#include #include #include #include #include #include #include #include #include #include #include #include #include "intr_remapping.h" #include #include #include "pci.h" static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; static struct hpet_scope ir_hpet[MAX_HPET_TBS]; static int ir_ioapic_num, ir_hpet_num; int intr_remapping_enabled; static int disable_intremap; static int disable_sourceid_checking; static __init int setup_nointremap(char *str) { disable_intremap = 1; return 0; } early_param("nointremap", setup_nointremap); static __init int setup_intremap(char *str) { if (!str) return -EINVAL; if (!strncmp(str, "on", 2)) disable_intremap = 0; else if (!strncmp(str, "off", 3)) disable_intremap = 1; else if (!strncmp(str, "nosid", 5)) disable_sourceid_checking = 1; return 0; } early_param("intremap", setup_intremap); #ifdef CONFIG_GENERIC_HARDIRQS static struct irq_2_iommu *irq_2_iommu(unsigned int irq) { return get_irq_iommu(irq); } static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq) { struct irq_data *data = irq_get_irq_data(irq); if (WARN_ONCE(data->irq_2_iommu, KERN_DEBUG "irq_2_iommu!=NULL irq %u\n", irq)) return data->irq_2_iommu; data->irq_2_iommu = kzalloc_node(sizeof(*data->irq_2_iommu), GFP_ATOMIC, data->node); return data->irq_2_iommu; } static void irq_2_iommu_free(unsigned int irq) { struct irq_data *d = irq_get_irq_data(irq); struct irq_2_iommu *p = d->irq_2_iommu; d->irq_2_iommu = NULL; kfree(p); } #else /* !CONFIG_SPARSE_IRQ */ static struct irq_2_iommu irq_2_iommuX[NR_IRQS]; static struct irq_2_iommu *irq_2_iommu(unsigned int irq) { if (irq < nr_irqs) return &irq_2_iommuX[irq]; return NULL; } static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq) { return irq_2_iommu(irq); } static void irq_2_iommu_free(unsigned int irq) { } #endif static DEFINE_SPINLOCK(irq_2_ir_lock); static struct irq_2_iommu *valid_irq_2_iommu(unsigned int irq) { struct irq_2_iommu *irq_iommu; irq_iommu = irq_2_iommu(irq); if (!irq_iommu) return NULL; if (!irq_iommu->iommu) return NULL; return irq_iommu; } int irq_remapped(int irq) { return valid_irq_2_iommu(irq) != NULL; } int get_irte(int irq, struct irte *entry) { int index; struct irq_2_iommu *irq_iommu; unsigned long flags; if (!entry) return -1; spin_lock_irqsave(&irq_2_ir_lock, flags); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock_irqrestore(&irq_2_ir_lock, flags); return -1; } index = irq_iommu->irte_index + irq_iommu->sub_handle; *entry = *(irq_iommu->iommu->ir_table->base + index); spin_unlock_irqrestore(&irq_2_ir_lock, flags); return 0; } int alloc_irte(struct intel_iommu *iommu, int irq, u16 count) { struct ir_table *table = iommu->ir_table; struct irq_2_iommu *irq_iommu; u16 index, start_index; unsigned int mask = 0; unsigned long flags; int i; if (!count) return -1; #ifndef CONFIG_SPARSE_IRQ /* protect irq_2_iommu_alloc later */ if (irq >= nr_irqs) return -1; #endif /* * start the IRTE search from index 0. */ index = start_index = 0; if (count > 1) { count = __roundup_pow_of_two(count); mask = ilog2(count); } if (mask > ecap_max_handle_mask(iommu->ecap)) { printk(KERN_ERR "Requested mask %x exceeds the max invalidation handle" " mask value %Lx\n", mask, ecap_max_handle_mask(iommu->ecap)); return -1; } spin_lock_irqsave(&irq_2_ir_lock, flags); do { for (i = index; i < index + count; i++) if (table->base[i].present) break; /* empty index found */ if (i == index + count) break; index = (index + count) % INTR_REMAP_TABLE_ENTRIES; if (index == start_index) { spin_unlock_irqrestore(&irq_2_ir_lock, flags); printk(KERN_ERR "can't allocate an IRTE\n"); return -1; } } while (1); for (i = index; i < index + count; i++) table->base[i].present = 1; irq_iommu = irq_2_iommu_alloc(irq); if (!irq_iommu) { spin_unlock_irqrestore(&irq_2_ir_lock, flags); printk(KERN_ERR "can't allocate irq_2_iommu\n"); return -1; } irq_iommu->iommu = iommu; irq_iommu->irte_index = index; irq_iommu->sub_handle = 0; irq_iommu->irte_mask = mask; spin_unlock_irqrestore(&irq_2_ir_lock, flags); return index; } static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) { struct qi_desc desc; desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) | QI_IEC_SELECTIVE; desc.high = 0; return qi_submit_sync(&desc, iommu); } int