// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018 Facebook */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../tools/lib/bpf/relo_core.h" /* BTF (BPF Type Format) is the meta data format which describes * the data types of BPF program/map. Hence, it basically focus * on the C programming language which the modern BPF is primary * using. * * ELF Section: * ~~~~~~~~~~~ * The BTF data is stored under the ".BTF" ELF section * * struct btf_type: * ~~~~~~~~~~~~~~~ * Each 'struct btf_type' object describes a C data type. * Depending on the type it is describing, a 'struct btf_type' * object may be followed by more data. F.e. * To describe an array, 'struct btf_type' is followed by * 'struct btf_array'. * * 'struct btf_type' and any extra data following it are * 4 bytes aligned. * * Type section: * ~~~~~~~~~~~~~ * The BTF type section contains a list of 'struct btf_type' objects. * Each one describes a C type. Recall from the above section * that a 'struct btf_type' object could be immediately followed by extra * data in order to describe some particular C types. * * type_id: * ~~~~~~~ * Each btf_type object is identified by a type_id. The type_id * is implicitly implied by the location of the btf_type object in * the BTF type section. The first one has type_id 1. The second * one has type_id 2...etc. Hence, an earlier btf_type has * a smaller type_id. * * A btf_type object may refer to another btf_type object by using * type_id (i.e. the "type" in the "struct btf_type"). * * NOTE that we cannot assume any reference-order. * A btf_type object can refer to an earlier btf_type object * but it can also refer to a later btf_type object. * * For example, to describe "const void *". A btf_type * object describing "const" may refer to another btf_type * object describing "void *". This type-reference is done * by specifying type_id: * * [1] CONST (anon) type_id=2 * [2] PTR (anon) type_id=0 * * The above is the btf_verifier debug log: * - Each line started with "[?]" is a btf_type object * - [?] is the type_id of the btf_type object. * - CONST/PTR is the BTF_KIND_XXX * - "(anon)" is the name of the type. It just * happens that CONST and PTR has no name. * - type_id=XXX is the 'u32 type' in btf_type * * NOTE: "void" has type_id 0 * * String section: * ~~~~~~~~~~~~~~ * The BTF string section contains the names used by the type section. * Each string is referred by an "offset" from the beginning of the * string section. * * Each string is '\0' terminated. * * The first character in the string section must be '\0' * which is used to mean 'anonymous'. Some btf_type may not * have a name. */ /* BTF verification: * * To verify BTF data, two passes are needed. * * Pass #1 * ~~~~~~~ * The first pass is to collect all btf_type objects to * an array: "btf->types". * * Depending on the C type that a btf_type is describing, * a btf_type may be followed by extra data. We don't know * how many btf_type is there, and more importantly we don't * know where each btf_type is located in the type section. * * Without knowing the location of each type_id, most verifications * cannot be done. e.g. an earlier btf_type may refer to a later * btf_type (recall the "const void *" above), so we cannot * check this type-reference in the first pass. * * In the first pass, it still does some verifications (e.g. * checking the name is a valid offset to the string section). * * Pass #2 * ~~~~~~~ * The main focus is to resolve a btf_type that is referring * to another type. * * We have to ensure the referring type: * 1) does exist in the BTF (i.e. in btf->types[]) * 2) does not cause a loop: * struct A { * struct B b; * }; * * struct B { * struct A a; * }; * * btf_type_needs_resolve() decides if a btf_type needs * to be resolved. * * The needs_resolve type implements the "resolve()" ops which * essentially does a DFS and detects backedge. * * During resolve (or DFS), different C types have different * "RESOLVED" conditions. * * When resolving a BTF_KIND_STRUCT, we need to resolve all its * members because a member is always referring to another * type. A struct's member can be treated as "RESOLVED" if * it is referring to a BTF_KIND_PTR. Otherwise, the * following valid C struct would be rejected: * * struct A { * int m; * struct A *a; * }; * * When resolving a BTF_KIND_PTR, it needs to keep resolving if * it is referring to another BTF_KIND_PTR. Otherwise, we cannot * detect a pointer loop, e.g.: * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + * ^ | * +-----------------------------------------+ * */ #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) #define BITS_ROUNDUP_BYTES(bits) \ (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) #define BTF_INFO_MASK 0x9f00ffff #define