped++; goto out; } curfrag = nfrags; /* map fragments past the initial portion if there are any */ while(curfrag--) { skb_frag_t *frag = &skb_shinfo(skb)->frags[curfrag]; desc[curfrag+1].fields.address = dma_map_single(&adapter->vdev->dev, page_address(frag->page) + frag->page_offset, frag->size, DMA_TO_DEVICE); desc[curfrag+1].fields.length = frag->size; desc[curfrag+1].fields.valid = 1; if(dma_mapping_error(desc[curfrag+1].fields.address)) { ibmveth_error_printk("tx: unable to map fragment %d\n", curfrag); tx_map_failed++; tx_dropped++; /* Free all the mappings we just created */ while(curfrag < nfrags) { dma_unmap_single(&adapter->vdev->dev, desc[curfrag+1].fields.address, desc[curfrag+1].fields.length, DMA_TO_DEVICE); curfrag++; } goto out; } } /* send the frame. Arbitrarily set retrycount to 1024 */ correlator = 0; retry_count = 1024; do { lpar_rc = h_send_logical_lan(adapter->vdev->unit_address, desc[0].desc, desc[1].desc, desc[2].desc, desc[3].desc, desc[4].desc, desc[5].desc, correlator, &correlator); } while ((lpar_rc == H_BUSY) && (retry_count--)); if(lpar_rc != H_SUCCESS && lpar_rc != H_DROPPED) { int i; ibmveth_error_printk("tx: h_send_logical_lan failed with rc=%ld\n", lpar_rc); for(i = 0; i < 6; i++) { ibmveth_error_printk("tx: desc[%i] valid=%d, len=%d, address=0x%d\n", i, desc[i].fields.valid, desc[i].fields.length, desc[i].fields.address); } tx_send_failed++; tx_dropped++; } else { tx_packets++; tx_bytes += skb->len; netdev->trans_start = jiffies; } do { dma_unmap_single(&adapter->vdev->dev, desc[nfrags].fields.address, desc[nfrags].fields.length, DMA_TO_DEVICE); } while(--nfrags >= 0); out: spin_lock_irqsave(&adapter->stats_lock, flags); adapter->stats.tx_dropped += tx_dropped; adapter->stats.tx_bytes += tx_bytes; adapter->stats.tx_packets += tx_packets; adapter->tx_send_failed += tx_send_failed; adapter->tx_map_failed += tx_map_failed; spin_unlock_irqrestore(&adapter->stats_lock, flags); dev_kfree_skb(skb); return 0; } static int ibmveth_poll(struct net_device *netdev, int *budget) { struct ibmveth_adapter *adapter = netdev->priv; int max_frames_to_process = netdev->quota; int frames_processed = 0; int more_work = 1; unsigned long lpar_rc; restart_poll: do { struct net_device *netdev = adapter->netdev; if(ibmveth_rxq_pending_buffer(adapter)) { struct sk_buff *skb; rmb(); if(!ibmveth_rxq_buffer_valid(adapter)) { wmb(); /* suggested by larson1 */ adapter->rx_invalid_buffer++; ibmveth_debug_printk("recycling invalid buffer\n"); ibmveth_rxq_recycle_buffer(adapter); } else { int length = ibmveth_rxq_frame_length(adapter); int offset = ibmveth_rxq_frame_offset(adapter); skb = ibmveth_rxq_get_buffer(adapter); ibmveth_rxq_harvest_buffer(adapter); skb_reserve(skb, offset); skb_put(skb, length); skb->dev = netdev; skb->protocol = eth_type_trans(skb, netdev); netif_receive_skb(skb); /* send it up */ adapter->stats.rx_packets++; adapter->stats.rx_bytes += length; frames_processed++; netdev->last_rx = jiffies; } } else { more_work = 0; } } while(more_work && (frames_processed < max_frames_to_process)); ibmveth_replenish_task(adapter); if(more_work) { /* more work to do - return that we are not done yet */ netdev->quota -= frames_processed; *budget -= frames_processed; return 1; } /* we think we are done - reenable interrupts, then check once more to make sure we are done */ lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_ENABLE); ibmveth_assert(lpar_rc == H_SUCCESS); netif_rx_complete(netdev); if(ibmveth_rxq_pending_buffer(adapter) && netif_rx_reschedule(netdev, frames_processed)) { lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); ibmveth_assert(lpar_rc == H_SUCCESS); more_work = 1; goto restart_poll; } netdev->quota -= frames_processed; *budget -= frames_processed; /* we really are done */ return 0; } static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *netdev = dev_instance; struct ibmveth_adapter *adapter = netdev->priv; unsigned long lpar_rc; if(netif_rx_schedule_prep(netdev)) { lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); ibmveth_assert(lpar_rc == H_SUCCESS); __netif_rx_schedule(netdev); } return IRQ_HANDLED; } static struct net_device_stats *ibmveth_get_stats(struct net_device *dev) { struct ibmveth_adapter *adapter = dev->priv; return &adapter->stats; } static void ibmveth_set_multicast_list(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev->priv; unsigned long lpar_rc; if((netdev->flags & IFF_PROMISC) || (netdev->mc_count > adapter->mcastFilterSize)) { lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableRecv | IbmVethMcastDisableFiltering, 0); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when entering promisc mode\n", lpar_rc); } } else { struct dev_mc_list *mclist = netdev->mc_list; int i; /* clear the filter table & disable filtering */ lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableRecv | IbmVethMcastDisableFiltering | IbmVethMcastClearFilterTable, 0); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when attempting to clear filter table\n", lpar_rc); } /* add the addresses to the filter table */ for(i = 0; i < netdev->mc_count; ++i, mclist = mclist->next) { // add the multicast address to the filter table unsigned long mcast_addr = 0; memcpy(((char *)&mcast_addr)+2, mclist->dmi_addr, 6); lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastAddFilter, mcast_addr); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when adding an entry to the filter table\n", lpar_rc); } } /* re-enable filtering */ lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableFiltering, 0); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when enabling filtering\n", lpar_rc); } } } static int ibmveth_change_mtu(struct net_device *dev, int new_mtu) { struct ibmveth_adapter *adapter = dev->priv; int new_mtu_oh = new_mtu + IBMVETH_BUFF_OH; int i; if (new_mtu < IBMVETH_MAX_MTU) return -EINVAL; /* Look for an active buffer pool that can hold the new MTU */ for(i = 0; irx_buff_pool[i].active) continue; if (new_mtu_oh < adapter->rx_buff_pool[i].buff_size) { dev->mtu = new_mtu; return 0; } } return -EINVAL; } #ifdef CONFIG_NET_POLL_CONTROLLER static void ibmveth_poll_controller(struct net_device *dev) { ibmveth_replenish_task(dev->priv); ibmveth_interrupt(dev->irq, dev, NULL); } #endif static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_id *id) { int rc, i; struct net_device *netdev; struct ibmveth_adapter *adapter = NULL; unsigned char *mac_addr_p; unsigned int *mcastFilterSize_p; ibmveth_debug_printk_no_adapter("entering ibmveth_probe for UA 0x%x\n", dev->unit_address); mac_addr_p = (unsigned char *) vio_get_attribute(dev, VETH_MAC_ADDR, 0); if(!mac_addr_p) { printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find