/* SPDX-License-Identifier: GPL-2.0-only */ /* * linux/arch/arm/kernel/entry-armv.S * * Copyright (C) 1996,1997,1998 Russell King. * ARM700 fix by Matthew Godbolt (linux-user@willothewisp.demon.co.uk) * nommu support by Hyok S. Choi (hyok.choi@samsung.com) * * Low-level vector interface routines * * Note: there is a StrongARM bug in the STMIA rn, {regs}^ instruction * that causes it to save wrong values... Be aware! */ #include #include #include #include #include #include #include #include #include #include #include #include #include "entry-header.S" #include /* * Interrupt handling. */ .macro irq_handler, from_user:req mov r1, sp ldr_this_cpu r2, irq_stack_ptr, r2, r3 .if \from_user == 0 @ @ If we took the interrupt while running in the kernel, we may already @ be using the IRQ stack, so revert to the original value in that case. @ subs r3, r2, r1 @ SP above bottom of IRQ stack? rsbscs r3, r3, #THREAD_SIZE @ ... and below the top? #ifdef CONFIG_VMAP_STACK ldr_va r3, high_memory, cc @ End of the linear region cmpcc r3, r1 @ Stack pointer was below it? #endif bcc 0f @ If not, switch to the IRQ stack mov r0, r1 bl generic_handle_arch_irq b 1f 0: .endif mov_l r0, generic_handle_arch_irq bl call_with_stack 1: .endm .macro pabt_helper @ PABORT handler takes pt_regs in r2, fault address in r4 and psr in r5 #ifdef MULTI_PABORT ldr_va ip, processor, offset=PROCESSOR_PABT_FUNC bl_r ip #else bl CPU_PABORT_HANDLER #endif .endm .macro dabt_helper @ @ Call the processor-specific abort handler: @ @ r2 - pt_regs @ r4 - aborted context pc @ r5 - aborted context psr @ @ The abort handler must return the aborted address in r0, and @ the fault status register in r1. r9 must be preserved. @ #ifdef MULTI_DABORT ldr_va ip, processor, offset=PROCESSOR_DABT_FUNC bl_r ip #else bl CPU_DABORT_HANDLER #endif .endm .section .entry.text,"ax",%progbits /* * Invalid mode handlers */ .macro inv_entry, reason sub sp, sp, #PT_REGS_SIZE ARM( stmib sp, {r1 - lr} ) THUMB( stmia sp, {r0 - r12} ) THUMB( str sp, [sp, #S_SP] ) THUMB( str lr, [sp, #S_LR] ) mov r1, #\reason .endm __pabt_invalid: inv_entry BAD_PREFETCH b common_invalid ENDPROC(__pabt_invalid) __dabt_invalid: inv_entry BAD_DATA b common_invalid ENDPROC(__dabt_invalid) __irq_invalid: inv_entry BAD_IRQ b common_invalid ENDPROC(__irq_invalid) __und_invalid: inv_entry BAD_UNDEFINSTR @ @ XXX fall through to common_invalid @ @ @ common_invalid - generic code for failed exception (re-entrant version of handlers) @ common_invalid: zero_fp ldmia r0, {r4 - r6} add r0, sp, #S_PC @ here for interlock avoidance mov r7, #-1 @ "" "" "" "" str r4, [sp] @ save preserved r0 stmia r0, {r5 - r7} @ lr_, @ cpsr_, "old_r0" mov r0, sp b bad_mode ENDPROC(__und_invalid) /* * SVC mode handlers */ #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) #define SPFIX(code...) code #else #define SPFIX(code...) #endif .macro svc_entry, stack_hole=0, trace=1, uaccess=1, overflow_check=1 UNWIND(.fnstart ) sub sp, sp, #(SVC_REGS_SIZE + \stack_hole) THUMB( add sp, r1 ) @ get SP in a GPR without THUMB( sub r1, sp, r1 ) @ using a temp register .if \overflow_check UNWIND(.save {r0 - pc} ) do_overflow_check (SVC_REGS_SIZE + \stack_hole) .endif #ifdef CONFIG_THUMB2_KERNEL tst r1, #4 @ test stack pointer alignment sub r1, sp, r1 @ restore original R1 sub sp, r1 @ restore original SP #else SPFIX( tst sp, #4 ) #endif SPFIX( subne sp, sp, #4 ) ARM( stmib sp, {r1 - r12} ) THUMB( stmia sp, {r0 - r12} ) @ No STMIB in Thumb-2 ldmia