/* * Helper routines for R-Car sound ADG. * * Copyright (C) 2013 Kuninori Morimoto * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include "rsnd.h" #define CLKA 0 #define CLKB 1 #define CLKC 2 #define CLKI 3 #define CLKMAX 4 #define CLKOUT 0 #define CLKOUT1 1 #define CLKOUT2 2 #define CLKOUT3 3 #define CLKOUTMAX 4 #define BRRx_MASK(x) (0x3FF & x) static struct rsnd_mod_ops adg_ops = { .name = "adg", }; struct rsnd_adg { struct clk *clk[CLKMAX]; struct clk *clkout[CLKOUTMAX]; struct clk_onecell_data onecell; struct rsnd_mod mod; int rbga_rate_for_441khz; /* RBGA */ int rbgb_rate_for_48khz; /* RBGB */ }; #define for_each_rsnd_clk(pos, adg, i) \ for (i = 0; \ (i < CLKMAX) && \ ((pos) = adg->clk[i]); \ i++) #define for_each_rsnd_clkout(pos, adg, i) \ for (i = 0; \ (i < CLKOUTMAX) && \ ((pos) = adg->clkout[i]); \ i++) #define rsnd_priv_to_adg(priv) ((struct rsnd_adg *)(priv)->adg) static u32 rsnd_adg_calculate_rbgx(unsigned long div) { int i, ratio; if (!div) return 0; for (i = 3; i >= 0; i--) { ratio = 2 << (i * 2); if (0 == (div % ratio)) return (u32)((i << 8) | ((div / ratio) - 1)); } return ~0; } static u32 rsnd_adg_ssi_ws_timing_gen2(struct rsnd_dai_stream *io) { struct rsnd_mod *mod = rsnd_io_to_mod_ssi(io); struct rsnd_priv *priv = rsnd_mod_to_priv(mod); int id = rsnd_mod_id(mod); int ws = id; if (rsnd_ssi_is_pin_sharing(rsnd_ssi_mod_get(priv, id))) { switch (id) { case 1: case 2: ws = 0; break; case 4: ws = 3; break; case 8: ws = 7; break; } } return (0x6 + ws) << 8; } int rsnd_adg_set_cmd_timsel_gen2(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); int id = rsnd_mod_id(mod); int shift = (id % 2) ? 16 : 0; u32 mask, val; val = rsnd_adg_ssi_ws_timing_gen2(io); val = val << shift; mask = 0xffff << shift; rsnd_mod_bset(adg_mod, CMDOUT_TIMSEL, mask, val); return 0; } static int rsnd_adg_set_src_timsel_gen2(struct rsnd_mod *src_mod, struct rsnd_dai_stream *io, u32 timsel) { struct rsnd_priv *priv = rsnd_mod_to_priv(src_mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); int is_play = rsnd_io_is_play(io); int id = rsnd_mod_id(src_mod); int shift = (id % 2) ? 16 : 0; u32 mask, ws; u32 in, out; rsnd_mod_confirm_src(src_mod); ws = rsnd_adg_ssi_ws_timing_gen2(io); in = (is_play) ? timsel : ws; out = (is_play) ? ws : timsel; in = in << shift; out = out << shift; mask = 0xffff << shift; switch (id / 2) { case 0: rsnd_mod_bset(adg_mod, SRCIN_TIMSEL0, mask, in); rsnd_mod_bset(adg_mod, SRCOUT_TIMSEL0, mask, out); break; case 1: rsnd_mod_bset(adg_mod, SRCIN_TIMSEL1, mask, in); rsnd_mod_bset(adg_mod, SRCOUT_TIMSEL1, mask, out); break; case 2: rsnd_mod_bset(adg_mod, SRCIN_TIMSEL2, mask, in); rsnd_mod_bset(adg_mod, SRCOUT_TIMSEL2, mask, out); break; case 3: rsnd_mod_bset(adg_mod, SRCIN_TIMSEL3, mask, in); rsnd_mod_bset(adg_mod, SRCOUT_TIMSEL3, mask, out); break; case 4: rsnd_mod_bset(adg_mod, SRCIN_TIMSEL4, mask, in); rsnd_mod_bset(adg_mod, SRCOUT_TIMSEL4, mask, out); break; } return 0; } int rsnd_adg_set_convert_clk_gen2(struct