VETH_MAC_ADDR " "attribute\n", __FILE__, __LINE__); return 0; } mcastFilterSize_p= (unsigned int *) vio_get_attribute(dev, VETH_MCAST_FILTER_SIZE, 0); if(!mcastFilterSize_p) { printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find " "VETH_MCAST_FILTER_SIZE attribute\n", __FILE__, __LINE__); return 0; } netdev = alloc_etherdev(sizeof(struct ibmveth_adapter)); if(!netdev) return -ENOMEM; SET_MODULE_OWNER(netdev); adapter = netdev->priv; memset(adapter, 0, sizeof(adapter)); dev->dev.driver_data = netdev; adapter->vdev = dev; adapter->netdev = netdev; adapter->mcastFilterSize= *mcastFilterSize_p; adapter->pool_config = 0; /* Some older boxes running PHYP non-natively have an OF that returns a 8-byte local-mac-address field (and the first 2 bytes have to be ignored) while newer boxes' OF return a 6-byte field. Note that IEEE 1275 specifies that local-mac-address must be a 6-byte field. The RPA doc specifies that the first byte must be 10b, so we'll just look for it to solve this 8 vs. 6 byte field issue */ if ((*mac_addr_p & 0x3) != 0x02) mac_addr_p += 2; adapter->mac_addr = 0; memcpy(&adapter->mac_addr, mac_addr_p, 6); adapter->liobn = dev->iommu_table->it_index; netdev->irq = dev->irq; netdev->open = ibmveth_open; netdev->poll = ibmveth_poll; netdev->weight = 16; netdev->stop = ibmveth_close; netdev->hard_start_xmit = ibmveth_start_xmit; netdev->get_stats = ibmveth_get_stats; netdev->set_multicast_list = ibmveth_set_multicast_list; netdev->do_ioctl = ibmveth_ioctl; netdev->ethtool_ops = &netdev_ethtool_ops; netdev->change_mtu = ibmveth_change_mtu; SET_NETDEV_DEV(netdev, &dev->dev); #ifdef CONFIG_NET_POLL_CONTROLLER netdev->poll_controller = ibmveth_poll_controller; #endif netdev->features |= NETIF_F_LLTX; spin_lock_init(&adapter->stats_lock); memcpy(&netdev->dev_addr, &adapter->mac_addr, netdev->addr_len); for(i = 0; irx_buff_pool[i].kobj; ibmveth_init_buffer_pool(&adapter->rx_buff_pool[i], i, pool_count[i], pool_size[i], pool_active[i]); kobj->parent = &dev->dev.kobj; sprintf(kobj->name, "pool%d", i); kobj->ktype = &ktype_veth_pool; kobject_register(kobj); } ibmveth_debug_printk("adapter @ 0x%p\n", adapter); adapter->buffer_list_dma = DMA_ERROR_CODE; adapter->filter_list_dma = DMA_ERROR_CODE; adapter->rx_queue.queue_dma = DMA_ERROR_CODE; ibmveth_debug_printk("registering netdev...\n"); rc = register_netdev(netdev); if(rc) { ibmveth_debug_printk("failed to register netdev rc=%d\n", rc); free_netdev(netdev); return rc; } ibmveth_debug_printk("registered\n"); ibmveth_proc_register_adapter(adapter); return 0; } static int __devexit ibmveth_remove(struct vio_dev *dev) { struct net_device *netdev = dev->dev.driver_data; struct ibmveth_adapter *adapter = netdev->priv; int i; for(i = 0; irx_buff_pool[i].kobj); unregister_netdev(netdev); ibmveth_proc_unregister_adapter(adapter); free_netdev(netdev); return 0; } #ifdef CONFIG_PROC_FS static void ibmveth_proc_register_driver(void) { ibmveth_proc_dir = proc_mkdir(IBMVETH_PROC_DIR, NULL); if (ibmveth_proc_dir) { SET_MODULE_OWNER(ibmveth_proc_dir); } } static void ibmveth_proc_unregister_driver(void) { remove_proc_entry(IBMVETH_PROC_DIR, NULL); } static void *ibmveth_seq_start(struct seq_file *seq, loff_t *pos) { if (*pos == 0) { return (void *)1; } else { return NULL; } } static void *ibmveth_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return NULL; } static