r0, {r3 - r5} add r7, sp, #S_SP @ here for interlock avoidance mov r6, #-1 @ "" "" "" "" add r2, sp, #(SVC_REGS_SIZE + \stack_hole) SPFIX( addne r2, r2, #4 ) str r3, [sp] @ save the "real" r0 copied @ from the exception stack mov r3, lr @ @ We are now ready to fill in the remaining blanks on the stack: @ @ r2 - sp_svc @ r3 - lr_svc @ r4 - lr_, already fixed up for correct return/restart @ r5 - spsr_ @ r6 - orig_r0 (see pt_regs definition in ptrace.h) @ stmia r7, {r2 - r6} get_thread_info tsk uaccess_entry tsk, r0, r1, r2, \uaccess .if \trace #ifdef CONFIG_TRACE_IRQFLAGS bl trace_hardirqs_off #endif .endif .endm .align 5 __dabt_svc: svc_entry uaccess=0 mov r2, sp dabt_helper THUMB( ldr r5, [sp, #S_PSR] ) @ potentially updated CPSR svc_exit r5 @ return from exception UNWIND(.fnend ) ENDPROC(__dabt_svc) .align 5 __irq_svc: svc_entry irq_handler from_user=0 #ifdef CONFIG_PREEMPTION ldr r8, [tsk, #TI_PREEMPT] @ get preempt count ldr r0, [tsk, #TI_FLAGS] @ get flags teq r8, #0 @ if preempt count != 0 movne r0, #0 @ force flags to 0 tst r0, #_TIF_NEED_RESCHED blne svc_preempt #endif svc_exit r5, irq = 1 @ return from exception UNWIND(.fnend ) ENDPROC(__irq_svc) .ltorg #ifdef CONFIG_PREEMPTION svc_preempt: mov r8, lr 1: bl preempt_schedule_irq @ irq en/disable is done inside ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS tst r0, #_TIF_NEED_RESCHED reteq r8 @ go again b 1b #endif __und_fault: @ Correct the PC such that it is pointing at the instruction @ which caused the fault. If the faulting instruction was ARM @ the PC will be pointing at the next instruction, and have to @ subtract 4. Otherwise, it is Thumb, and the PC will be @ pointing at the second half of the Thumb instruction. We @ have to subtract 2. ldr r2, [r0, #S_PC] sub r2, r2, r1 str r2, [r0, #S_PC] b do_undefinstr ENDPROC(__und_fault) .align 5 __und_svc: #ifdef CONFIG_KPROBES @ If a kprobe is about to simulate a "stmdb sp..." instruction, @ it obviously needs free stack space which then will belong to @ the saved context. svc_entry MAX_STACK_SIZE #else svc_entry #endif mov r1, #4 @ PC correction to apply THUMB( tst r5, #PSR_T_BIT ) @ exception taken in Thumb mode? THUMB( movne r1, #2 ) @ if so, fix up PC correction mov r0, sp @ struct pt_regs *regs bl __und_fault __und_svc_finish: get_thread_info tsk ldr r5, [sp, #S_PSR] @ Get SVC cpsr svc_exit r5 @ return from exception UNWIND(.fnend ) ENDPROC(__und_svc) .align 5 __pabt_svc: svc_entry mov r2, sp @ regs pabt_helper svc_exit r5 @ return from exception UNWIND(.fnend ) ENDPROC(__pabt_svc) .align 5 __fiq_svc: svc_entry trace=0 mov r0, sp @ struct pt_regs *regs bl handle_fiq_as_nmi svc_exit_via_fiq UNWIND(.fnend ) ENDPROC(__fiq_svc) /* * Abort mode handlers */ @ @ Taking a FIQ in abort mode is similar to taking a FIQ in SVC mode @ and reuses the same macros. However in abort mode we must also @ save/restore lr_abt and spsr_abt to make nested aborts safe. @ .align 5 __fiq_abt: svc_entry trace=0 ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) mov r1, lr @ Save lr_abt mrs r2, spsr @ Save spsr_abt, abort is now safe ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) stmfd sp!, {r1 - r2} add r0, sp, #8 @ struct pt_regs *regs bl handle_fiq_as_nmi ldmfd sp!, {r1 - r2} ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) mov lr, r1 @ Restore lr_abt, abort is unsafe msr spsr_cxsf, r2 @ Restore spsr_abt ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) THUMB( msr cpsr_c, r0 ) svc_exit_via_fiq