/* * Afatech AF9035 DVB USB driver * * Copyright (C) 2009 Antti Palosaari * Copyright (C) 2012 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "af9035.h" DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static DEFINE_MUTEX(af9035_usb_mutex); static struct dvb_usb_device_properties af9035_properties[2]; static int af9035_properties_count = ARRAY_SIZE(af9035_properties); static u16 af9035_checksum(const u8 *buf, size_t len) { size_t i; u16 checksum = 0; for (i = 1; i < len; i++) { if (i % 2) checksum += buf[i] << 8; else checksum += buf[i]; } checksum = ~checksum; return checksum; } static int af9035_ctrl_msg(struct usb_device *udev, struct usb_req *req) { #define BUF_LEN 64 #define REQ_HDR_LEN 4 /* send header size */ #define ACK_HDR_LEN 3 /* rece header size */ #define CHECKSUM_LEN 2 #define USB_TIMEOUT 2000 int ret, msg_len, act_len; u8 buf[BUF_LEN]; static u8 seq; /* packet sequence number */ u16 checksum, tmp_checksum; /* buffer overflow check */ if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) || req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) { pr_debug("%s: too much data wlen=%d rlen=%d\n", __func__, req->wlen, req->rlen); return -EINVAL; } if (mutex_lock_interruptible(&af9035_usb_mutex) < 0) return -EAGAIN; buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1; buf[1] = req->mbox; buf[2] = req->cmd; buf[3] = seq++; if (req->wlen) memcpy(&buf[4], req->wbuf, req->wlen); /* calc and add checksum */ checksum = af9035_checksum(buf, buf[0] - 1); buf[buf[0] - 1] = (checksum >> 8); buf[buf[0] - 0] = (checksum & 0xff); msg_len = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN ; /* send req */ ret = usb_bulk_msg(udev, usb_sndbulkpipe(udev, 0x02), buf, msg_len, &act_len, USB_TIMEOUT); if (ret < 0) err("bulk message failed=%d (%d/%d)", ret, msg_len, act_len); else if (act_len != msg_len) ret = -EIO; /* all data is not send */ if (ret < 0) goto err_mutex_unlock; /* no ack for those packets */ if (req->cmd == CMD_FW_DL) goto exit_mutex_unlock; /* receive ack and data if read req */ msg_len = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN; ret = usb_bulk_msg(udev, usb_rcvbulkpipe(udev, 0x81), buf, msg_len, &act_len, USB_TIMEOUT); if (ret < 0) { err("recv bulk message failed=%d", ret); ret = -EIO; goto err_mutex_unlock; } if (act_len != msg_len) { err("recv bulk message truncated (%d != %d)", act_len, msg_len); ret = -EIO; goto err_mutex_unlock; } /* verify checksum */ checksum = af9035_checksum(buf, act_len - 2); tmp_checksum = (buf[act_len - 2] << 8) | buf[act_len - 1]; if (tmp_checksum != checksum) { err("%s: command=%02x checksum mismatch (%04x != %04x)", __func__, req->cmd, tmp_checksum, checksum); ret = -EIO; goto err_mutex_unlock; } /* check status */ if (buf[2]) { pr_debug("%s: command=%02x failed fw error=%d\n", __func__, req->cmd, buf[2]); ret = -EIO; goto err_mutex_unlock; } /* read request, copy returned data to return buf */ if (req->rlen) memcpy(req->rbuf, &buf[ACK_HDR_LEN], req->rlen); err_mutex_unlock: exit_mutex_unlock: mutex_unlock(&af9035_usb_mutex); return ret; } /* write multiple registers */ static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len) { u8 wbuf[6 + len]; u8 mbox = (reg >> 16) & 0xff; struct usb_req req = { CMD_MEM_WR, mbox, sizeof(wbuf), wbuf, 0, NULL }; wbuf[0] = len; wbuf[1] = 2; wbuf[2] = 0; wbuf[3] = 0; wbuf[4] = (reg >> 8) & 0xff; wbuf[5] = (reg >> 0) & 0xff; memcpy(&wbuf[6], val, len); return af9035_ctrl_msg(d->udev, &req); } /* read multiple registers */ static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len) { u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff }; u8 