void ibmveth_seq_stop(struct seq_file *seq, void *v) { } static int ibmveth_seq_show(struct seq_file *seq, void *v) { struct ibmveth_adapter *adapter = seq->private; char *current_mac = ((char*) &adapter->netdev->dev_addr); char *firmware_mac = ((char*) &adapter->mac_addr) ; seq_printf(seq, "%s %s\n\n", ibmveth_driver_string, ibmveth_driver_version); seq_printf(seq, "Unit Address: 0x%x\n", adapter->vdev->unit_address); seq_printf(seq, "LIOBN: 0x%lx\n", adapter->liobn); seq_printf(seq, "Current MAC: %02X:%02X:%02X:%02X:%02X:%02X\n", current_mac[0], current_mac[1], current_mac[2], current_mac[3], current_mac[4], current_mac[5]); seq_printf(seq, "Firmware MAC: %02X:%02X:%02X:%02X:%02X:%02X\n", firmware_mac[0], firmware_mac[1], firmware_mac[2], firmware_mac[3], firmware_mac[4], firmware_mac[5]); seq_printf(seq, "\nAdapter Statistics:\n"); seq_printf(seq, " TX: skbuffs linearized: %ld\n", adapter->tx_linearized); seq_printf(seq, " multi-descriptor sends: %ld\n", adapter->tx_multidesc_send); seq_printf(seq, " skb_linearize failures: %ld\n", adapter->tx_linearize_failed); seq_printf(seq, " vio_map_single failres: %ld\n", adapter->tx_map_failed); seq_printf(seq, " send failures: %ld\n", adapter->tx_send_failed); seq_printf(seq, " RX: replenish task cycles: %ld\n", adapter->replenish_task_cycles); seq_printf(seq, " alloc_skb_failures: %ld\n", adapter->replenish_no_mem); seq_printf(seq, " add buffer failures: %ld\n", adapter->replenish_add_buff_failure); seq_printf(seq, " invalid buffers: %ld\n", adapter->rx_invalid_buffer); seq_printf(seq, " no buffers: %ld\n", adapter->rx_no_buffer); return 0; } static struct seq_operations ibmveth_seq_ops = { .start = ibmveth_seq_start, .next = ibmveth_seq_next, .stop = ibmveth_seq_stop, .show = ibmveth_seq_show, }; static int ibmveth_proc_open(struct inode *inode, struct file *file) { struct seq_file *seq; struct proc_dir_entry *proc; int rc; rc = seq_open(file, &ibmveth_seq_ops); if (!rc) { /* recover the pointer buried in proc_dir_entry data */ seq = file->private_data; proc = PDE(inode); seq->private = proc->data; } return rc; } static struct file_operations ibmveth_proc_fops = { .owner = THIS_MODULE, .open = ibmveth_proc_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter) { struct proc_dir_entry *entry; if (ibmveth_proc_dir) { entry = create_proc_entry(adapter->netdev->name, S_IFREG, ibmveth_proc_dir); if (!entry) { ibmveth_error_printk("Cannot create adapter proc entry"); } else { entry->data = (void *) adapter; entry->proc_fops = &ibmveth_proc_fops; SET_MODULE_OWNER(entry); } } return; } static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter) { if (ibmveth_proc_dir) { remove_proc_entry(adapter->netdev->name, ibmveth_proc_dir); } } #else /* CONFIG_PROC_FS */ static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter) { } static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter) { } static void ibmveth_proc_register_driver(void) { } static void ibmveth_proc_unregister_driver(void) { } #endif /* CONFIG_PROC_FS */ static struct attribute veth_active_attr; static struct attribute veth_num_attr; static struct attribute veth_size_attr; static ssize_t veth_pool_show(struct kobject * kobj, struct attribute * attr, char * buf) { struct ibmveth_buff_pool *pool = container_of(kobj, struct ibmveth_buff_pool, kobj); if (attr == &veth_active_attr) return