rsnd_mod *src_mod, struct rsnd_dai_stream *io, unsigned int src_rate, unsigned int dst_rate) { struct rsnd_priv *priv = rsnd_mod_to_priv(src_mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); struct device *dev = rsnd_priv_to_dev(priv); int idx, sel, div, step, ret; u32 val, en; unsigned int min, diff; unsigned int sel_rate [] = { clk_get_rate(adg->clk[CLKA]), /* 0000: CLKA */ clk_get_rate(adg->clk[CLKB]), /* 0001: CLKB */ clk_get_rate(adg->clk[CLKC]), /* 0010: CLKC */ adg->rbga_rate_for_441khz, /* 0011: RBGA */ adg->rbgb_rate_for_48khz, /* 0100: RBGB */ }; rsnd_mod_confirm_src(src_mod); min = ~0; val = 0; en = 0; for (sel = 0; sel < ARRAY_SIZE(sel_rate); sel++) { idx = 0; step = 2; if (!sel_rate[sel]) continue; for (div = 2; div <= 98304; div += step) { diff = abs(src_rate - sel_rate[sel] / div); if (min > diff) { val = (sel << 8) | idx; min = diff; en = 1 << (sel + 1); /* fixme */ } /* * step of 0_0000 / 0_0001 / 0_1101 * are out of order */ if ((idx > 2) && (idx % 2)) step *= 2; if (idx == 0x1c) { div += step; step *= 2; } idx++; } } if (min == ~0) { dev_err(dev, "no Input clock\n"); return -EIO; } ret = rsnd_adg_set_src_timsel_gen2(src_mod, io, val); if (ret < 0) { dev_err(dev, "timsel error\n"); return ret; } rsnd_mod_bset(adg_mod, DIV_EN, en, en); dev_dbg(dev, "convert rate %d <-> %d\n", src_rate, dst_rate); return 0; } int rsnd_adg_set_convert_timing_gen2(struct rsnd_mod *src_mod, struct rsnd_dai_stream *io) { u32 val = rsnd_adg_ssi_ws_timing_gen2(io); rsnd_mod_confirm_src(src_mod); return rsnd_adg_set_src_timsel_gen2(src_mod, io, val); } int rsnd_adg_set_convert_clk_gen1(struct rsnd_priv *priv, struct rsnd_mod *mod, unsigned int src_rate, unsigned int dst_rate) { struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); struct device *dev = rsnd_priv_to_dev(priv); int idx, sel, div, shift; u32 mask, val; int id = rsnd_mod_id(mod); unsigned int sel_rate [] = { clk_get_rate(adg->clk[CLKA]), /* 000: CLKA */ clk_get_rate(adg->clk[CLKB]), /* 001: CLKB */ clk_get_rate(adg->clk[CLKC]), /* 010: CLKC */ 0, /* 011: MLBCLK (not used) */ adg->rbga_rate_for_441khz, /* 100: RBGA */ adg->rbgb_rate_for_48khz, /* 101: RBGB */ }; /* find div (= 1/128, 1/256, 1/512, 1/1024, 1/2048 */ for (sel = 0; sel < ARRAY_SIZE(sel_rate); sel++) { for (div = 128, idx = 0; div <= 2048; div *= 2, idx++) { if (src_rate == sel_rate[sel] / div) { val = (idx << 4) | sel; goto find_rate; } } } dev_err(dev, "can't find convert src clk\n"); return -EINVAL; find_rate: shift = (id % 4) * 8; mask = 0xFF << shift; val = val << shift; dev_dbg(dev, "adg convert src clk = %02x\n", val); switch (id / 4) { case 0: rsnd_mod_bset(adg_mod, AUDIO_CLK_SEL3, mask, val); break; case 1: rsnd_mod_bset(adg_mod, AUDIO_CLK_SEL4, mask, val); break; case 2: rsnd_mod_bset(adg_mod, AUDIO_CLK_SEL5, mask, val); break; } /* * Gen1 doesn't need dst_rate settings, * since it uses SSI WS pin. * see also rsnd_src_set_route_if_gen1() */ return 0; } static void