BTF_INT_MASK 0x0fffffff #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) /* 16MB for 64k structs and each has 16 members and * a few MB spaces for the string section. * The hard limit is S32_MAX. */ #define BTF_MAX_SIZE (16 * 1024 * 1024) #define for_each_member_from(i, from, struct_type, member) \ for (i = from, member = btf_type_member(struct_type) + from; \ i < btf_type_vlen(struct_type); \ i++, member++) #define for_each_vsi_from(i, from, struct_type, member) \ for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ i < btf_type_vlen(struct_type); \ i++, member++) DEFINE_IDR(btf_idr); DEFINE_SPINLOCK(btf_idr_lock); enum btf_kfunc_hook { BTF_KFUNC_HOOK_COMMON, BTF_KFUNC_HOOK_XDP, BTF_KFUNC_HOOK_TC, BTF_KFUNC_HOOK_STRUCT_OPS, BTF_KFUNC_HOOK_TRACING, BTF_KFUNC_HOOK_SYSCALL, BTF_KFUNC_HOOK_FMODRET, BTF_KFUNC_HOOK_CGROUP_SKB, BTF_KFUNC_HOOK_SCHED_ACT, BTF_KFUNC_HOOK_SK_SKB, BTF_KFUNC_HOOK_SOCKET_FILTER, BTF_KFUNC_HOOK_LWT, BTF_KFUNC_HOOK_NETFILTER, BTF_KFUNC_HOOK_MAX, }; enum { BTF_KFUNC_SET_MAX_CNT = 256, BTF_DTOR_KFUNC_MAX_CNT = 256, BTF_KFUNC_FILTER_MAX_CNT = 16, }; struct btf_kfunc_hook_filter { btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; u32 nr_filters; }; struct btf_kfunc_set_tab { struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; }; struct btf_id_dtor_kfunc_tab { u32 cnt; struct btf_id_dtor_kfunc dtors[]; }; struct btf { void *data; struct btf_type **types; u32 *resolved_ids; u32 *resolved_sizes; const char *strings; void *nohdr_data; struct btf_header hdr; u32 nr_types; /* includes VOID for base BTF */ u32 types_size; u32 data_size; refcount_t refcnt; u32 id; struct rcu_head rcu; struct btf_kfunc_set_tab *kfunc_set_tab; struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; struct btf_struct_metas *struct_meta_tab; /* split BTF support */ struct btf *base_btf; u32 start_id; /* first type ID in this BTF (0 for base BTF) */ u32 start_str_off; /* first string offset (0 for base BTF) */ char name[MODULE_NAME_LEN]; bool kernel_btf; }; enum verifier_phase { CHECK_META, CHECK_TYPE, }; struct resolve_vertex { const struct btf_type *t; u32 type_id; u16 next_member; }; enum visit_state { NOT_VISITED, VISITED, RESOLVED, }; enum resolve_mode { RESOLVE_TBD, /* To Be Determined */ RESOLVE_PTR, /* Resolving for Pointer */ RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union * or array */ }; #define MAX_RESOLVE_DEPTH 32 struct btf_sec_info { u32 off; u32 len; }; struct btf_verifier_env { struct btf *btf; u8 *visit_states; struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; struct bpf_verifier_log log; u32 log_type_id; u32 top_stack; enum verifier_phase phase; enum resolve_mode resolve_mode; }; static const char * const btf_kind_str[NR_BTF_KINDS] = { [BTF_KIND_UNKN] = "UNKNOWN", [BTF_KIND_INT] = "INT", [BTF_KIND_PTR] = "PTR", [BTF_KIND_ARRAY] = "ARRAY", [BTF_KIND_STRUCT] = "STRUCT", [BTF_KIND_UNION] = "UNION", [BTF_KIND_ENUM] = "ENUM", [BTF_KIND_FWD] = "FWD", [BTF_KIND_TYPEDEF] = "TYPEDEF", [BTF_KIND_VOLATILE] = "VOLATILE", [BTF_KIND_CONST] = "CONST", [BTF_KIND_RESTRICT] = "RESTRICT", [BTF_KIND_FUNC] = "FUNC", [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", [BTF_KIND_VAR] = "VAR", [BTF_KIND_DATASEC] = "DATASEC", [BTF_KIND_FLOAT] = "FLOAT", [BTF_KIND_DECL_TAG] = "DECL_TAG", [BTF_KIND_TYPE_TAG] = "TYPE_TAG", [BTF_KIND_ENUM64] = "ENUM64", }; const char *btf_type_str(const struct btf_type *t) { return btf_kind_str[BTF_INFO_KIND(t->info)]; } /* Chunk size we use in safe copy of data to be shown. */ #define BTF_SHOW_OBJ_SAFE_SIZE 32 /* * This is the maximum size of a base type value (equivalent to a * 128-bit int); if we are at the end of our safe buffer and have * less than 16 bytes space we can't be assured of being able * to copy the next type safely, so in such cases we will initiate * a new copy. */ #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 /* Type name size */ #define BTF_SHOW_NAME_SIZE 80 /* * The suffix of a type that indicates it cannot alias another type when * comparing BTF IDs for kfunc invocations. */ #define NOCAST_ALIAS_SUFFIX "___init" /* * Common data to all BTF show operations. Private show functions can add * their own data to a structure containing a struct btf_show and consult it * in the show callback. See btf_type_show() below. * * One challenge with showing nested data is we want to skip 0-valued * data, but in order to figure out whether a nested object is all zeros * we need to walk through it. As a result, we need to make two passes * when handling structs, unions and arrays; the first path simply looks * for nonzero data, while the second actually does the display. The first * pass is signalled by show->state.depth_check being set, and if we * encounter a non-zero value we set