UNWIND(.fnend ) ENDPROC(__fiq_abt) /* * User mode handlers * * EABI note: sp_svc is always 64-bit aligned here, so should PT_REGS_SIZE */ #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) && (PT_REGS_SIZE & 7) #error "sizeof(struct pt_regs) must be a multiple of 8" #endif .macro usr_entry, trace=1, uaccess=1 UNWIND(.fnstart ) UNWIND(.cantunwind ) @ don't unwind the user space sub sp, sp, #PT_REGS_SIZE ARM( stmib sp, {r1 - r12} ) THUMB( stmia sp, {r0 - r12} ) ATRAP( mrc p15, 0, r7, c1, c0, 0) ATRAP( ldr_va r8, cr_alignment) ldmia r0, {r3 - r5} add r0, sp, #S_PC @ here for interlock avoidance mov r6, #-1 @ "" "" "" "" str r3, [sp] @ save the "real" r0 copied @ from the exception stack @ @ We are now ready to fill in the remaining blanks on the stack: @ @ r4 - lr_, already fixed up for correct return/restart @ r5 - spsr_ @ r6 - orig_r0 (see pt_regs definition in ptrace.h) @ @ Also, separately save sp_usr and lr_usr @ stmia r0, {r4 - r6} ARM( stmdb r0, {sp, lr}^ ) THUMB( store_user_sp_lr r0, r1, S_SP - S_PC ) .if \uaccess uaccess_disable ip .endif @ Enable the alignment trap while in kernel mode ATRAP( teq r8, r7) ATRAP( mcrne p15, 0, r8, c1, c0, 0) reload_current r7, r8 @ @ Clear FP to mark the first stack frame @ zero_fp .if \trace #ifdef CONFIG_TRACE_IRQFLAGS bl trace_hardirqs_off #endif ct_user_exit save = 0 .endif .endm .macro kuser_cmpxchg_check #if !defined(CONFIG_CPU_32v6K) && defined(CONFIG_KUSER_HELPERS) #ifndef CONFIG_MMU #warning "NPTL on non MMU needs fixing" #else @ Make sure our user space atomic helper is restarted @ if it was interrupted in a critical region. Here we @ perform a quick test inline since it should be false @ 99.9999% of the time. The rest is done out of line. ldr r0, =TASK_SIZE cmp r4, r0 blhs kuser_cmpxchg64_fixup #endif #endif .endm .align 5 __dabt_usr: usr_entry uaccess=0 kuser_cmpxchg_check mov r2, sp dabt_helper b ret_from_exception UNWIND(.fnend ) ENDPROC(__dabt_usr) .align 5 __irq_usr: usr_entry kuser_cmpxchg_check irq_handler from_user=1 get_thread_info tsk mov why, #0 b ret_to_user_from_irq UNWIND(.fnend ) ENDPROC(__irq_usr) .ltorg .align 5 __und_usr: usr_entry uaccess=0 @ IRQs must be enabled before attempting to read the instruction from @ user space since that could cause a page/translation fault if the @ page table was modified by another CPU. enable_irq tst r5, #PSR_T_BIT @ Thumb mode? mov r1, #2 @ set insn size to 2 for Thumb bne 0f @ handle as Thumb undef exception adr r9, ret_from_exception bl call_fpe @ returns via R9 on success mov r1, #4 @ set insn size to 4 for ARM 0: mov r0, sp uaccess_disable ip bl __und_fault b ret_from_exception UNWIND(.fnend) ENDPROC(__und_usr) /* * The out of line fixup for the ldrt instruction below. */ .pushsection .text.fixup, "ax" .align 2 4: str r4, [sp, #S_PC] @ retry current instruction ret r9 .popsection /* * Check whether the instruction is a co-processor instruction. * If yes, we need to call the relevant co-processor handler. * * Note that we don't do a full check here for the co-processor * instructions; all instructions with bit 27 set are well * defined. The only instructions that should fault are the * co-processor instructions. However, we have to watch out * for the ARM6/ARM7 SWI bug. * * Emulators may wish to make use of the following registers: * r4 = PC value to resume execution after successful emulation * r9 = normal "successful" return address * r10 = this threads thread_info structure * lr = unrecognised