// SPDX-License-Identifier: GPL-2.0 #include "mmu.h" #include "mmu_internal.h" #include "mmutrace.h" #include "tdp_iter.h" #include "tdp_mmu.h" #include "spte.h" #ifdef CONFIG_X86_64 static bool __read_mostly tdp_mmu_enabled = false; module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644); #endif static bool is_tdp_mmu_enabled(void) { #ifdef CONFIG_X86_64 return tdp_enabled && READ_ONCE(tdp_mmu_enabled); #else return false; #endif /* CONFIG_X86_64 */ } /* Initializes the TDP MMU for the VM, if enabled. */ void kvm_mmu_init_tdp_mmu(struct kvm *kvm) { if (!is_tdp_mmu_enabled()) return; /* This should not be changed for the lifetime of the VM. */ kvm->arch.tdp_mmu_enabled = true; INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages); } void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) { if (!kvm->arch.tdp_mmu_enabled) return; WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); } #define for_each_tdp_mmu_root(_kvm, _root) \ list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa) { struct kvm_mmu_page *sp; if (!kvm->arch.tdp_mmu_enabled) return false; if (WARN_ON(!VALID_PAGE(hpa))) return false; sp = to_shadow_page(hpa); if (WARN_ON(!sp)) return false; return sp->tdp_mmu_page && sp->root_count; } static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t start, gfn_t end, bool can_yield); void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root) { gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT); lockdep_assert_held(&kvm->mmu_lock); WARN_ON(root->root_count); WARN_ON(!root->tdp_mmu_page); list_del(&root->link); zap_gfn_range(kvm, root, 0, max_gfn, false); free_page((unsigned long)root->spt); kmem_cache_free(mmu_page_header_cache, root); } static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu, int level) { union kvm_mmu_page_role role; role = vcpu->arch.mmu->mmu_role.base; role.level = level; role.direct = true; role.gpte_is_8_bytes = true; role.access = ACC_ALL; return role; } static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level) { struct kvm_mmu_page *sp; sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); set_page_private(virt_to_page(sp->spt), (unsigned long)sp); sp->role.word = page_role_for_level(vcpu, level).word; sp->gfn = gfn; sp->tdp_mmu_page = true; return sp; } static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu) { union kvm_mmu_page_role role; struct kvm *kvm = vcpu->kvm; struct kvm_mmu_page *root; role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level); spin_lock(&kvm->mmu_lock); /* Check for an existing root before allocating a new one. */ for_each_tdp_mmu_root(kvm, root) { if (root->role.word == role.word) { kvm_mmu_get_root(kvm, root); spin_unlock(&kvm->mmu_lock); return root; } } root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level); root->root_count = 1; list_add(&root->link, &kvm->arch.tdp_mmu_roots); spin_unlock(&kvm->mmu_lock); return root; } hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) { struct kvm_mmu_page *root; root = get_tdp_mmu_vcpu_root(vcpu); if (!root) return INVALID_PAGE; return __pa(root->spt); } static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, u64 old_spte, u64 new_spte, int level); static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp) { return sp->role.smm ? 1 : 0; } static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level) { bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level)) return; if (is_accessed_spte(old_spte) && (!is_accessed_spte(new_spte) || pfn_changed)) kvm_set_pfn_accessed(spte_to_pfn(old_spte)); } static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn, u64 old_spte, u64 new_spte, int level) { bool pfn_changed; struct kvm_memory_slot *slot; if (level > PG_LEVEL_4K) return; pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); if ((!is_writable_pte(old_spte) || pfn_changed) && is_writable_pte(new_spte)) { slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn); mark_page_dirty_in_slot(slot, gfn); } } /** * handle_changed_spte - handle bookkeeping associated with an SPTE change * @kvm: kvm instance * @as_id: the address space of the paging structure the SPTE was a part of * @gfn: the base GFN that was mapped by the SPTE * @old_spte: The value of the SPTE before the change * @new_spte: The value of the SPTE after the change * @level: the level of the PT the SPTE is part of in the paging structure * * Handle bookkeeping that might result from the modification of a SPTE. * This function must be called for all TDP SPTE modifications. */ static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, u64 old_spte, u64 new_spte, int level) { bool was_present = is_shadow_present_pte(old_spte); bool is_present = is_shadow_present_pte(new_spte); bool was_leaf = was_present && is_last_spte(old_spte, level); bool is_leaf = is_present && is_last_spte(new_spte, level); bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); u64 *pt; struct kvm_mmu_page *sp; u64 old_child_spte; int i; WARN_ON(level > PT64_ROOT_MAX_LEVEL); WARN_ON(level < PG_LEVEL_4K); WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); /* * If this warning were to trigger it would indicate that there was a * missing MMU notifier or a race with some notifier handler. * A present, leaf SPTE should never be directly replaced with another * present leaf SPTE pointing to a differnt PFN. A notifier handler * should be zapping the SPTE before the main MM's page table is * changed, or the SPTE should be zeroed, and the TLBs flushed by the * thread before replacement. */ if (was_leaf && is_leaf && pfn_changed) { pr_err("Invalid SPTE change: cannot replace a present leaf\n" "SPTE with another present leaf SPTE mapping a\n" "different PFN!\n" "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", as_id, gfn, old_spte, new_spte, level); /* * Crash the host to prevent error propagation and guest data * courruption. */ BUG(); } if (old_spte == new_spte) return; /* * The only times a SPTE should be changed from a non-present to * non-present state is when an MMIO entry is installed/modified/ * removed. In that case, there is nothing to do here. */ if (!was_present && !is_present) { /* * If this change does not involve a MMIO SPTE, it is * unexpected. Log the change, though it should not impact the * guest since both the former and current SPTEs are nonpresent. */ if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte))) pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" "should not be replaced with another,\n" "different nonpresent SPTE, unless one or both\n" "are MMIO SPTEs.\n" "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", as_id, gfn, old_spte, new_spte, level); return; } if (was_leaf && is_dirty_spte(old_spte) && (!is_dirty_spte(new_spte) || pfn_changed)) kvm_set_pfn_dirty(spte_to_pfn(old_spte)); /* * Recursively handle child PTs if the change removed a subtree from * the paging structure. */ if (was_present && !was_leaf && (pfn_changed || !is_present)) { pt = spte_to_child_pt(old_spte, level); sp = sptep_to_sp(pt); list_del(&sp->link); if (sp->lpage_disallowed) unaccount_huge_nx_page(kvm, sp); for (i = 0; i < PT64_ENT_PER_PAGE; i++) { old_child_spte = READ_ONCE(*(pt + i)); WRITE_ONCE(*(pt + i), 0); handle_changed_spte(kvm, as_id, gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)), old_child_spte, 0, level - 1); } kvm_flush_remote_tlbs_with_address(kvm, gfn, KVM_PAGES_PER_HPAGE(level)); free_page((unsigned long)pt); kmem_cache_free(mmu_page_header_cache, sp); } } static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, u64 old_spte, u64 new_spte, int level) { __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level); handle_changed_spte_acc_track(old_spte, new_spte, level); handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, new_spte, level); } static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, u64 new_spte, bool record_acc_track, bool record_dirty_log) { u64 *root_pt = tdp_iter_root_pt(iter); struct kvm_mmu_page *root = sptep_to_sp(root_pt); int as_id = kvm_mmu_page_as_id(root); WRITE_ONCE(*iter->sptep, new_spte); __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte, iter->level); if (record_acc_track) handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level); if (record_dirty_log) handle_changed_spte_dirty_log(kvm, as_id, iter->gfn, iter->old_spte, new_spte, iter->level); } static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, u64 new_spte) { __tdp_mmu_set_spte(kvm, iter, new_spte, true, true); } static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, struct tdp_iter *iter, u64 new_spte) { __tdp_mmu_set_spte(kvm, iter, new_spte, false, true); } static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, struct tdp_iter *iter, u64 new_spte) { __tdp_mmu_set_spte(kvm, iter, new_spte, true, false); } #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end) #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ tdp_root_for_each_pte(_iter, _root, _start, _end) \ if (!is_shadow_present_pte(_iter.old_spte) || \ !is_last_spte(_iter.old_spte, _iter.level)) \ continue; \ else #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \ _mmu->shadow_root_level, _start, _end) /* * Flush the TLB if the process should drop kvm->mmu_lock. * Return whether the caller still needs to flush the tlb. */ static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter) { if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { kvm_flush_remote_tlbs(kvm); cond_resched_lock(&kvm->mmu_lock); tdp_iter_refresh_walk(iter); return false; } else { return