mbox = (reg >> 16) & 0xff; struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val }; return af9035_ctrl_msg(d->udev, &req); } /* write single register */ static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val) { return af9035_wr_regs(d, reg, &val, 1); } /* read single register */ static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val) { return af9035_rd_regs(d, reg, val, 1); } /* write single register with mask */ static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val, u8 mask) { int ret; u8 tmp; /* no need for read if whole reg is written */ if (mask != 0xff) { ret = af9035_rd_regs(d, reg, &tmp, 1); if (ret) return ret; val &= mask; tmp &= ~mask; val |= tmp; } return af9035_wr_regs(d, reg, &val, 1); } static int af9035_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); struct state *state = d->priv; int ret; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; /* * I2C sub header is 5 bytes long. Meaning of those bytes are: * 0: data len * 1: I2C addr << 1 * 2: reg addr len * byte 3 and 4 can be used as reg addr * 3: reg addr MSB * used when reg addr len is set to 2 * 4: reg addr LSB * used when reg addr len is set to 1 or 2 * * For the simplify we do not use register addr at all. * NOTE: As a firmware knows tuner type there is very small possibility * there could be some tuner I2C hacks done by firmware and this may * lead problems if firmware expects those bytes are used. */ if (num == 2 && !(msg[0].flags & I2C_M_RD) && (msg[1].flags & I2C_M_RD)) { if (msg[0].len > 40 || msg[1].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else if (msg[0].addr == state->af9033_config[0].i2c_addr) { /* integrated demod */ u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 | msg[0].buf[2]; ret = af9035_rd_regs(d, reg, &msg[1].buf[0], msg[1].len); } else { /* I2C */ u8 buf[5 + msg[0].len]; struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf), buf, msg[1].len, msg[1].buf }; buf[0] = msg[1].len; buf[1] = msg[0].addr << 1; buf[2] = 0x00; /* reg addr len */ buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ memcpy(&buf[5], msg[0].buf, msg[0].len); ret = af9035_ctrl_msg(d->udev, &req); } } else if (num == 1 && !(msg[0].flags & I2C_M_RD)) { if (msg[0].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else if (msg[0].addr == state->af9033_config[0].i2c_addr) { /* integrated demod */ u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 | msg[0].buf[2]; ret = af9035_wr_regs(d, reg, &msg[0].buf[3], msg[0].len - 3); } else { /* I2C */ u8 buf[5 + msg[0].len]; struct usb_req req = { CMD_I2C_WR, 0, sizeof(buf), buf, 0, NULL }; buf[0] = msg[0].len; buf[1] = msg[0].addr << 1; buf[2] = 0x00; /* reg addr len */ buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ memcpy(&buf[5], msg[0].buf, msg[0].len); ret = af9035_ctrl_msg(d->udev, &req); } } else { /* * We support only two kind of I2C transactions: * 1) 1 x read + 1 x write * 2) 1 x write */ ret = -EOPNOTSUPP; } mutex_unlock(&d->i2c_mutex); if (ret < 0) return ret; else return num; } static u32 af9035_i2c_functionality(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm af9035_i2c_algo = { .master_xfer = af9035_i2c_master_xfer, .functionality = af9035_i2c_functionality, }; #define AF9035_POLL 250 static int af9035_rc_query(struct dvb_usb_device *d) { unsigned int key; unsigned char b[4]; int ret; struct usb_req req = { CMD_IR_GET, 0, 0, NULL, 4, b }; ret = af9035_ctrl_msg(d->udev, &req); if (ret < 0) goto err; if ((b[2] + b[3]) == 0xff) { if ((b[0] + b[1]) == 0xff) { /* NEC */ key = b[0] << 8 | b[2]; } else { /* ext. NEC */ key = b[0] << 16 | b[1] << 8 | b[2]; } } else { key = b[0] << 24 | b[1] << 16 | b[2] << 8 | b[3]; } rc_keydown(d->rc_dev, key, 0); err: /* ignore errors */ return 0; } static int af9035_init(struct dvb_usb_device *d) { struct state *state = d->priv; int ret, i; u16 frame_size = 87 * 188 / 4; u8 packet_size = 512 / 4; struct reg_val_mask tab[] = { { 0x80f99d, 0x01, 0x01 }, { 0x80f9a4, 0x01, 0x01 }, { 0x00dd11, 0x00, 0x20 }, { 0x00dd11, 0x00, 0x40 }, { 0x00dd13, 0x00, 0x20 }, { 0x00dd13, 0x00, 0x40 }, { 0x00dd11, 0x20, 0x20 }, { 0x00dd88, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd89, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0c, packet_size, 0xff}, { 0x00dd11, state->dual_mode << 6, 0x40 }, { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0d, packet_size, 0xff }, { 0x80f9a3, 0x00, 0x01 }, { 0x80f9cd, 0x00, 0x01 }, { 0x80f99d, 0x00, 0x01 }, { 0x80f9a4, 0x00, 0x01 }, }; pr_debug("%s: USB speed=%d frame_size=%04x packet_size=%02x\n", __func__, d->udev->speed, frame_size, packet_size); /* init endpoints */ for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val, tab[i].mask); if (ret < 0) goto err; } return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } static int af9035_identify_state(struct usb_device *udev, struct dvb_usb_device_properties *props, struct dvb_usb_device_description **desc, int *cold) { int ret; u8 wbuf[1] = { 1 }; u8 rbuf[4]; struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf, sizeof(rbuf), rbuf }; ret = af9035_ctrl_msg(udev, &req); if (ret < 0) goto err; pr_debug("%s: reply=%02x %02x %02x %02x\n", __func__, rbuf[0], rbuf[1], rbuf[2], rbuf[3]); if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3]) *cold = 0; else *cold = 1; return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } static int af9035_download_firmware(struct usb_device *udev, const struct firmware *fw) { int ret, i, j, len; u8 wbuf[1]; u8 rbuf[4]; struct usb_req req = { 0, 0, 0, NULL, 0, NULL }; struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL }; struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ; u8 hdr_core; u16 hdr_addr, hdr_data_len, hdr_checksum; #define MAX_DATA 58 #define HDR_SIZE 7 /* * Thanks to Daniel Glöckner about that info! * * byte 0: MCS 51 core * There are two inside the AF9035 (1=Link and 2=OFDM) with separate * address spaces * byte 1-2: Big endian destination address * byte 3-4: Big endian number of data bytes following the header * byte 5-6: Big endian header checksum, apparently ignored by the chip * Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256) */ for (i = fw->size; i > HDR_SIZE;) { hdr_core = fw->data[fw->size - i + 0]; hdr_addr = fw->data[fw->size - i + 1] << 8; hdr_addr |= fw->data[fw->size - i + 2] << 0; hdr_data_len = fw->data[fw->size - i + 3] << 8; hdr_data_len |= fw->data[fw->size - i + 4] << 0; hdr_checksum = fw->data[fw->size - i + 5] << 8; hdr_checksum |= fw->data[fw->size - i + 6] << 0; pr_debug("%s: core=%d addr=%04x data_len=%d checksum=%04x\n", __func__, hdr_core, hdr_addr, hdr_data_len, hdr_checksum); if (((hdr_core != 1) && (hdr_core != 2)) || (hdr_data_len > i)) { pr_debug("%s: bad firmware\n", __func__); break; } /* download begin packet */ req.cmd = CMD_FW_DL_BEGIN; ret = af9035_ctrl_msg(udev, &req); if (ret < 0) goto err; /* download firmware packet(s) */ for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) { len = j; if (len > MAX_DATA) len = MAX_DATA; req_fw_dl.wlen = len; req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i + HDR_SIZE + hdr_data_len - j]; ret = af9035_ctrl_msg(udev, &req_fw_dl); if (ret < 0) goto err; } /* download end packet */ req.cmd = CMD_FW_DL_END; ret = af9035_ctrl_msg(udev, &req); if (ret < 0) goto err; i -= hdr_data_len + HDR_SIZE; pr_debug("%s: data uploaded=%zu\n", __func__, fw->size - i); } /* firmware loaded, request boot */ req.cmd = CMD_FW_BOOT; ret = af9035_ctrl_msg(udev, &req); if (ret < 0) goto err; /* ensure firmware starts */ wbuf[0] = 1; ret = af9035_ctrl_msg(udev, &req_fw_ver); if (ret < 0) goto err; if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) { info("firmware did not run"); ret = -ENODEV; goto err; } info("firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2], rbuf[3]); return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } static int af9035_download_firmware_it9135(struct usb_device *udev, const struct firmware *fw) { int ret, i, i_prev; u8 wbuf[1]; u8 rbuf[4]; struct usb_req req = { 0, 0, 0, NULL, 0, NULL }; struct usb_req req_fw_dl = { CMD_FW_SCATTER_WR, 0, 0, NULL, 0, NULL }; struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ; #define HDR_SIZE 7 /* * There seems to be following firmware header. Meaning of bytes 0-3 * is unknown. * * 0: 3 * 1: 0, 1 * 2: 0 * 3: 1, 2, 3 * 4: addr MSB * 5: addr LSB * 6: count of data bytes ? */ for (i = HDR_SIZE, i_prev = 0; i <= fw->size; i++) { if (i == fw->size || (fw->data[i + 0] == 0x03 && (fw->data[i + 1] == 0x00 || fw->data[i + 1] == 0x01) && fw->data[i + 2] == 0x00)) { req_fw_dl.wlen = i - i_prev; req_fw_dl.wbuf = (u8 *) &fw->data[i_prev]; i_prev = i; ret = af9035_ctrl_msg(udev, &req_fw_dl); if (ret < 0) goto err; pr_debug("%s: data uploaded=%d\n", __func__, i); } } /* firmware loaded, request boot */ req.cmd = CMD_FW_BOOT; ret = af9035_ctrl_msg(udev, &req); if (ret < 0) goto err; /* ensure firmware starts */ wbuf[0] = 1; ret = af9035_ctrl_msg(udev, &req_fw_ver); if (ret < 0) goto err; if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) { info("firmware did not run"); ret = -ENODEV; goto err; } info("firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2], rbuf[3]); return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } /* abuse that callback as there is no better one for reading eeprom */ static int af9035_read_mac_address(struct dvb_usb_device *d, u8 mac[6]) { struct state *state = d->priv; int ret, i, eeprom_shift = 0; u8 tmp; u16 tmp16; /* check if there is dual tuners */ ret = af9035_rd_reg(d, EEPROM_DUAL_MODE, &tmp); if (ret < 0) goto err; state->dual_mode = tmp; pr_debug("%s: dual mode=%d\n", __func__, state->dual_mode); for (i = 0; i < af9035_properties[0].num_adapters; i++) { /* tuner */ ret = af9035_rd_reg(d, EEPROM_1_TUNER_ID + eeprom_shift, &tmp); if (ret < 0) goto err; state->af9033_config[i].tuner = tmp; pr_debug("%s: [%d]tuner=%02x\n", __func__, i, tmp); switch (tmp) { case AF9033_TUNER_TUA9001: case AF9033_TUNER_FC0011: case AF9033_TUNER_MXL5007T: case AF9033_TUNER_TDA18218: state->af9033_config[i].spec_inv = 1; break; default: state->hw_not_supported = true; warn("tuner ID=%02x not supported, please report!", tmp); }; /* tuner IF frequency */ ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_L + eeprom_shift, &tmp); if (ret < 0) goto err; tmp16 = tmp; ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_H + eeprom_shift, &tmp); if (ret < 0) goto err; tmp16 |= tmp << 8; pr_debug("%s: [%d]IF=%d\n", __func__, i, tmp16); eeprom_shift = 0x10; /* shift for the 2nd tuner params */ } /* get demod clock */ ret = af9035_rd_reg(d, 0x00d800, &tmp); if (ret < 0) goto err; tmp = (tmp >> 0) & 0x0f; for (i = 0; i < af9035_properties[0].num_adapters; i++) state->af9033_config[i].clock = clock_lut[tmp]; ret = af9035_rd_reg(d, EEPROM_IR_MODE, &tmp); if (ret < 0) goto err; pr_debug("%s: ir_mode=%02x\n", __func__, tmp); /* don't activate rc