show->state.depth_to_show to * the depth at which we encountered it. When we have completed the * first pass, we will know if anything needs to be displayed if * depth_to_show > depth. See btf_[struct,array]_show() for the * implementation of this. * * Another problem is we want to ensure the data for display is safe to * access. To support this, the anonymous "struct {} obj" tracks the data * object and our safe copy of it. We copy portions of the data needed * to the object "copy" buffer, but because its size is limited to * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we * traverse larger objects for display. * * The various data type show functions all start with a call to * btf_show_start_type() which returns a pointer to the safe copy * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the * raw data itself). btf_show_obj_safe() is responsible for * using copy_from_kernel_nofault() to update the safe data if necessary * as we traverse the object's data. skbuff-like semantics are * used: * * - obj.head points to the start of the toplevel object for display * - obj.size is the size of the toplevel object * - obj.data points to the current point in the original data at * which our safe data starts. obj.data will advance as we copy * portions of the data. * * In most cases a single copy will suffice, but larger data structures * such as "struct task_struct" will require many copies. The logic in * btf_show_obj_safe() handles the logic that determines if a new * copy_from_kernel_nofault() is needed. */ struct btf_show { u64 flags; void *target; /* target of show operation (seq file, buffer) */ void (*showfn)(struct btf_show *show, const char *fmt, va_list args); const struct btf *btf; /* below are used during iteration */ struct { u8 depth; u8 depth_to_show; u8 depth_check; u8 array_member:1, array_terminated:1; u16 array_encoding; u32 type_id; int status; /* non-zero for error */ const struct btf_type *type; const struct btf_member *member; char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ } state; struct { u32 size; void *head; void *data; u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; } obj; }; struct btf_kind_operations { s32 (*check_meta)(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left); int (*resolve)(struct btf_verifier_env *env, const struct resolve_vertex *v); int (*check_member)(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type); int (*check_kflag_member)(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type); void (*log_details)(struct btf_verifier_env *env, const struct btf_type *t); void (*show)(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offsets, struct btf_show *show); }; static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; static struct btf_type btf_void; static int btf_resolve(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id); static int btf_func_check(struct btf_verifier_env *env, const struct btf_type *t); static bool btf_type_is_modifier(const struct btf_type *t) { /* Some of them is not strictly a C modifier * but they are grouped into the same bucket * for BTF concern: * A type (t) that refers to another * type through t->type AND its size cannot * be determined without following the t->type. * * ptr does not fall into this bucket * because its size is always sizeof(void *). */ switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_TYPEDEF: case BTF_KIND_VOLATILE: case BTF_KIND_CONST: case BTF_KIND_RESTRICT: case BTF_KIND_TYPE_TAG: return true; } return false; } bool btf_type_is_void(const struct btf_type *t) { return t == &btf_void; } static bool btf_type_is_fwd(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; } static bool btf_type_is_datasec(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; } static bool btf_type_is_decl_tag(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; } static bool btf_type_nosize(const struct btf_type *t) { return btf_type_is_void(t) || btf_type_is_fwd(t) || btf_type_is_func(t) || btf_type_is_func_proto(t) || btf_type_is_decl_tag(t); } static bool btf_type_nosize_or_null(const struct btf_type *t) { return !t || btf_type_nosize(t); } static bool btf_type_is_decl_tag_target(const struct btf_type *t) { return btf_type_is_func(t) || btf_type_is_struct(t) || btf_type_is_var(t) || btf_type_is_typedef(t); } u32 btf_nr_types(const struct btf *btf) { u32 total = 0; while (btf) { total += btf->nr_types; btf = btf->base_btf; } return total; } s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) { const struct btf_type *t; const char *tname; u32 i, total; total = btf_nr_types(btf); for (i = 1; i < total; i++) { t = btf_type_by_id(btf, i); if (BTF_INFO_KIND(t->info) != kind) continue; tname = btf_name_by_offset(btf, t->name_off); if (!strcmp(tname, name)) return i; } return -ENOENT; } s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) { struct btf *btf; s32 ret; int id; btf = bpf_get_btf_vmlinux(); if (IS_ERR(btf)) return PTR_ERR(btf); if (!btf) return -EINVAL; ret = btf_find_by_name_kind(btf, name, kind); /* ret is never zero, since btf_find_by_name_kind returns * positive btf_id or negative error. */ if (ret > 0) { btf_get(btf); *btf_p = btf; return ret; } /* If name is not found in vmlinux's BTF then search in module's BTFs */ spin_lock_bh(&btf_idr_lock); idr_for_each_entry(&btf_idr, btf, id) { if (!btf_is_module(btf)) continue; /* linear search could be slow hence unlock/lock * the IDR to avoiding holding it for too long */ btf_get(btf); spin_unlock_bh(&btf_idr_lock); ret = btf_find_by_name_kind(btf, name, kind); if (ret > 0) { *btf_p = btf; return ret; } btf_put(btf); spin_lock_bh(&btf_idr_lock); } spin_unlock_bh(&btf_idr_lock); return ret; } const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *t = btf_type_by_id(btf, id); while (btf_type_is_modifier(t)) { id = t->type; t = btf_type_by_id(btf, t->type); } if (res_id) *res_id = id; return t; } const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *t; t = btf_type_skip_modifiers(btf, id, NULL); if (!btf_type_is_ptr(t)) return NULL; return btf_type_skip_modifiers(btf, t->type, res_id); } const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *ptype; ptype = btf_type_resolve_ptr(btf, id, res_id); if (ptype && btf_type_is_func_proto(ptype)) return ptype; return NULL; } /* Types that act only as a source, not sink or intermediate * type when resolving. */ static bool btf_type_is_resolve_source_only(const struct btf_type *t) { return btf_type_is_var(t) || btf_type_is_decl_tag(t) || btf_type_is_datasec(t); } /* What types need to be resolved? * * btf_type_is_modifier() is an obvious one. * * btf_type_is_struct() because its member refers to * another type (through member->type). * * btf_type_is_var() because the variable refers to * another type. btf_type_is_datasec() holds multiple * btf_type_is_var() types that need resolving. * * btf_type_is_array() because its element (array->type) * refers to another type. Array can be thought of a * special case of struct while array just has the same * member-type repeated by array->nelems of times. */ static bool btf_type_needs_resolve(const struct btf_type *t) { return btf_type_is_modifier(t) || btf_type_is_ptr(t) || btf_type_is_struct(t) || btf_type_is_array(t) || btf_type_is_var(t) || btf_type_is_func(t) || btf_type_is_decl_tag(t) || btf_type_is_datasec(t); } /* t->size can be used */ static bool btf_type_has_size(const struct btf_type *t) { switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_INT: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_ENUM: case BTF_KIND_DATASEC: case BTF_KIND_FLOAT: case BTF_KIND_ENUM64: return true; } return false; } static const char *btf_int_encoding_str(u8 encoding) { if (encoding == 0) return "(none)"; else if (encoding == BTF_INT_SIGNED) return "SIGNED"; else if (encoding == BTF_INT_CHAR) return "CHAR"; else if (encoding == BTF_INT_BOOL) return "BOOL"; else return "UNKN"; } static u32 btf_type_int(const struct btf_type *t) { return *(u32 *)(t + 1); } static const struct btf_array *btf_type_array(const struct btf_type *t) { return (const struct btf_array *)(t + 1); } static const struct btf_enum *btf_type_enum(const struct btf_type *t) { return (const struct btf_enum *)(t + 1); } static const struct btf_var *btf_type_var(const struct btf_type *t) { return (const struct btf_var *)(t + 1); } static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) { return (const struct btf_decl_tag *)(t + 1); } static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) { return (const struct btf_enum64 *)(t + 1); } static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) { return kind_ops[BTF_INFO_KIND(t->info)]; } static bool btf_name_offset_valid(const struct btf *btf, u32 offset) { if (!BTF_STR_OFFSET_VALID(offset)) return false; while (offset < btf->start_str_off) btf = btf->base_btf; offset -= btf->start_str_off; return offset < btf->hdr.str_len; } static bool __btf_name_char_ok(char c, bool first) { if ((first ? !isalpha(c) : !isalnum(c)) && c != '_' && c != '.') return false; return true; } static const char *btf_str_by_offset(const struct btf *btf, u32 offset) { while (offset < btf->start_str_off) btf = btf->base_btf; offset -= btf->start_str_off; if (offset < btf->hdr.str_len) return &btf->strings[offset]; return NULL; } static bool __btf_name_valid(const struct btf *btf, u32 offset) { /* offset must be valid */ const char *src = btf_str_by_offset(btf, offset); const char *src_limit; if (!