instruction return address * IRQs enabled, FIQs enabled. */ call_fpe: mov r2, r4 sub r4, r4, #4 @ ARM instruction at user PC - 4 USERL( 4b, ldrt r0, [r4]) @ load opcode from user space ARM_BE8(rev r0, r0) @ little endian instruction uaccess_disable ip get_thread_info r10 @ get current thread tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27 reteq lr and r8, r0, #0x00000f00 @ mask out CP number #ifdef CONFIG_IWMMXT @ Test if we need to give access to iWMMXt coprocessors ldr r5, [r10, #TI_FLAGS] rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only movscs r7, r5, lsr #(TIF_USING_IWMMXT + 1) movcs r0, sp @ pass struct pt_regs bcs iwmmxt_task_enable #endif ARM( add pc, pc, r8, lsr #6 ) THUMB( lsr r8, r8, #6 ) THUMB( add pc, r8 ) nop ret.w lr @ CP#0 W(b) do_fpe @ CP#1 (FPE) W(b) do_fpe @ CP#2 (FPE) ret.w lr @ CP#3 ret.w lr @ CP#4 ret.w lr @ CP#5 ret.w lr @ CP#6 ret.w lr @ CP#7 ret.w lr @ CP#8 ret.w lr @ CP#9 ret.w lr @ CP#10 (VFP) ret.w lr @ CP#11 (VFP) ret.w lr @ CP#12 ret.w lr @ CP#13 ret.w lr @ CP#14 (Debug) ret.w lr @ CP#15 (Control) do_fpe: add r10, r10, #TI_FPSTATE @ r10 = workspace ldr_va pc, fp_enter, tmp=r4 @ Call FP module USR entry point /* * The FP module is called with these registers set: * r0 = instruction * r2 = PC+4 * r9 = normal "successful" return address * r10 = FP workspace * lr = unrecognised FP instruction return address */ .pushsection .data .align 2 ENTRY(fp_enter) .word no_fp .popsection ENTRY(no_fp) ret lr ENDPROC(no_fp) .align 5 __pabt_usr: usr_entry mov r2, sp @ regs pabt_helper UNWIND(.fnend ) /* fall through */ /* * This is the return code to user mode for abort handlers */ ENTRY(ret_from_exception) UNWIND(.fnstart ) UNWIND(.cantunwind ) get_thread_info tsk mov why, #0 b ret_to_user UNWIND(.fnend ) ENDPROC(__pabt_usr) ENDPROC(ret_from_exception) .align 5 __fiq_usr: usr_entry trace=0 kuser_cmpxchg_check mov r0, sp @ struct pt_regs *regs bl handle_fiq_as_nmi get_thread_info tsk restore_user_regs fast = 0, offset = 0 UNWIND(.fnend ) ENDPROC(__fiq_usr) /* * Register switch for ARMv3 and ARMv4 processors * r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info * previous and next are guaranteed not to be the same. */ ENTRY(__switch_to) UNWIND(.fnstart ) UNWIND(.cantunwind ) add ip, r1, #TI_CPU_SAVE ARM( stmia ip!, {r4 - sl, fp, sp, lr} ) @ Store most regs on stack THUMB( stmia ip!, {r4 - sl, fp} ) @ Store most regs on stack THUMB( str sp, [ip], #4 ) THUMB( str lr, [ip], #4 ) ldr r4, [r2, #TI_TP_VALUE] ldr r5, [r2, #TI_TP_VALUE + 4] #ifdef CONFIG_CPU_USE_DOMAINS mrc p15, 0, r6, c3, c0, 0 @ Get domain register str r6, [r1, #TI_CPU_DOMAIN] @ Save old domain register ldr r6, [r2, #TI_CPU_DOMAIN] #endif switch_tls r1, r4, r5, r3, r7 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) && \ !defined(CONFIG_STACKPROTECTOR_PER_TASK) ldr r8, =__stack_chk_guard .if (TSK_STACK_CANARY > IMM12_MASK) add r9, r2, #TSK_STACK_CANARY & ~IMM12_MASK ldr r9, [r9, #TSK_STACK_CANARY & IMM12_MASK] .else ldr r9, [r2, #TSK_STACK_CANARY & IMM12_MASK] .endif #endif mov r7, r2 @ Preserve 'next' #ifdef CONFIG_CPU_USE_DOMAINS mcr p15, 0, r6, c3, c0, 0 @ Set domain register #endif mov r5, r0 add r4, r2, #TI_CPU_SAVE ldr r0, =thread_notify_head mov r1, #THREAD_NOTIFY_SWITCH bl atomic_notifier_call_chain #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) && \ !defined(CONFIG_STACKPROTECTOR_PER_TASK) str r9, [r8] #endif mov r0, r5 #if !defined(CONFIG_THUMB2_KERNEL) && !defined(CONFIG_VMAP_STACK) set_current