if in HID mode or if not available */ if (tmp == 5) { ret = af9035_rd_reg(d, EEPROM_IR_TYPE, &tmp); if (ret < 0) goto err; pr_debug("%s: ir_type=%02x\n", __func__, tmp); switch (tmp) { case 0: /* NEC */ default: d->props.rc.core.protocol = RC_TYPE_NEC; d->props.rc.core.allowed_protos = RC_TYPE_NEC; break; case 1: /* RC6 */ d->props.rc.core.protocol = RC_TYPE_RC6; d->props.rc.core.allowed_protos = RC_TYPE_RC6; break; } d->props.rc.core.rc_query = af9035_rc_query; } return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } /* abuse that callback as there is no better one for reading eeprom */ static int af9035_read_mac_address_it9135(struct dvb_usb_device *d, u8 mac[6]) { struct state *state = d->priv; int ret, i; u8 tmp; state->dual_mode = false; /* get demod clock */ ret = af9035_rd_reg(d, 0x00d800, &tmp); if (ret < 0) goto err; tmp = (tmp >> 0) & 0x0f; for (i = 0; i < af9035_properties[0].num_adapters; i++) state->af9033_config[i].clock = clock_lut_it9135[tmp]; return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { int ret; switch (cmd) { case FC0011_FE_CALLBACK_POWER: /* Tuner enable */ ret = af9035_wr_reg_mask(d, 0xd8eb, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ec, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ed, 1, 1); if (ret < 0) goto err; /* LED */ ret = af9035_wr_reg_mask(d, 0xd8d0, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8d1, 1, 1); if (ret < 0) goto err; usleep_range(10000, 50000); break; case FC0011_FE_CALLBACK_RESET: ret = af9035_wr_reg(d, 0xd8e9, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0xd8e8, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0xd8e7, 1); if (ret < 0) goto err; usleep_range(10000, 20000); ret = af9035_wr_reg(d, 0xd8e7, 0); if (ret < 0) goto err; usleep_range(10000, 20000); break; default: ret = -EINVAL; goto err; } return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { struct state *state = d->priv; switch (state->af9033_config[0].tuner) { case AF9033_TUNER_FC0011: return af9035_fc0011_tuner_callback(d, cmd, arg); default: break; } return -ENODEV; } static int af9035_frontend_callback(void *adapter_priv, int component, int cmd, int arg) { struct i2c_adapter *adap = adapter_priv; struct dvb_usb_device *d = i2c_get_adapdata(adap); switch (component) { case DVB_FRONTEND_COMPONENT_TUNER: return af9035_tuner_callback(d, cmd, arg); default: break; } return -EINVAL; } static int af9035_frontend_attach(struct dvb_usb_adapter *adap) { struct state *state = adap->dev->priv; int ret; if (state->hw_not_supported) { ret = -ENODEV; goto err; } if (adap->id == 0) { state->af9033_config[0].ts_mode = AF9033_TS_MODE_USB; state->af9033_config[1].ts_mode = AF9033_TS_MODE_SERIAL; ret = af9035_wr_reg(adap->dev, 0x00417f, state->af9033_config[1].i2c_addr); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d81a, state->dual_mode); if (ret < 0) goto err; } /* attach demodulator */ adap->fe_adap[0].fe = dvb_attach(af9033_attach, &state->af9033_config[adap->id], &adap->dev->i2c_adap); if (adap->fe_adap[0].fe == NULL) { ret = -ENODEV; goto err; } /* disable I2C-gate */ adap->fe_adap[0].fe->ops.i2c_gate_ctrl = NULL; adap->fe_adap[0].fe->callback = af9035_frontend_callback; return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } static struct tua9001_config af9035_tua9001_config = { .i2c_addr = 0x60, }; static const struct fc0011_config af9035_fc0011_config = { .i2c_address = 0x60, }; static struct mxl5007t_config af9035_mxl5007t_config = { .xtal_freq_hz = MxL_XTAL_24_MHZ, .if_freq_hz = MxL_IF_4_57_MHZ, .invert_if = 0, .loop_thru_enable = 0, .clk_out_enable = 0, .clk_out_amp = MxL_CLKOUT_AMP_0_94V, }; static