rsnd_adg_set_ssi_clk(struct rsnd_mod *ssi_mod, u32 val) { struct rsnd_priv *priv = rsnd_mod_to_priv(ssi_mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct rsnd_mod *adg_mod = rsnd_mod_get(adg); int id = rsnd_mod_id(ssi_mod); int shift = (id % 4) * 8; u32 mask = 0xFF << shift; rsnd_mod_confirm_ssi(ssi_mod); val = val << shift; /* * SSI 8 is not connected to ADG. * it works with SSI 7 */ if (id == 8) return; switch (id / 4) { case 0: rsnd_mod_bset(adg_mod, AUDIO_CLK_SEL0, mask, val); break; case 1: rsnd_mod_bset(adg_mod, AUDIO_CLK_SEL1, mask, val); break; case 2: rsnd_mod_bset(adg_mod, AUDIO_CLK_SEL2, mask, val); break; } } int rsnd_adg_ssi_clk_stop(struct rsnd_mod *mod) { /* * "mod" = "ssi" here. * we can get "ssi id" from mod */ rsnd_adg_set_ssi_clk(mod, 0); return 0; } int rsnd_adg_ssi_clk_try_start(struct rsnd_mod *mod, unsigned int rate) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); struct rsnd_adg *adg = rsnd_priv_to_adg(priv); struct device *dev = rsnd_priv_to_dev(priv); struct clk *clk; int i; u32 data; int sel_table[] = { [CLKA] = 0x1, [CLKB] = 0x2, [CLKC] = 0x3, [CLKI] = 0x0, }; dev_dbg(dev, "request clock = %d\n", rate); /* * find suitable clock from * AUDIO_CLKA/AUDIO_CLKB/AUDIO_CLKC/AUDIO_CLKI. */ data = 0; for_each_rsnd_clk(clk, adg, i) { if (rate == clk_get_rate(clk)) { data = sel_table[i]; goto found_clock; } } /* * find divided clock from BRGA/BRGB */ if (rate == adg->rbga_rate_for_441khz) { data = 0x10; goto found_clock; } if (rate == adg->rbgb_rate_for_48khz) { data = 0x20; goto found_clock; } return -EIO; found_clock: /* * This "mod" = "ssi" here. * we can get "ssi id" from mod */ rsnd_adg_set_ssi_clk(mod, data); dev_dbg(dev, "ADG: %s[%d] selects 0x%x for %d\n", rsnd_mod_name(mod), rsnd_mod_id(mod), data, rate); return 0; } static void rsnd_adg_get_clkin(struct rsnd_priv *priv, struct rsnd_adg *adg) { struct device *dev = rsnd_priv_to_dev(priv); struct clk *clk; static const char * const clk_name[] = { [CLKA] = "clk_a", [CLKB] = "clk_b", [CLKC] = "clk_c", [CLKI] = "clk_i", }; int i; for (i = 0; i < CLKMAX; i++) { clk = devm_clk_get(dev, clk_name[i]); adg->clk[i] = IS_ERR(clk) ? NULL : clk; } for_each_rsnd_clk(clk, adg, i) dev_dbg(dev, "clk %d : %p : %ld\n", i, clk, clk_get_rate(clk)); } static void rsnd_adg_get_clkout(struct rsnd_priv *priv, struct rsnd_adg *adg) { struct clk *clk; struct rsnd_mod *adg_mod = rsnd_mod_get(adg); struct device *dev = rsnd_priv_to_dev(priv); struct device_node *np = dev->of_node; u32 ckr, rbgx, rbga, rbgb; u32 rate, req_rate, div; uint32_t count = 0; unsigned long req_48kHz_rate, req_441kHz_rate; int i; const char *parent_clk_name = NULL; static const char * const clkout_name[] = { [CLKOUT] = "audio_clkout", [CLKOUT1] = "audio_clkout1", [CLKOUT2] = "audio_clkout2", [CLKOUT3] = "audio_clkout3", }; int brg_table[] = { [CLKA] = 0x0, [CLKB] = 0x1, [CLKC] = 0x4, [CLKI] = 0x2, }; of_property_read_u32(np, "#clock-cells", &count); /* * ADG supports BRRA/BRRB output only * this