r7, r8 ldmia r4, {r4 - sl, fp, sp, pc} @ Load all regs saved previously #else mov r1, r7 ldmia r4, {r4 - sl, fp, ip, lr} @ Load all regs saved previously #ifdef CONFIG_VMAP_STACK @ @ Do a dummy read from the new stack while running from the old one so @ that we can rely on do_translation_fault() to fix up any stale PMD @ entries covering the vmalloc region. @ ldr r2, [ip] #endif @ When CONFIG_THREAD_INFO_IN_TASK=n, the update of SP itself is what @ effectuates the task switch, as that is what causes the observable @ values of current and current_thread_info to change. When @ CONFIG_THREAD_INFO_IN_TASK=y, setting current (and therefore @ current_thread_info) is done explicitly, and the update of SP just @ switches us to another stack, with few other side effects. In order @ to prevent this distinction from causing any inconsistencies, let's @ keep the 'set_current' call as close as we can to the update of SP. set_current r1, r2 mov sp, ip ret lr #endif UNWIND(.fnend ) ENDPROC(__switch_to) #ifdef CONFIG_VMAP_STACK .text .align 2 __bad_stack: @ @ We've just detected an overflow. We need to load the address of this @ CPU's overflow stack into the stack pointer register. We have only one @ scratch register so let's use a sequence of ADDs including one @ involving the PC, and decorate them with PC-relative group @ relocations. As these are ARM only, switch to ARM mode first. @ @ We enter here with IP clobbered and its value stashed on the mode @ stack. @ THUMB( bx pc ) THUMB( nop ) THUMB( .arm ) ldr_this_cpu_armv6 ip, overflow_stack_ptr str sp, [ip, #-4]! @ Preserve original SP value mov sp, ip @ Switch to overflow stack pop {ip} @ Original SP in IP #if defined(CONFIG_UNWINDER_FRAME_POINTER) && defined(CONFIG_CC_IS_GCC) mov ip, ip @ mov expected by unwinder push {fp, ip, lr, pc} @ GCC flavor frame record #else str ip, [sp, #-8]! @ store original SP push {fpreg, lr} @ Clang flavor frame record #endif UNWIND( ldr ip, [r0, #4] ) @ load exception LR UNWIND( str ip, [sp, #12] ) @ store in the frame record ldr ip, [r0, #12] @ reload IP @ Store the original GPRs to the new stack. svc_entry uaccess=0, overflow_check=0 UNWIND( .save {sp, pc} ) UNWIND( .save {fpreg, lr} ) UNWIND( .setfp fpreg, sp ) ldr fpreg, [sp, #S_SP] @ Add our frame record @ to the linked list #if defined(CONFIG_UNWINDER_FRAME_POINTER) && defined(CONFIG_CC_IS_GCC) ldr r1, [fp, #4] @ reload SP at entry add fp, fp, #12 #else ldr r1, [fpreg, #8] #endif str r1, [sp, #S_SP] @ store in pt_regs @ Stash the regs for handle_bad_stack mov r0, sp @ Time to die bl handle_bad_stack nop UNWIND( .fnend ) ENDPROC(__bad_stack) #endif __INIT /* * User helpers. * * Each segment is 32-byte aligned and will be moved to the top of the high * vector page. New segments (if ever needed) must be added in front of * existing ones. This mechanism should be used only for things that are * really small and justified, and not be abused freely. * * See Documentation/arm/kernel_user_helpers.rst for formal definitions. */ THUMB( .arm ) .macro usr_ret, reg #ifdef CONFIG_ARM_THUMB bx \reg #else ret \reg #endif .endm .macro kuser_pad, sym, size .if (. - \sym) & 3 .rept 4 - (. - \sym) & 3 .byte 0 .endr .endif .rept (\size - (. - \sym)) / 4 .word 0xe7fddef1 .endr .endm #ifdef CONFIG_KUSER_HELPERS .align 5 .globl __kuser_helper_start __kuser_helper_start: /* * Due to the length of some sequences, __kuser_cmpxchg64 spans 2 regular * kuser "slots", therefore 0xffff0f80 is not used as a valid