__btf_name_char_ok(*src, true)) return false; /* set a limit on identifier length */ src_limit = src + KSYM_NAME_LEN; src++; while (*src && src < src_limit) { if (!__btf_name_char_ok(*src, false)) return false; src++; } return !*src; } static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) { return __btf_name_valid(btf, offset); } static bool btf_name_valid_section(const struct btf *btf, u32 offset) { return __btf_name_valid(btf, offset); } static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) { const char *name; if (!offset) return "(anon)"; name = btf_str_by_offset(btf, offset); return name ?: "(invalid-name-offset)"; } const char *btf_name_by_offset(const struct btf *btf, u32 offset) { return btf_str_by_offset(btf, offset); } const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; type_id -= btf->start_id; if (type_id >= btf->nr_types) return NULL; return btf->types[type_id]; } EXPORT_SYMBOL_GPL(btf_type_by_id); /* * Regular int is not a bit field and it must be either * u8/u16/u32/u64 or __int128. */ static bool btf_type_int_is_regular(const struct btf_type *t) { u8 nr_bits, nr_bytes; u32 int_data; int_data = btf_type_int(t); nr_bits = BTF_INT_BITS(int_data); nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); if (BITS_PER_BYTE_MASKED(nr_bits) || BTF_INT_OFFSET(int_data) || (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && nr_bytes != (2 * sizeof(u64)))) { return false; } return true; } /* * Check that given struct member is a regular int with expected * offset and size. */ bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, const struct btf_member *m, u32 expected_offset, u32 expected_size) { const struct btf_type *t; u32 id, int_data; u8 nr_bits; id = m->type; t = btf_type_id_size(btf, &id, NULL); if (!t || !btf_type_is_int(t)) return false; int_data = btf_type_int(t); nr_bits = BTF_INT_BITS(int_data); if (btf_type_kflag(s)) { u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); /* if kflag set, int should be a regular int and * bit offset should be at byte boundary. */ return !bitfield_size && BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && BITS_ROUNDUP_BYTES(nr_bits) == expected_size; } if (BTF_INT_OFFSET(int_data) || BITS_PER_BYTE_MASKED(m->offset) || BITS_ROUNDUP_BYTES(m->offset) != expected_offset || BITS_PER_BYTE_MASKED(nr_bits) || BITS_ROUNDUP_BYTES(nr_bits) != expected_size) return false; return true; } /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, u32 id) { const struct btf_type *t = btf_type_by_id(btf, id); while (btf_type_is_modifier(t) && BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { t = btf_type_by_id(btf, t->type); } return t; } #define BTF_SHOW_MAX_ITER 10 #define BTF_KIND_BIT(kind) (1ULL << kind) /* * Populate show->state.name with type name information. * Format of type name is * * [.member_name = ] (type_name) */ static const char *btf_show_name(struct btf_show *show) { /* BTF_MAX_ITER array suffixes "[]" */ const char *array_suffixes = "[][][][][][][][][][]"; const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; /* BTF_MAX_ITER pointer suffixes "*" */ const char *ptr_suffixes = "**********"; const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; const char *name = NULL, *prefix = "", *parens = ""; const struct btf_member *m = show->state.member; const struct btf_type *t; const struct btf_array *array; u32 id = show->state.type_id; const char *member = NULL; bool show_member = false; u64 kinds = 0; int i; show->state.name[0] = '\0'; /* * Don't show type name if we're showing an array member; * in that case we show the array type so don't need to repeat * ourselves for each member. */ if (show->state.array_member) return ""; /* Retrieve member name, if any. */ if (m) { member = btf_name_by_offset(show->btf, m->name_off); show_member = strlen(member) > 0; id = m->type; } /* * Start with type_id, as we have resolved the struct btf_type * * via btf_modifier_show() past the parent typedef to the child * struct, int etc it is defined as. In such cases, the type_id * still represents the starting type while the struct btf_type * * in our show->state points at the resolved type of the typedef. */ t = btf_type_by_id(show->btf, id); if (!t) return ""; /* * The goal here is to build up the right number of pointer and * array suffixes while ensuring the type name for a typedef * is represented. Along the way we accumulate a list of * BTF kinds we have encountered, since these will inform later * display; for example, pointer types will not require an * opening "{" for struct, we will just display the pointer value. * * We also want to accumulate the right number of pointer or array * indices in the format string while iterating until we get to * the typedef/pointee/array member target type. * * We start by pointing at the