map_irq_to_irte_handle(int irq, u16 *sub_handle) { int index; struct irq_2_iommu *irq_iommu; unsigned long flags; spin_lock_irqsave(&irq_2_ir_lock, flags); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock_irqrestore(&irq_2_ir_lock, flags); return -1; } *sub_handle = irq_iommu->sub_handle; index = irq_iommu->irte_index; spin_unlock_irqrestore(&irq_2_ir_lock, flags); return index; } int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle) { struct irq_2_iommu *irq_iommu; unsigned long flags; spin_lock_irqsave(&irq_2_ir_lock, flags); irq_iommu = irq_2_iommu_alloc(irq); if (!irq_iommu) { spin_unlock_irqrestore(&irq_2_ir_lock, flags); printk(KERN_ERR "can't allocate irq_2_iommu\n"); return -1; } irq_iommu->iommu = iommu; irq_iommu->irte_index = index; irq_iommu->sub_handle = subhandle; irq_iommu->irte_mask = 0; spin_unlock_irqrestore(&irq_2_ir_lock, flags); return 0; } int modify_irte(int irq, struct irte *irte_modified) { int rc; int index; struct irte *irte; struct intel_iommu *iommu; struct irq_2_iommu *irq_iommu; unsigned long flags; spin_lock_irqsave(&irq_2_ir_lock, flags); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock_irqrestore(&irq_2_ir_lock, flags); return -1; } iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; irte = &iommu->ir_table->base[index]; set_64bit(&irte->low, irte_modified->low); set_64bit(&irte->high, irte_modified->high); __iommu_flush_cache(iommu, irte, sizeof(*irte)); rc = qi_flush_iec(iommu, index, 0); spin_unlock_irqrestore(&irq_2_ir_lock, flags); return rc; } struct intel_iommu *map_hpet_to_ir(u8 hpet_id) { int i; for (i = 0; i < MAX_HPET_TBS; i++) if (ir_hpet[i].id == hpet_id) return ir_hpet[i].iommu; return NULL; } struct intel_iommu *map_ioapic_to_ir(int apic) { int i; for (i = 0; i < MAX_IO_APICS; i++) if (ir_ioapic[i].id == apic) return ir_ioapic[i].iommu; return NULL; } struct intel_iommu *map_dev_to_ir(struct pci_dev *dev) { struct dmar_drhd_unit *drhd; drhd = dmar_find_matched_drhd_unit(dev); if (!drhd) return NULL; return drhd->iommu; } static int clear_entries(struct irq_2_iommu *irq_iommu) { struct irte *start, *entry, *end; struct intel_iommu *iommu; int index; if (irq_iommu->sub_handle) return 0; iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; start = iommu->ir_table->base + index; end = start + (1 << irq_iommu->irte_mask); for (entry = start; entry < end; entry++) { set_64bit(&entry->low, 0); set_64bit(&entry->high, 0); } return qi_flush_iec(iommu, index, irq_iommu->irte_mask); } int free_irte(int irq) { int rc = 0; struct irq_2_iommu *irq_iommu; unsigned long flags; spin_lock_irqsave(&irq_2_ir_lock, flags); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock_irqrestore(&irq_2_ir_lock, flags); return -1; } rc = clear_entries(irq_iommu); irq_iommu->iommu = NULL; irq_iommu->irte_index = 0; irq_iommu->sub_handle = 0; irq_iommu->irte_mask = 0; spin_unlock_irqrestore(&irq_2_ir_lock, flags); irq_2_iommu_free(irq); return rc; } /* * source validation type */ #define SVT_NO_VERIFY 0x0 /* no verification is required */ #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fiels */ #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ /* * source-id qualifier */ #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore * the third least significant bit */ #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore * the second and third least significant bits */ #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore * the least three significant bits */ /* * set SVT, SQ and SID fields of irte to verify * source ids of interrupt requests */ static void set_irte_sid(struct irte *irte, unsigned int svt, unsigned int sq, unsigned int sid) { if (disable_sourceid_checking) svt = SVT_NO_VERIFY; irte->svt = svt; irte->sq = sq; irte->sid = sid; } int set_ioapic_sid(struct irte *irte, int apic) { int i; u16 sid = 0; if (!irte) return -1; for (i = 0; i < MAX_IO_APICS; i++) { if (ir_ioapic[i].id == apic) { sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; break; } } if (sid == 0) { pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic); return -1; } set_irte_sid(irte, 1, 0, sid); return 0; } int set_hpet_sid(struct irte *irte, u8 id) { int i; u16 sid = 0; if (!irte) return -1; for (i = 0; i < MAX_HPET_TBS; i++) { if (ir_hpet[i].id == id) { sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; break; } } if (sid == 0) { pr_warning("Failed to set source-id of HPET block (%d)\n", id); return -1; } /* * Should really use SQ_ALL_16. Some platforms are broken. * While we figure out the right quirks for these broken platforms, use * SQ_13_IGNORE_3 for now. */ set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); return 0; } int set_msi_sid(struct irte *irte, struct pci_dev *dev) { struct pci_dev *bridge; if (!irte || !dev) return -1; /* PCIe device or Root Complex integrated PCI device */ if (pci_is_pcie(dev) || !dev->bus->parent) { set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, (dev->bus->number << 8) | dev->devfn); return 0; } bridge = pci_find_upstream_pcie_bridge(dev); if (bridge) { if (pci_is_pcie(bridge))/* this is a PCIe-to-PCI/PCIX bridge */ set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, (bridge->bus->number << 8) | dev->bus->number); else /* this is a legacy PCI bridge */ set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, (bridge->bus->number << 8) | bridge->devfn); } return 0; } static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode) { u64 addr; u32 sts; unsigned long flags; addr = virt_to_phys((void *)iommu->ir_table->base); spin_lock_irqsave(&iommu->register_lock, flags); dmar_writeq(iommu->reg + DMAR_IRTA_REG, (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); /* Set interrupt-remapping table pointer */ iommu->gcmd |= DMA_GCMD_SIRTP; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRTPS), sts); spin_unlock_irqrestore(&iommu->register_lock, flags); /* * global invalidation of interrupt entry cache before enabling * interrupt-remapping. */ qi_global_iec(iommu); spin_lock_irqsave(&iommu->register_lock, flags); /* Enable interrupt-remapping */ iommu->gcmd |= DMA_GCMD_IRE; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRES), sts); spin_unlock_irqrestore(&iommu->register_lock, flags); } static int setup_intr_remapping(struct intel_iommu *iommu, int mode) { struct ir_table *ir_table; struct page *pages; ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table), GFP_ATOMIC); if (!iommu->ir_table) return -ENOMEM; pages = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, INTR_REMAP_PAGE_ORDER); if (!pages) { printk(KERN_ERR "failed to allocate pages of order %d\n", INTR_REMAP_PAGE_ORDER); kfree(iommu->ir_table); return -ENOMEM; } ir_table->base = page_address(pages); iommu_set_intr_remapping(iommu, mode); return 0; } /* * Disable Interrupt Remapping. */ static void iommu_disable_intr_remapping(struct intel_iommu *iommu) { unsigned long flags; u32 sts; if (!ecap_ir_support(iommu->ecap)) return; /* * global invalidation of interrupt entry cache before disabling * interrupt-remapping. */ qi_global_iec(iommu); spin_lock_irqsave(&iommu->register_lock, flags); sts = dmar_readq(iommu->reg + DMAR_GSTS_REG); if (!(sts & DMA_GSTS_IRES)) goto end; iommu->gcmd &= ~DMA_GCMD_IRE; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, !(sts & DMA_GSTS_IRES), sts); end: spin_unlock_irqrestore(&iommu->register_lock, flags); } int __init intr_remapping_supported(void) { struct dmar_drhd_unit *drhd; if (disable_intremap) return 0; if (!dmar_ir_support()) return 0; for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; if (!ecap_ir_support(iommu->ecap)) return 0; } return 1; } int __init enable_intr_remapping(int eim) { struct dmar_drhd_unit *drhd; int setup = 0; if (parse_ioapics_under_ir() != 1) { printk(KERN_INFO "Not enable interrupt remapping\n"); return -1; } for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; /* * If the queued invalidation is already initialized, * shouldn't disable it. */ if (iommu->qi) continue; /* * Clear previous faults. */ dmar_fault(-1, iommu); /* * Disable intr remapping and queued invalidation, if already * enabled prior to OS handover. */ iommu_disable_intr_remapping(iommu); dmar_disable_qi(iommu); } /* * check for the Interrupt-remapping support */ for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; if (!ecap_ir_support(iommu->ecap)) continue; if (eim && !ecap_eim_support(iommu->ecap)) { printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, " " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap); return -1; } } /* * Enable queued invalidation for all the DRHD's. */ for_each_drhd_unit(drhd) { int ret; struct intel_iommu *iommu = drhd->iommu; ret = dmar_enable_qi(iommu); if (ret) { printk(KERN_ERR "DRHD %Lx: failed to enable queued, " " invalidation, ecap %Lx, ret %d\n", drhd->reg_base_addr, iommu->ecap, ret); return -1; } } /* * Setup Interrupt-remapping for all the DRHD's now. */ for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; if (!ecap_ir_support(iommu->ecap)) continue; if (setup_intr_remapping(iommu, eim)) goto error; setup = 1; } if (!setup) goto error; intr_remapping_enabled = 1; return 0; error: /* * handle error condition gracefully here! */ return -1; } static void ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, struct intel_iommu *iommu) { struct acpi_dmar_pci_path *path; u8 bus; int count; bus = scope->bus; path = (struct acpi_dmar_pci_path *)(scope + 1); count = (scope->length - sizeof(struct acpi_dmar_device_scope)) / sizeof(struct acpi_dmar_pci_path); while (--count > 0) { /* * Access PCI directly due to the PCI * subsystem isn't initialized yet. */ bus = read_pci_config_byte(bus, path->dev, path->fn, PCI_SECONDARY_BUS); path++; } ir_hpet[ir_hpet_num].bus = bus; ir_hpet[ir_hpet_num].devfn = PCI_DEVFN(path->dev, path->fn); ir_hpet[ir_hpet_num].iommu = iommu; ir_hpet[ir_hpet_num].id = scope->enumeration_id; ir_hpet_num++; } static void ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, struct intel_iommu *iommu) { struct acpi_dmar_pci_path *path; u8 bus; int count; bus = scope->bus; path = (struct acpi_dmar_pci_path *)(scope + 1); count = (scope->length - sizeof(struct acpi_dmar_device_scope)) / sizeof(struct acpi_dmar_pci_path); while (--count > 0) { /* * Access PCI directly due to the PCI * subsystem isn't initialized yet. */ bus = read_pci_config_byte(bus, path->dev, path->fn, PCI_SECONDARY_BUS); path++; } ir_ioapic[ir_ioapic_num].bus = bus; ir_ioapic[ir_ioapic_num].devfn = PCI_DEVFN(path->dev, path->fn); ir_ioapic[ir_ioapic_num].iommu = iommu; ir_ioapic[ir_ioapic_num].id = scope->enumeration_id; ir_ioapic_num++; } static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, struct intel_iommu *iommu) { struct acpi_dmar_hardware_unit *drhd; struct acpi_dmar_device_scope *scope; void *start, *end; drhd = (struct acpi_dmar_hardware_unit *)header; start = (void *)(drhd + 1); end = ((void *)drhd) + header->length; while (start < end) { scope = start; if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) { if (ir_ioapic_num == MAX_IO_APICS) { printk(KERN_WARNING "Exceeded Max IO APICS\n"); return -1; } printk(KERN_INFO "IOAPIC id %d under DRHD base " " 0x%Lx IOMMU %d\n", scope->enumeration_id, drhd->address, iommu->seq_id); ir_parse_one_ioapic_scope(scope, iommu); } else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) { if (ir_hpet_num == MAX_HPET_TBS) { printk(KERN_WARNING "Exceeded Max HPET blocks\n"); return -1; } printk(KERN_INFO "HPET id %d under DRHD base" " 0x%Lx\n", scope->enumeration_id, drhd->address); ir_parse_one_hpet_scope(scope, iommu); } start += scope->length; } return 0; } /* * Finds the assocaition between IOAPIC's and its Interrupt-remapping * hardware unit. */ int __init parse_ioapics_under_ir(void) { struct dmar_drhd_unit *drhd; int ir_supported = 0; for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; if (ecap_ir_support(iommu->ecap)) { if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu)) return -1; ir_supported = 1; } } if (ir_supported && ir_ioapic_num != nr_ioapics) { printk(KERN_WARNING "Not all IO-APIC's listed under remapping hardware\n"); return -1; } return ir_supported; } void disable_intr_remapping(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu = NULL; /* * Disable Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; iommu_disable_intr_remapping(iommu); } } int reenable_intr_remapping(int eim) { struct dmar_drhd_unit *drhd; int setup = 0; struct intel_iommu *iommu = NULL; for_each_iommu(iommu, drhd) if (iommu->qi) dmar_reenable_qi(iommu); /* * Setup Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; /* Set up interrupt remapping for iommu.*/ iommu_set_intr_remapping(iommu, eim); setup = 1; } if (!setup) goto error; return 0; error: /* * handle error condition gracefully here! */ return -1; }