entry point. */ __kuser_cmpxchg64: @ 0xffff0f60 #if defined(CONFIG_CPU_32v6K) stmfd sp!, {r4, r5, r6, r7} ldrd r4, r5, [r0] @ load old val ldrd r6, r7, [r1] @ load new val smp_dmb arm 1: ldrexd r0, r1, [r2] @ load current val eors r3, r0, r4 @ compare with oldval (1) eorseq r3, r1, r5 @ compare with oldval (2) strexdeq r3, r6, r7, [r2] @ store newval if eq teqeq r3, #1 @ success? beq 1b @ if no then retry smp_dmb arm rsbs r0, r3, #0 @ set returned val and C flag ldmfd sp!, {r4, r5, r6, r7} usr_ret lr #elif !defined(CONFIG_SMP) #ifdef CONFIG_MMU /* * The only thing that can break atomicity in this cmpxchg64 * implementation is either an IRQ or a data abort exception * causing another process/thread to be scheduled in the middle of * the critical sequence. The same strategy as for cmpxchg is used. */ stmfd sp!, {r4, r5, r6, lr} ldmia r0, {r4, r5} @ load old val ldmia r1, {r6, lr} @ load new val 1: ldmia r2, {r0, r1} @ load current val eors r3, r0, r4 @ compare with oldval (1) eorseq r3, r1, r5 @ compare with oldval (2) 2: stmiaeq r2, {r6, lr} @ store newval if eq rsbs r0, r3, #0 @ set return val and C flag ldmfd sp!, {r4, r5, r6, pc} .text kuser_cmpxchg64_fixup: @ Called from kuser_cmpxchg_fixup. @ r4 = address of interrupted insn (must be preserved). @ sp = saved regs. r7 and r8 are clobbered. @ 1b = first critical insn, 2b = last critical insn. @ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b. mov r7, #0xffff0fff sub r7, r7, #(0xffff0fff - (0xffff0f60 + (1b - __kuser_cmpxchg64))) subs r8, r4, r7 rsbscs r8, r8, #(2b - 1b) strcs r7, [sp, #S_PC] #if __LINUX_ARM_ARCH__ < 6 bcc kuser_cmpxchg32_fixup #endif ret lr .previous #else #warning "NPTL on non MMU needs fixing" mov r0, #-1 adds r0, r0, #0 usr_ret lr #endif #else #error "incoherent kernel configuration" #endif kuser_pad __kuser_cmpxchg64, 64 __kuser_memory_barrier: @ 0xffff0fa0 smp_dmb arm usr_ret lr kuser_pad __kuser_memory_barrier, 32 __kuser_cmpxchg: @ 0xffff0fc0 #if __LINUX_ARM_ARCH__ < 6 #ifdef CONFIG_MMU /* * The only thing that can break atomicity in this cmpxchg * implementation is either an IRQ or a data abort exception * causing another process/thread to be scheduled in the middle * of the critical sequence. To prevent this, code is added to * the IRQ and data abort exception handlers to set the pc back * to the beginning of the critical section if it is found to be * within that critical section (see kuser_cmpxchg_fixup). */ 1: ldr r3, [r2] @ load current val subs r3, r3, r0 @ compare with oldval 2: streq r1, [r2] @ store newval if eq rsbs r0, r3, #0 @ set return val and C flag usr_ret lr .text kuser_cmpxchg32_fixup: @ Called from kuser_cmpxchg_check macro. @ r4 = address of interrupted insn (must be preserved). @ sp = saved regs. r7 and r8 are clobbered. @ 1b = first critical insn, 2b = last critical insn. @ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b. mov r7, #0xffff0fff sub r7, r7, #(0xffff0fff - (0xffff0fc0 + (1b - __kuser_cmpxchg))) subs r8, r4, r7 rsbscs r8, r8, #(2b - 1b) strcs r7, [sp, #S_PC] ret lr .previous #else #warning "NPTL on non MMU needs fixing" mov r0, #-1 adds r0, r0, #0 usr_ret lr #endif #else smp_dmb arm 1: ldrex r3, [r2] subs r3, r3, r0 strexeq r3, r1, [r2] teqeq r3, #1 beq 1b rsbs r0, r3, #0 /* beware -- each __kuser slot must be 8 instructions max */ ALT_SMP(b __kuser_memory_barrier) ALT_UP(usr_ret lr) #endif kuser_pad __kuser_cmpxchg, 32 __kuser_get_tls: @ 0xffff0fe0 ldr r0, [pc, #(16 - 8)] @ read TLS, set