struct tda18218_config af9035_tda18218_config = { .i2c_address = 0x60, .i2c_wr_max = 21, }; static int af9035_tuner_attach(struct dvb_usb_adapter *adap) { struct state *state = adap->dev->priv; int ret; struct dvb_frontend *fe; switch (state->af9033_config[adap->id].tuner) { case AF9033_TUNER_TUA9001: /* AF9035 gpiot3 = TUA9001 RESETN AF9035 gpiot2 = TUA9001 RXEN */ /* configure gpiot2 and gpiot2 as output */ ret = af9035_wr_reg_mask(adap->dev, 0x00d8ec, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(adap->dev, 0x00d8ed, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(adap->dev, 0x00d8e8, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(adap->dev, 0x00d8e9, 0x01, 0x01); if (ret < 0) goto err; /* reset tuner */ ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x00, 0x01); if (ret < 0) goto err; usleep_range(2000, 20000); ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x01, 0x01); if (ret < 0) goto err; /* activate tuner RX */ /* TODO: use callback for TUA9001 RXEN */ ret = af9035_wr_reg_mask(adap->dev, 0x00d8eb, 0x01, 0x01); if (ret < 0) goto err; /* attach tuner */ fe = dvb_attach(tua9001_attach, adap->fe_adap[0].fe, &adap->dev->i2c_adap, &af9035_tua9001_config); break; case AF9033_TUNER_FC0011: fe = dvb_attach(fc0011_attach, adap->fe_adap[0].fe, &adap->dev->i2c_adap, &af9035_fc0011_config); break; case AF9033_TUNER_MXL5007T: ret = af9035_wr_reg(adap->dev, 0x00d8e0, 1); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d8e1, 1); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d8df, 0); if (ret < 0) goto err; msleep(30); ret = af9035_wr_reg(adap->dev, 0x00d8df, 1); if (ret < 0) goto err; msleep(300); ret = af9035_wr_reg(adap->dev, 0x00d8c0, 1); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d8c1, 1); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d8bf, 0); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d8b4, 1); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d8b5, 1); if (ret < 0) goto err; ret = af9035_wr_reg(adap->dev, 0x00d8b3, 1); if (ret < 0) goto err; /* attach tuner */ fe = dvb_attach(mxl5007t_attach, adap->fe_adap[0].fe, &adap->dev->i2c_adap, 0x60, &af9035_mxl5007t_config); break; case AF9033_TUNER_TDA18218: /* attach tuner */ fe = dvb_attach(tda18218_attach, adap->fe_adap[0].fe, &adap->dev->i2c_adap, &af9035_tda18218_config); break; default: fe = NULL; } if (fe == NULL) { ret = -ENODEV; goto err; } return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } enum af9035_id_entry { AF9035_15A4_9035, AF9035_15A4_1001, AF9035_0CCD_0093, AF9035_07CA_A835, AF9035_07CA_B835, AF9035_07CA_1867, AF9035_07CA_A867, AF9035_07CA_0825, }; static struct usb_device_id af9035_id[] = { [AF9035_15A4_9035] = { USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035)}, [AF9035_15A4_1001] = { USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_2)}, [AF9035_0CCD_0093] = { USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK)}, [AF9035_07CA_A835] = { USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835)}, [AF9035_07CA_B835] = { USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_B835)}, [AF9035_07CA_1867] = { USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_1867)}, [AF9035_07CA_A867] = { USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A867)}, [AF9035_07CA_0825] = { USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TWINSTAR)}, {}, }; MODULE_DEVICE_TABLE(usb, af9035_id); static struct dvb_usb_device_properties af9035_properties[] = { { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .download_firmware = af9035_download_firmware, .firmware = "dvb-usb-af9035-02.fw", .no_reconnect = 