true; } } static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter) { if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { cond_resched_lock(&kvm->mmu_lock); tdp_iter_refresh_walk(iter); } } /* * Tears down the mappings for the range of gfns, [start, end), and frees the * non-root pages mapping GFNs strictly within that range. Returns true if * SPTEs have been cleared and a TLB flush is needed before releasing the * MMU lock. * If can_yield is true, will release the MMU lock and reschedule if the * scheduler needs the CPU or there is contention on the MMU lock. If this * function cannot yield, it will not release the MMU lock or reschedule and * the caller must ensure it does not supply too large a GFN range, or the * operation can cause a soft lockup. */ static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t start, gfn_t end, bool can_yield) { struct tdp_iter iter; bool flush_needed = false; tdp_root_for_each_pte(iter, root, start, end) { if (!is_shadow_present_pte(iter.old_spte)) continue; /* * If this is a non-last-level SPTE that covers a larger range * than should be zapped, continue, and zap the mappings at a * lower level. */ if ((iter.gfn < start || iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) && !is_last_spte(iter.old_spte, iter.level)) continue; tdp_mmu_set_spte(kvm, &iter, 0); if (can_yield) flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter); else flush_needed = true; } return flush_needed; } /* * Tears down the mappings for the range of gfns, [start, end), and frees the * non-root pages mapping GFNs strictly within that range. Returns true if * SPTEs have been cleared and a TLB flush is needed before releasing the * MMU lock. */ bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end) { struct kvm_mmu_page *root; bool flush = false; for_each_tdp_mmu_root(kvm, root) { /* * Take a reference on the root so that it cannot be freed if * this thread releases the MMU lock and yields in this loop. */ kvm_mmu_get_root(kvm, root); flush |= zap_gfn_range(kvm, root, start, end, true); kvm_mmu_put_root(kvm, root); } return flush; } void kvm_tdp_mmu_zap_all(struct kvm *kvm) { gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT); bool flush; flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn); if (flush) kvm_flush_remote_tlbs(kvm); } /* * Installs a last-level SPTE to handle a TDP page fault. * (NPT/EPT violation/misconfiguration) */ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write, int map_writable, struct tdp_iter *iter, kvm_pfn_t pfn, bool prefault) { u64 new_spte; int ret = 0; int make_spte_ret = 0; if (unlikely(is_noslot_pfn(pfn))) { new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte); } else make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn, pfn, iter->old_spte, prefault, true, map_writable, !shadow_accessed_mask, &new_spte); if (new_spte == iter->old_spte) ret = RET_PF_SPURIOUS; else tdp_mmu_set_spte(vcpu->kvm, iter, new_spte); /* * If the page fault was caused by a write but the page is write * protected, emulation is needed. If the emulation was skipped, * the vCPU would have the same fault again. */ if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { if (write) ret = RET_PF_EMULATE; kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); } /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ if (unlikely(is_mmio_spte(new_spte))) ret = RET_PF_EMULATE; trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep); if (!prefault) vcpu->stat.pf_fixed++; return ret; } /* * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing * page tables and SPTEs to translate the faulting guest physical address. */ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, int map_writable, int max_level, kvm_pfn_t pfn, bool prefault) { bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); bool write = error_code & PFERR_WRITE_MASK; bool exec = error_code & PFERR_FETCH_MASK; bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; struct kvm_mmu *mmu = vcpu->arch.mmu; struct tdp_iter iter; struct kvm_mmu_page *sp; u64 *child_pt; u64 new_spte; int ret; gfn_t gfn = gpa >> PAGE_SHIFT; int level; int req_level; if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) return RET_PF_RETRY; if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))) return RET_PF_RETRY; level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, huge_page_disallowed, &req_level); trace_kvm_mmu_spte_requested(gpa, level, pfn); tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { if (nx_huge_page_workaround_enabled) disallowed_hugepage_adjust(iter.old_spte, gfn, iter.level, &pfn, &level); if (iter.level == level) break; /* * If there is an SPTE mapping a large page at a higher level * than the target, that SPTE must be cleared and replaced * with a non-leaf SPTE. */ if (is_shadow_present_pte(iter.old_spte) && is_large_pte(iter.old_spte)) { tdp_mmu_set_spte(vcpu->kvm, &iter, 0); kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn, KVM_PAGES_PER_HPAGE(iter.level)); /* * The iter must explicitly re-read the spte here * because the new value informs the !present * path below. */ iter.old_spte = READ_ONCE(*iter.sptep); } if (!is_shadow_present_pte(iter.old_spte)) { sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level); list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages); child_pt = sp->spt; clear_page(child_pt); new_spte = make_nonleaf_spte(child_pt, !shadow_accessed_mask); trace_kvm_mmu_get_page(sp, true); if (huge_page_disallowed && req_level >= iter.level) account_huge_nx_page(vcpu->kvm, sp); tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte); } } if (WARN_ON(iter.level != level)) return RET_PF_RETRY; ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter, pfn, prefault); return ret; } static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, unsigned long data, int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_mmu_page *root, gfn_t start, gfn_t end, unsigned long data)) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; struct kvm_mmu_page *root; int ret = 0; int as_id; for_each_tdp_mmu_root(kvm, root) { /* * Take a reference on the root so that it cannot be freed if * this thread releases the MMU lock and yields in this loop. */ kvm_mmu_get_root(kvm, root); as_id = kvm_mmu_page_as_id(root); slots = __kvm_memslots(kvm, as_id); kvm_for_each_memslot(memslot, slots) { unsigned long hva_start, hva_end; gfn_t gfn_start, gfn_end; hva_start = max(start, memslot->userspace_addr); hva_end = min(end, memslot->userspace_addr + (memslot->npages << PAGE_SHIFT)); if (hva_start >= hva_end) continue; /* * {gfn(page) | page intersects with [hva_start, hva_end)} = * {gfn_start, gfn_start+1, ..., gfn_end-1}. */ gfn_start = hva_to_gfn_memslot(hva_start, memslot); gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); ret |= handler(kvm, memslot, root, gfn_start, gfn_end, data); } kvm_mmu_put_root(kvm, root); } return ret; } static int zap_gfn_range_hva_wrapper(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_mmu_page *root, gfn_t start, gfn_t end, unsigned long unused) { return zap_gfn_range(kvm, root, start, end, false); } int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) { return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0, zap_gfn_range_hva_wrapper); } /* * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero * if any of the GFNs in the range have been accessed. */ static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_mmu_page *root, gfn_t start, gfn_t end, unsigned long unused) { struct tdp_iter iter; int young = 0; u64 new_spte = 0; tdp_root_for_each_leaf_pte(iter, root, start, end) { /* * If we have a non-accessed entry we don't need to change the * pte. */ if (!is_accessed_spte(iter.old_spte)) continue; new_spte = iter.old_spte; if (spte_ad_enabled(new_spte)) { clear_bit((ffs(shadow_accessed_mask) - 1), (unsigned long *)&new_spte); } else { /* * Capture the dirty status of the page, so that it doesn't get * lost when the SPTE is marked for access tracking. */ if (is_writable_pte(new_spte)) kvm_set_pfn_dirty(spte_to_pfn(new_spte)); new_spte = mark_spte_for_access_track(new_spte); } new_spte &= ~shadow_dirty_mask; tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte); young = 1; } return young; } int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) { return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0, age_gfn_range); } static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused, unsigned long unused2) { struct tdp_iter iter; tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) if (is_accessed_spte(iter.old_spte)) return 1; return 0; } int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva) { return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0, test_age_gfn); } /* * Handle the changed_pte MMU notifier for the TDP MMU. * data is a pointer to the new pte_t mapping the HVA specified by the MMU * notifier. * Returns non-zero if a flush is needed before releasing the MMU lock. */ static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused, unsigned long data) { struct tdp_iter iter; pte_t *ptep = (pte_t *)data; kvm_pfn_t new_pfn; u64 new_spte; int need_flush = 0; WARN_ON(pte_huge(*ptep)); new_pfn = pte_pfn(*ptep); tdp_root_for_each_pte(iter, root, gfn, gfn + 1) { if (iter.level != PG_LEVEL_4K) continue; if (!is_shadow_present_pte(iter.old_spte)) break; tdp_mmu_set_spte(kvm, &iter, 0); kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1); if (!pte_write(*ptep)) { new_spte = kvm_mmu_changed_pte_notifier_make_spte( iter.old_spte, new_pfn); tdp_mmu_set_spte(kvm, &iter, new_spte); } need_flush = 1; } if (need_flush) kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); return 0; } int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address, pte_t *host_ptep) { return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1, (unsigned long)host_ptep, set_tdp_spte); } /* * Remove write access from all the SPTEs mapping GFNs [start, end). If * skip_4k is set, SPTEs that map 4k pages, will not be write-protected. * Returns true if an SPTE has been changed and the TLBs need to be flushed. */ static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t start, gfn_t end, int min_level) { struct tdp_iter iter; u64 new_spte; bool spte_set = false; BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); for_each_tdp_pte_min_level(iter, root->spt, root->role.level, min_level, start, end) { if (!is_shadow_present_pte(iter.old_spte) || !is_last_spte(iter.old_spte, iter.level)) continue; new_spte = iter.old_spte & ~PT_WRITABLE_MASK; tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); spte_set = true; tdp_mmu_iter_cond_resched(kvm, &iter); } return spte_set; } /* * Remove write access from all the SPTEs mapping GFNs in the memslot. Will * only affect leaf SPTEs down to min_level. * Returns true if an SPTE has been changed and the TLBs need to be flushed. */ bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot, int min_level) { struct kvm_mmu_page *root; int root_as_id; bool spte_set = false; for_each_tdp_mmu_root(kvm, root) { root_as_id = kvm_mmu_page_as_id(root); if (root_as_id != slot->as_id) continue; /* * Take a reference on the root so that it cannot be freed if * this thread releases the MMU lock and yields in this loop. */ kvm_mmu_get_root(kvm, root); spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, slot->base_gfn + slot->npages, min_level); kvm_mmu_put_root(kvm, root); } return spte_set; } /* * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. * If AD bits are not enabled, this will require clearing the writable bit on * each SPTE. Returns true if an SPTE has been changed and the TLBs need to * be flushed. */ static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t start, gfn_t end) { struct tdp_iter iter; u64 new_spte; bool spte_set = false; tdp_root_for_each_leaf_pte(iter, root, start, end) { if (spte_ad_need_write_protect(iter.old_spte)) { if (is_writable_pte(iter.old_spte)) new_spte = iter.old_spte & ~PT_WRITABLE_MASK; else continue; } else { if (iter.old_spte & shadow_dirty_mask) new_spte = iter.old_spte & ~shadow_dirty_mask; else continue; } tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); spte_set = true; tdp_mmu_iter_cond_resched(kvm, &iter); } return spte_set; } /* * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. * If AD bits are not enabled, this will require clearing the writable bit on * each SPTE. Returns true if an SPTE has been changed and the TLBs need to * be flushed. */ bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot) { struct kvm_mmu_page *root; int root_as_id; bool spte_set = false; for_each_tdp_mmu_root(kvm, root) { root_as_id = kvm_mmu_page_as_id(root); if (root_as_id != slot->as_id) continue; /* * Take a reference on the root so that it cannot be freed if * this thread releases the MMU lock and yields in this loop. */ kvm_mmu_get_root(kvm, root); spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, slot->base_gfn + slot->npages); kvm_mmu_put_root(kvm, root); } return spte_set; } /* * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is * set in mask, starting at gfn. The given memslot is expected to contain all * the GFNs represented by set bits in the mask. If AD bits are enabled, * clearing the dirty status will involve clearing the dirty bit on each SPTE * or, if AD bits are not enabled, clearing the writable bit on each SPTE. */ static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t gfn, unsigned long mask, bool wrprot) { struct tdp_iter iter; u64 new_spte; tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), gfn + BITS_PER_LONG) { if (!mask) break; if (iter.level > PG_LEVEL_4K || !