in kuser_get_tls_init usr_ret lr mrc p15, 0, r0, c13, c0, 3 @ 0xffff0fe8 hardware TLS code kuser_pad __kuser_get_tls, 16 .rep 3 .word 0 @ 0xffff0ff0 software TLS value, then .endr @ pad up to __kuser_helper_version __kuser_helper_version: @ 0xffff0ffc .word ((__kuser_helper_end - __kuser_helper_start) >> 5) .globl __kuser_helper_end __kuser_helper_end: #endif THUMB( .thumb ) /* * Vector stubs. * * This code is copied to 0xffff1000 so we can use branches in the * vectors, rather than ldr's. Note that this code must not exceed * a page size. * * Common stub entry macro: * Enter in IRQ mode, spsr = SVC/USR CPSR, lr = SVC/USR PC * * SP points to a minimal amount of processor-private memory, the address * of which is copied into r0 for the mode specific abort handler. */ .macro vector_stub, name, mode, correction=0 .align 5 #ifdef CONFIG_HARDEN_BRANCH_HISTORY vector_bhb_bpiall_\name: mcr p15, 0, r0, c7, c5, 6 @ BPIALL @ isb not needed due to "movs pc, lr" in the vector stub @ which gives a "context synchronisation". #endif vector_\name: .if \correction sub lr, lr, #\correction .endif @ Save r0, lr_ (parent PC) stmia sp, {r0, lr} @ save r0, lr @ Save spsr_ (parent CPSR) .Lvec_\name: mrs lr, spsr str lr, [sp, #8] @ save spsr @ @ Prepare for SVC32 mode. IRQs remain disabled. @ mrs r0, cpsr eor r0, r0, #(\mode ^ SVC_MODE | PSR_ISETSTATE) msr spsr_cxsf, r0 @ @ the branch table must immediately follow this code @ and lr, lr, #0x0f THUMB( adr r0, 1f ) THUMB( ldr lr, [r0, lr, lsl #2] ) mov r0, sp ARM( ldr lr, [pc, lr, lsl #2] ) movs pc, lr @ branch to handler in SVC mode ENDPROC(vector_\name) #ifdef CONFIG_HARDEN_BRANCH_HISTORY .subsection 1 .align 5 vector_bhb_loop8_\name: .if \correction sub lr, lr, #\correction .endif @ Save r0, lr_ (parent PC) stmia sp, {r0, lr} @ bhb workaround mov r0, #8 3: W(b) . + 4 subs r0, r0, #1 bne 3b dsb nsh @ isb not needed due to "movs pc, lr" in the vector stub @ which gives a "context synchronisation". b .Lvec_\name ENDPROC(vector_bhb_loop8_\name) .previous #endif .align 2 @ handler addresses follow this label 1: .endm .section .stubs, "ax", %progbits @ These need to remain at the start of the section so that @ they are in range of the 'SWI' entries in the vector tables @ located 4k down. .L__vector_swi: .word vector_swi #ifdef CONFIG_HARDEN_BRANCH_HISTORY .L__vector_bhb_loop8_swi: .word vector_bhb_loop8_swi .L__vector_bhb_bpiall_swi: .word vector_bhb_bpiall_swi #endif vector_rst: ARM( swi SYS_ERROR0 ) THUMB( svc #0 ) THUMB( nop ) b vector_und /* * Interrupt dispatcher */ vector_stub irq, IRQ_MODE, 4 .long __irq_usr @ 0 (USR_26 / USR_32) .long __irq_invalid @ 1 (FIQ_26 / FIQ_32) .long __irq_invalid @ 2 (IRQ_26 / IRQ_32) .long __irq_svc @ 3 (SVC_26 / SVC_32) .long __irq_invalid @ 4 .long __irq_invalid @ 5 .long __irq_invalid @ 6 .long __irq_invalid @ 7 .long __irq_invalid @ 8 .long __irq_invalid @ 9 .long __irq_invalid @ a .long __irq_invalid @ b .long __irq_invalid @ c .long __irq_invalid @ d .long __irq_invalid @ e .long __irq_invalid @ f /* * Data abort dispatcher * Enter in ABT mode, spsr = USR CPSR, lr = USR PC */ vector_stub dabt, ABT_MODE, 8 .long __dabt_usr @ 0 (USR_26 / USR_32) .long __dabt_invalid @ 1 (FIQ_26 / FIQ_32) .long __dabt_invalid @ 2 (IRQ_26 / IRQ_32) .long __dabt_svc @ 3 (SVC_26 / SVC_32) .long __dabt_invalid @ 4 .long __dabt_invalid @ 5 .long __dabt_invalid @ 6 .long __dabt_invalid @ 7 .long __dabt_invalid @ 8 .long __dabt_invalid @ 9 .long __dabt_invalid @ a .long __dabt_invalid @ b .long __dabt_invalid @ c .long __dabt_invalid @ d .long __dabt_invalid @ e .long __dabt_invalid @ f /* * Prefetch abort dispatcher * Enter in ABT mode, spsr = USR CPSR, lr = USR PC */ vector_stub pabt, ABT_MODE, 4 .long __pabt_usr @ 0 (USR_26 / USR_32) .long __pabt_invalid @ 1 (FIQ_26 / FIQ_32) .long __pabt_invalid @ 2 (IRQ_26 / IRQ_32) .long __pabt_svc @ 3 (SVC_26 / SVC_32) .long __pabt_invalid @ 4 .long __pabt_invalid @ 5 .long __pabt_invalid @ 6 .long __pabt_invalid @ 7 .long __pabt_invalid @ 8 .long __pabt_invalid @ 9 .long __pabt_invalid @ a .long __pabt_invalid @ b .long __pabt_invalid @ c .long __pabt_invalid @ d .long __pabt_invalid @ e .long __pabt_invalid @ f /* * Undef instr entry dispatcher * Enter in UND mode, spsr = SVC/USR CPSR, lr = SVC/USR PC */ vector_stub und, UND_MODE .long __und_usr @ 0 (USR_26 / USR_32) .long __und_invalid @ 1 (FIQ_26 / FIQ_32) .long __und_invalid @ 2 (IRQ_26 / IRQ_32) .long __und_svc @ 3 (SVC_26 / SVC_32) .long __und_invalid @ 4 .long __und_invalid @ 5 .long __und_invalid @ 6 .long __und_invalid @ 7 .long __und_invalid @ 8 .long __und_invalid @ 9 .long __und_invalid @ a .long __und_invalid @ b .long __und_invalid @ c .long __und_invalid @ d .long __und_invalid @ e .long __und_invalid @ f .align 5 /*============================================================================= * Address exception handler *----------------------------------------------------------------------------- * These aren't too critical. * (they're not supposed to happen, and won't happen in 32-bit data mode). */ vector_addrexcptn: b vector_addrexcptn /*============================================================================= * FIQ "NMI" handler *----------------------------------------------------------------------------- * Handle a FIQ using the SVC stack allowing FIQ act like NMI on x86 * systems. This must be the last vector stub, so lets place it in its own * subsection. */ .subsection 2 vector_stub fiq, FIQ_MODE, 4 .long __fiq_usr @ 0 (USR_26 / USR_32) .long __fiq_svc @ 1 (FIQ_26 / FIQ_32) .long __fiq_svc @ 2 (IRQ_26 / IRQ_32) .long __fiq_svc @ 3 (SVC_26 / SVC_32) .long __fiq_svc @ 4 .long __fiq_svc @ 5 .long __fiq_svc @ 6 .long __fiq_abt @ 7 .long __fiq_svc @ 8 .long __fiq_svc @ 9 .long __fiq_svc @ a .long __fiq_svc @ b .long __fiq_svc @ c .long __fiq_svc @ d .long __fiq_svc @ e .long __fiq_svc @ f .globl vector_fiq .section .vectors, "ax", %progbits W(b) vector_rst W(b) vector_und ARM( .reloc ., R_ARM_LDR_PC_G0, .L__vector_swi ) THUMB( .reloc ., R_ARM_THM_PC12, .L__vector_swi ) W(ldr) pc, . W(b) vector_pabt W(b) vector_dabt W(b) vector_addrexcptn W(b) vector_irq W(b) vector_fiq #ifdef CONFIG_HARDEN_BRANCH_HISTORY .section .vectors.bhb.loop8, "ax", %progbits W(b) vector_rst W(b) vector_bhb_loop8_und ARM( .reloc ., R_ARM_LDR_PC_G0, .L__vector_bhb_loop8_swi ) THUMB( .reloc ., R_ARM_THM_PC12, .L__vector_bhb_loop8_swi ) W(ldr) pc, . W(b) vector_bhb_loop8_pabt W(b) vector_bhb_loop8_dabt W(b) vector_addrexcptn W(b) vector_bhb_loop8_irq W(b) vector_bhb_loop8_fiq .section .vectors.bhb.bpiall, "ax", %progbits W(b) vector_rst W(b) vector_bhb_bpiall_und ARM( .reloc ., R_ARM_LDR_PC_G0, .L__vector_bhb_bpiall_swi ) THUMB( .reloc ., R_ARM_THM_PC12, .L__vector_bhb_bpiall_swi ) W(ldr) pc, . W(b) vector_bhb_bpiall_pabt W(b) vector_bhb_bpiall_dabt W(b) vector_addrexcptn W(b) vector_bhb_bpiall_irq W(b) vector_bhb_bpiall_fiq #endif .data .align 2 .globl cr_alignment cr_alignment: .space 4