sprintf(buf, "%d\n", pool->active); else if (attr == &veth_num_attr) return sprintf(buf, "%d\n", pool->size); else if (attr == &veth_size_attr) return sprintf(buf, "%d\n", pool->buff_size); return 0; } static ssize_t veth_pool_store(struct kobject * kobj, struct attribute * attr, const char * buf, size_t count) { struct ibmveth_buff_pool *pool = container_of(kobj, struct ibmveth_buff_pool, kobj); struct net_device *netdev = container_of(kobj->parent, struct device, kobj)->driver_data; struct ibmveth_adapter *adapter = netdev->priv; long value = simple_strtol(buf, NULL, 10); long rc; if (attr == &veth_active_attr) { if (value && !pool->active) { if(ibmveth_alloc_buffer_pool(pool)) { ibmveth_error_printk("unable to alloc pool\n"); return -ENOMEM; } pool->active = 1; adapter->pool_config = 1; ibmveth_close(netdev); adapter->pool_config = 0; if ((rc = ibmveth_open(netdev))) return rc; } else if (!value && pool->active) { int mtu = netdev->mtu + IBMVETH_BUFF_OH; int i; /* Make sure there is a buffer pool with buffers that can hold a packet of the size of the MTU */ for(i = 0; irx_buff_pool[i]) continue; if (!adapter->rx_buff_pool[i].active) continue; if (mtu < adapter->rx_buff_pool[i].buff_size) { pool->active = 0; h_free_logical_lan_buffer(adapter-> vdev-> unit_address, pool-> buff_size); } } if (pool->active) { ibmveth_error_printk("no active pool >= MTU\n"); return -EPERM; } } } else if (attr == &veth_num_attr) { if (value <= 0 || value > IBMVETH_MAX_POOL_COUNT) return -EINVAL; else { adapter->pool_config = 1; ibmveth_close(netdev); adapter->pool_config = 0; pool->size = value; if ((rc = ibmveth_open(netdev))) return rc; } } else if (attr == &veth_size_attr) { if (value <= IBMVETH_BUFF_OH || value > IBMVETH_MAX_BUF_SIZE) return -EINVAL; else { adapter->pool_config = 1; ibmveth_close(netdev); adapter->pool_config = 0; pool->buff_size = value; if ((rc = ibmveth_open(netdev))) return rc; } } /* kick the interrupt handler to allocate/deallocate pools */ ibmveth_interrupt(netdev->irq, netdev, NULL); return count; } #define ATTR(_name, _mode) \ struct attribute veth_##_name##_attr = { \ .name = __stringify(_name), .mode = _mode, .owner = THIS_MODULE \ }; static ATTR(active, 0644); static ATTR(num, 0644); static ATTR(size, 0644); static struct attribute * veth_pool_attrs[] = { &veth_active_attr, &veth_num_attr, &veth_size_attr, NULL, }; static struct sysfs_ops veth_pool_ops = { .show = veth_pool_show, .store = veth_pool_store, }; static struct kobj_type ktype_veth_pool = { .release = NULL, .sysfs_ops = &veth_pool_ops, .default_attrs = veth_pool_attrs, }; static struct vio_device_id ibmveth_device_table[] __devinitdata= { { "network", "IBM,l-lan"}, { "", "" } }; MODULE_DEVICE_TABLE(vio, ibmveth_device_table); static struct vio_driver ibmveth_driver = { .id_table = ibmveth_device_table, .probe = ibmveth_probe, .remove = ibmveth_remove, .driver = { .name = ibmveth_driver_name, .owner = THIS_MODULE, } }; static int __init ibmveth_module_init(void) { ibmveth_printk("%s: %s %s\n", ibmveth_driver_name, ibmveth_driver_string, ibmveth_driver_version); ibmveth_proc_register_driver(); return vio_register_driver(&ibmveth_driver); } static void __exit ibmveth_module_exit(void) { vio_unregister_driver(&ibmveth_driver); ibmveth_proc_unregister_driver(); } module_init(ibmveth_module_init); module_exit(ibmveth_module_exit);