(mask & (1UL << (iter.gfn - gfn)))) continue; if (wrprot || spte_ad_need_write_protect(iter.old_spte)) { if (is_writable_pte(iter.old_spte)) new_spte = iter.old_spte & ~PT_WRITABLE_MASK; else continue; } else { if (iter.old_spte & shadow_dirty_mask) new_spte = iter.old_spte & ~shadow_dirty_mask; else continue; } tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); mask &= ~(1UL << (iter.gfn - gfn)); } } /* * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is * set in mask, starting at gfn. The given memslot is expected to contain all * the GFNs represented by set bits in the mask. If AD bits are enabled, * clearing the dirty status will involve clearing the dirty bit on each SPTE * or, if AD bits are not enabled, clearing the writable bit on each SPTE. */ void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn, unsigned long mask, bool wrprot) { struct kvm_mmu_page *root; int root_as_id; lockdep_assert_held(&kvm->mmu_lock); for_each_tdp_mmu_root(kvm, root) { root_as_id = kvm_mmu_page_as_id(root); if (root_as_id != slot->as_id) continue; clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); } } /* * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is * only used for PML, and so will involve setting the dirty bit on each SPTE. * Returns true if an SPTE has been changed and the TLBs need to be flushed. */ static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t start, gfn_t end) { struct tdp_iter iter; u64 new_spte; bool spte_set = false; tdp_root_for_each_pte(iter, root, start, end) { if (!is_shadow_present_pte(iter.old_spte)) continue; new_spte = iter.old_spte | shadow_dirty_mask; tdp_mmu_set_spte(kvm, &iter, new_spte); spte_set = true; tdp_mmu_iter_cond_resched(kvm, &iter); } return spte_set; } /* * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is * only used for PML, and so will involve setting the dirty bit on each SPTE. * Returns true if an SPTE has been changed and the TLBs need to be flushed. */ bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) { struct kvm_mmu_page *root; int root_as_id; bool spte_set = false; for_each_tdp_mmu_root(kvm, root) { root_as_id = kvm_mmu_page_as_id(root); if (root_as_id != slot->as_id) continue; /* * Take a reference on the root so that it cannot be freed if * this thread releases the MMU lock and yields in this loop. */ kvm_mmu_get_root(kvm, root); spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn, slot->base_gfn + slot->npages); kvm_mmu_put_root(kvm, root); } return spte_set; } /* * Clear non-leaf entries (and free associated page tables) which could * be replaced by large mappings, for GFNs within the slot. */ static void zap_collapsible_spte_range(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t start, gfn_t end) { struct tdp_iter iter; kvm_pfn_t pfn; bool spte_set = false; tdp_root_for_each_pte(iter, root, start, end) { if (!is_shadow_present_pte(iter.old_spte) || is_last_spte(iter.old_spte, iter.level)) continue; pfn = spte_to_pfn(iter.old_spte); if (kvm_is_reserved_pfn(pfn) || !PageTransCompoundMap(pfn_to_page(pfn))) continue; tdp_mmu_set_spte(kvm, &iter, 0); spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter); } if (spte_set) kvm_flush_remote_tlbs(kvm); } /* * Clear non-leaf entries (and free associated page tables) which could * be replaced by large mappings, for GFNs within the slot. */ void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *slot) { struct kvm_mmu_page *root; int root_as_id; for_each_tdp_mmu_root(kvm, root) { root_as_id = kvm_mmu_page_as_id(root); if (root_as_id != slot->as_id) continue; /* * Take a reference on the root so that it cannot be freed if * this thread releases the MMU lock and yields in this loop. */ kvm_mmu_get_root(kvm, root); zap_collapsible_spte_range(kvm, root, slot->base_gfn, slot->base_gfn + slot->npages); kvm_mmu_put_root(kvm, root); } } /* * Removes write access on the last level SPTE mapping this GFN and unsets the * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted. * Returns true if an SPTE was set and a TLB flush is needed. */ static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t gfn) { struct tdp_iter iter; u64 new_spte; bool spte_set = false; tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) { if (!is_writable_pte(iter.old_spte)) break; new_spte = iter.old_spte & ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); tdp_mmu_set_spte(kvm, &iter, new_spte); spte_set = true; } return spte_set; } /* * Removes write access on the last level SPTE mapping this GFN and unsets the * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted. * Returns true if an SPTE was set and a TLB flush is needed. */ bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn) { struct kvm_mmu_page *root; int root_as_id; bool spte_set = false; lockdep_assert_held(&kvm->mmu_lock); for_each_tdp_mmu_root(kvm, root) { root_as_id = kvm_mmu_page_as_id(root); if (root_as_id != slot->as_id) continue; spte_set |= write_protect_gfn(kvm, root, gfn); } return spte_set; } /* * Return the level of the lowest level SPTE added to sptes. * That SPTE may be non-present. */ int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes) { struct tdp_iter iter; struct kvm_mmu *mmu = vcpu->arch.mmu; gfn_t gfn = addr >> PAGE_SHIFT; int leaf = -1; tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { leaf = iter.level; sptes[leaf - 1] = iter.old_spte; } return leaf; }