end of pointer and array suffix * strings; as we accumulate pointers and arrays we move the pointer * or array string backwards so it will show the expected number of * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers * and/or arrays and typedefs are supported as a precaution. * * We also want to get typedef name while proceeding to resolve * type it points to so that we can add parentheses if it is a * "typedef struct" etc. */ for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_TYPEDEF: if (!name) name = btf_name_by_offset(show->btf, t->name_off); kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); id = t->type; break; case BTF_KIND_ARRAY: kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); parens = "["; if (!t) return ""; array = btf_type_array(t); if (array_suffix > array_suffixes) array_suffix -= 2; id = array->type; break; case BTF_KIND_PTR: kinds |= BTF_KIND_BIT(BTF_KIND_PTR); if (ptr_suffix > ptr_suffixes) ptr_suffix -= 1; id = t->type; break; default: id = 0; break; } if (!id) break; t = btf_type_skip_qualifiers(show->btf, id); } /* We may not be able to represent this type; bail to be safe */ if (i == BTF_SHOW_MAX_ITER) return ""; if (!name) name = btf_name_by_offset(show->btf, t->name_off); switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_STRUCT: case BTF_KIND_UNION: prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? "struct" : "union"; /* if it's an array of struct/union, parens is already set */ if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) parens = "{"; break; case BTF_KIND_ENUM: case BTF_KIND_ENUM64: prefix = "enum"; break; default: break; } /* pointer does not require parens */ if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) parens = ""; /* typedef does not require struct/union/enum prefix */ if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) prefix = ""; if (!name) name = ""; /* Even if we don't want type name info, we want parentheses etc */ if (show->flags & BTF_SHOW_NONAME) snprintf(show->state.name, sizeof(show->state.name), "%s", parens); else snprintf(show->state.name, sizeof(show->state.name), "%s%s%s(%s%s%s%s%s%s)%s", /* first 3 strings comprise ".member = " */ show_member ? "." : "", show_member ? member : "", show_member ? " = " : "", /* ...next is our prefix (struct, enum, etc) */ prefix, strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", /* ...this is the type name itself */ name, /* ...suffixed by the appropriate '*', '[]' suffixes */ strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, array_suffix, parens); return show->state.name; } static const char *__btf_show_indent(struct btf_show *show) { const char *indents = " "; const char *indent = &indents[strlen(indents)]; if ((indent - show->state.depth) >= indents) return indent - show->state.depth; return indents; } static const char *btf_show_indent(struct btf_show *show) { return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); } static const char *btf_show_newline(struct btf_show *show) { return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; } static const char *btf_show_delim(struct btf_show *show) { if (show->state.depth == 0) return ""; if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) return "|"; return ","; } __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) { va_list args; if (!show->state.depth_check) { va_start(args, fmt); show->showfn(show, fmt, args); va_end(args); } } /* Macros are used here as btf_show_type_value[s]() prepends and appends * format specifiers to the format specifier passed in; these do the work of * adding indentation, delimiters etc while the caller simply has to specify * the type value(s) in the format specifier + value(s). */ #define btf_show_type_value(show, fmt, value) \ do { \ if ((value) != (__typeof__(value))0 || \ (show->flags & BTF_SHOW_ZERO) || \ show->state.depth == 0) { \ btf_show(show, "%s%s" fmt "%s%s", \ btf_show_indent(show), \ btf_show_name(show), \ value, btf_show_delim(show), \ btf_show_newline(show)); \ if (show->state.depth > show->state.depth_to_show) \ show->state.depth_to_show = show->state.depth; \ } \ } while (0) #define btf_show_type_values(show, fmt, ...) \ do { \ btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ btf_show_name(show), \ __VA_ARGS__, btf_show_delim(show), \ btf_show_newline(show)); \ if (show->state.depth > show->state.depth_to_show) \ show->state.depth_to_show = show->state.depth; \ } while (0) /* How much is left to copy to safe buffer after @data? */ static int btf_show_obj_size_left(struct btf_show *show, void *data) { return show->obj.head + show->obj.size - data; } /* Is object pointed to by @data of @size already copied to our safe buffer? */ static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) { return