means all clkout0/1/2/3 will be same rate */ of_property_read_u32(np, "clock-frequency", &req_rate); req_48kHz_rate = 0; req_441kHz_rate = 0; if (0 == (req_rate % 44100)) req_441kHz_rate = req_rate; if (0 == (req_rate % 48000)) req_48kHz_rate = req_rate; /* * This driver is assuming that AUDIO_CLKA/AUDIO_CLKB/AUDIO_CLKC * have 44.1kHz or 48kHz base clocks for now. * * SSI itself can divide parent clock by 1/1 - 1/16 * see * rsnd_adg_ssi_clk_try_start() * rsnd_ssi_master_clk_start() */ ckr = 0; rbga = 2; /* default 1/6 */ rbgb = 2; /* default 1/6 */ adg->rbga_rate_for_441khz = 0; adg->rbgb_rate_for_48khz = 0; for_each_rsnd_clk(clk, adg, i) { rate = clk_get_rate(clk); if (0 == rate) /* not used */ continue; /* RBGA */ if (!adg->rbga_rate_for_441khz && (0 == rate % 44100)) { div = 6; if (req_441kHz_rate) div = rate / req_441kHz_rate; rbgx = rsnd_adg_calculate_rbgx(div); if (BRRx_MASK(rbgx) == rbgx) { rbga = rbgx; adg->rbga_rate_for_441khz = rate / div; ckr |= brg_table[i] << 20; if (req_441kHz_rate) parent_clk_name = __clk_get_name(clk); } } /* RBGB */ if (!adg->rbgb_rate_for_48khz && (0 == rate % 48000)) { div = 6; if (req_48kHz_rate) div = rate / req_48kHz_rate; rbgx = rsnd_adg_calculate_rbgx(div); if (BRRx_MASK(rbgx) == rbgx) { rbgb = rbgx; adg->rbgb_rate_for_48khz = rate / div; ckr |= brg_table[i] << 16; if (req_48kHz_rate) { parent_clk_name = __clk_get_name(clk); ckr |= 0x80000000; } } } } /* * ADG supports BRRA/BRRB output only. * this means all clkout0/1/2/3 will be * same rate */ /* * for clkout */ if (!count) { clk = clk_register_fixed_rate(dev, clkout_name[i], parent_clk_name, (parent_clk_name) ? 0 : CLK_IS_ROOT, req_rate); if (!IS_ERR(clk)) { adg->clkout[CLKOUT] = clk; of_clk_add_provider(np, of_clk_src_simple_get, clk); } } /* * for clkout0/1/2/3 */ else { for (i = 0; i < CLKOUTMAX; i++) { clk = clk_register_fixed_rate(dev, clkout_name[i], parent_clk_name, (parent_clk_name) ? 0 : CLK_IS_ROOT, req_rate); if (!IS_ERR(clk)) { adg->onecell.clks = adg->clkout; adg->onecell.clk_num = CLKOUTMAX; adg->clkout[i] = clk; of_clk_add_provider(np, of_clk_src_onecell_get, &adg->onecell); } } } rsnd_mod_bset(adg_mod, SSICKR, 0x00FF0000, ckr); rsnd_mod_write(adg_mod, BRRA, rbga); rsnd_mod_write(adg_mod, BRRB, rbgb); for_each_rsnd_clkout(clk, adg, i) dev_dbg(dev, "clkout %d : %p : %ld\n", i, clk, clk_get_rate(clk)); dev_dbg(dev, "SSICKR = 0x%08x, BRRA/BRRB = 0x%x/0x%x\n", ckr, rbga, rbgb); } int rsnd_adg_probe(struct platform_device *pdev, const struct rsnd_of_data *of_data, struct rsnd_priv *priv) { struct rsnd_adg *adg; struct device *dev = rsnd_priv_to_dev(priv); adg = devm_kzalloc(dev, sizeof(*adg), GFP_KERNEL); if (!adg) { dev_err(dev, "ADG allocate failed\n"); return -ENOMEM; } /* * ADG is special module. * Use ADG mod without rsnd_mod_init() to make debug easy * for rsnd_write/rsnd_read */ adg->mod.ops = &adg_ops; adg->mod.priv = priv; rsnd_adg_get_clkin(priv, adg); rsnd_adg_get_clkout(priv, adg); priv->adg = adg; return 0; }