1, .size_of_priv = sizeof(struct state), .num_adapters = 1, .adapter = { { .num_frontends = 1, .fe = { { .frontend_attach = af9035_frontend_attach, .tuner_attach = af9035_tuner_attach, .stream = { .type = USB_BULK, .count = 6, .endpoint = 0x84, .u = { .bulk = { .buffersize = (87 * 188), } } } } } } }, .identify_state = af9035_identify_state, .read_mac_address = af9035_read_mac_address, .i2c_algo = &af9035_i2c_algo, .rc.core = { .protocol = RC_TYPE_UNKNOWN, .module_name = "af9035", .rc_query = NULL, .rc_interval = AF9035_POLL, .allowed_protos = RC_TYPE_UNKNOWN, .rc_codes = RC_MAP_EMPTY, }, .num_device_descs = 5, .devices = { { .name = "Afatech AF9035 reference design", .cold_ids = { &af9035_id[AF9035_15A4_9035], &af9035_id[AF9035_15A4_1001], }, }, { .name = "TerraTec Cinergy T Stick", .cold_ids = { &af9035_id[AF9035_0CCD_0093], }, }, { .name = "AVerMedia AVerTV Volar HD/PRO (A835)", .cold_ids = { &af9035_id[AF9035_07CA_A835], &af9035_id[AF9035_07CA_B835], }, }, { .name = "AVerMedia HD Volar (A867)", .cold_ids = { &af9035_id[AF9035_07CA_1867], &af9035_id[AF9035_07CA_A867], }, }, { .name = "AVerMedia Twinstar (A825)", .cold_ids = { &af9035_id[AF9035_07CA_0825], }, }, } }, { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .download_firmware = af9035_download_firmware_it9135, .firmware = "dvb-usb-it9135-01.fw", .no_reconnect = 1, .size_of_priv = sizeof(struct state), .num_adapters = 1, .adapter = { { .num_frontends = 1, .fe = { { .frontend_attach = af9035_frontend_attach, .tuner_attach = af9035_tuner_attach, .stream = { .type = USB_BULK, .count = 6, .endpoint = 0x84, .u = { .bulk = { .buffersize = (87 * 188), } } } } } } }, .identify_state = af9035_identify_state, .read_mac_address = af9035_read_mac_address_it9135, .i2c_algo = &af9035_i2c_algo, .num_device_descs = 0, /* disabled as no support for IT9135 */ .devices = { { .name = "ITE Tech. IT9135 reference design", }, } }, }; static int af9035_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { int ret, i; struct dvb_usb_device *d = NULL; struct usb_device *udev; bool found; pr_debug("%s: interface=%d\n", __func__, intf->cur_altsetting->desc.bInterfaceNumber); /* interface 0 is used by DVB-T receiver and interface 1 is for remote controller (HID) */ if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return 0; /* Dynamic USB ID support. Replaces first device ID with current one. */ udev = interface_to_usbdev(intf); for (i = 0, found = false; i < ARRAY_SIZE(af9035_id) - 1; i++) { if (af9035_id[i].idVendor == le16_to_cpu(udev->descriptor.idVendor) && af9035_id[i].idProduct == le16_to_cpu(udev->descriptor.idProduct)) { found = true; break; } } if (!found) { pr_debug("%s: using dynamic ID %04x:%04x\n", __func__, le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct)); af9035_properties[0].devices[0].cold_ids[0]->idVendor = le16_to_cpu(udev->descriptor.idVendor); af9035_properties[0].devices[0].cold_ids[0]->idProduct = le16_to_cpu(udev->descriptor.idProduct); } for (i = 0; i < af9035_properties_count; i++) { ret = dvb_usb_device_init(intf, &af9035_properties[i], THIS_MODULE, &d, adapter_nr); if (ret == -ENODEV) continue; else break; } if (ret < 0) goto err; if (d) { ret = af9035_init(d); if (ret < 0) goto err; } return 0; err: pr_debug("%s: failed=%d\n", __func__, ret); return ret; } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver af9035_usb_driver = { .name = "dvb_usb_af9035", .probe = af9035_usb_probe, .disconnect = dvb_usb_device_exit, .id_table = af9035_id, }; module_usb_driver(af9035_usb_driver); MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("Afatech AF9035 driver"); MODULE_LICENSE("GPL");