data >= show->obj.data && (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); } /* * If object pointed to by @data of @size falls within our safe buffer, return * the equivalent pointer to the same safe data. Assumes * copy_from_kernel_nofault() has already happened and our safe buffer is * populated. */ static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) { if (btf_show_obj_is_safe(show, data, size)) return show->obj.safe + (data - show->obj.data); return NULL; } /* * Return a safe-to-access version of data pointed to by @data. * We do this by copying the relevant amount of information * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). * * If BTF_SHOW_UNSAFE is specified, just return data as-is; no * safe copy is needed. * * Otherwise we need to determine if we have the required amount * of data (determined by the @data pointer and the size of the * largest base type we can encounter (represented by * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures * that we will be able to print some of the current object, * and if more is needed a copy will be triggered. * Some objects such as structs will not fit into the buffer; * in such cases additional copies when we iterate over their * members may be needed. * * btf_show_obj_safe() is used to return a safe buffer for * btf_show_start_type(); this ensures that as we recurse into * nested types we always have safe data for the given type. * This approach is somewhat wasteful; it's possible for example * that when iterating over a large union we'll end up copying the * same data repeatedly, but the goal is safety not performance. * We use stack data as opposed to per-CPU buffers because the * iteration over a type can take some time, and preemption handling * would greatly complicate use of the safe buffer. */ static void *btf_show_obj_safe(struct btf_show *show, const struct btf_type *t, void *data) { const struct btf_type *rt; int size_left, size; void *safe = NULL; if (show->flags & BTF_SHOW_UNSAFE) return data; rt = btf_resolve_size(show->btf, t, &size); if (IS_ERR(rt)) { show->state.status = PTR_ERR(rt); return NULL; } /* * Is this toplevel object? If so, set total object size and * initialize pointers. Otherwise check if we still fall within * our safe object data. */ if (show->state.depth == 0) { show->obj.size = size; show->obj.head = data; } else { /* * If the size of the current object is > our remaining * safe buffer we _may_ need to do a new copy. However * consider the case of a nested struct; it's size pushes * us over the safe buffer limit, but showing any individual * struct members does not. In such cases, we don't need * to initiate a fresh copy yet; however we definitely need * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left * in our buffer, regardless of the current object size. * The logic here is that as we resolve types we will * hit a base type at some point, and we need to be sure * the next chunk of data is safely available to display * that type info safely. We cannot rely on the size of * the current object here because it may be much larger * than our current buffer (e.g. task_struct is 8k). * All we want to do here is ensure that we can print the * next basic type, which we can if either * - the current type size is within the safe buffer; or * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in * the safe buffer. */ safe = __btf_show_obj_safe(show, data, min(size, BTF_SHOW_OBJ_BASE_TYPE_SIZE)); } /* * We need a new copy to our safe object, either because we haven't * yet copied and are initializing safe data, or because the data * we want falls outside the boundaries of the safe object. */ if (!safe) { size_left = btf_show_obj_size_left(show, data); if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) size_left = BTF_SHOW_OBJ_SAFE_SIZE; show->state.status = copy_from_kernel_nofault(show->obj.safe, data, size_left); if (!show->state.status) { show->obj.data = data; safe = show->obj.safe; } } return safe; } /* * Set the type we are starting to show and return a safe data pointer * to be used for showing the associated data. */ static void *btf_show_start_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { show->state.type = t; show->state.type_id = type_id; show->state.name[0] = '\0'; return btf_show_obj_safe(show, t, data); } static void btf_show_end_type(struct btf_show *show) { show->state.type = NULL; show->state.type_id = 0; show->state.name[0] = '\0'; } static void *btf_show_start_aggr_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { void *safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return safe_data; btf_show(show, "%s%s%s", btf_show_indent(show), btf_show_name(show), btf_show_newline(show)); show->state.depth++; return safe_data; } static void btf_show_end_aggr_type(struct btf_show *show, const char *suffix) { show->state.depth--; btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, btf_show_delim(show), btf_show_newline(show)); btf_show_end_type(show); } static void btf_show_start_member(struct btf_show *show, const struct btf_member *m) { show->state.member = m; } static void btf_show_start_array_member(struct btf_show *show) { show->state.array_member = 1; btf_show_start_member(show, NULL); } static void btf_show_end_member(struct btf_show *show) { show->state.member = NULL; } static void btf_show_end_array_member(struct btf_show *show) { show->state.array_member = 0; btf_show_end_member(show); } static void *btf_show_start_array_type(struct btf_show *show, const struct btf_type *t, u32 type_id, u16 array_encoding, void *data) { show->state.array_encoding = array_encoding; show->state.array_terminated = 0; return btf_show_start_aggr_type(show, t, type_id, data); } static void btf_show_end_array_type(struct btf_show *show) { show->state.array_encoding = 0; show->state.array_terminated = 0; btf_show_end_aggr_type(show, "]"); } static void *btf_show_start_struct_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { return btf_show_start_aggr_type(show, t, type_id, data); } static void btf_show_end_struct_type(struct btf_show *show) { btf_show_end_aggr_type(show, "}"); } __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, const char *fmt, ...) { va_list args; va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; va_list args; if (!bpf_verifier_log_needed(log)) return; va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, const struct btf_type *t, bool log_details, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; struct btf *btf = env->btf; va_list args; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL) { /* btf verifier prints all types it is processing via * btf_verifier_log_type(..., fmt = NULL). * Skip those prints for in-kernel BTF verification. */ if (!fmt) return; /* Skip logging when loading module BTF with mismatches permitted */ if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) return; } __btf_verifier_log(log, "[%u] %s %s%s", env->log_type_id, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), log_details ? " " : ""); if (log_details) btf_type_ops(t)->log_details(env, t); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } #define btf_verifier_log_type(env, t, ...) \ __btf_verifier_log_type((env), (t), true, __VA_ARGS__) #define btf_verifier_log_basic(env, t, ...) \ __btf_verifier_log_type((env), (t), false, __VA_ARGS__) __printf(4, 5) static void btf_verifier_log_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; struct btf *btf = env->btf; va_list args; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL) { if (!fmt) return; /* Skip logging when loading module BTF with mismatches permitted */ if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) return; } /* The CHECK_META phase already did a btf dump. * * If member is logged again, it must hit an error in * parsing this member. It is useful to print out which * struct this member belongs to. */ if (env->phase != CHECK_META) btf_verifier_log_type(env, struct_type, NULL); if (btf_type_kflag(struct_type)) __btf_verifier_log(log, "\t%s type_id=%u bitfield_size=%u bits_offset=%u", __btf_name_by_offset(btf, member->name_off), member->type, BTF_MEMBER_BITFIELD_SIZE(member->offset), BTF_MEMBER_BIT_OFFSET(member->offset)); else __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", __btf_name_by_offset(btf, member->name_off), member->type, member->offset); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } __printf(4, 5) static void btf_verifier_log_vsi(struct btf_verifier_env *env, const struct btf_type *datasec_type, const struct btf_var_secinfo *vsi, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; va_list args; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL && !fmt) return; if (env->phase != CHECK_META) btf_verifier_log_type(env, datasec_type, NULL); __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", vsi->type, vsi->offset, vsi->size); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } static void btf_verifier_log_hdr(struct btf_verifier_env *env, u32 btf_data_size) { struct bpf_verifier_log *log = &env->log; const struct btf *btf = env->btf; const struct btf_header *hdr; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL) return; hdr = &btf->hdr; __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); __btf_verifier_log(log, "version: %u\n", hdr->version); __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); } static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) { struct btf *btf = env->btf; if (btf->types_size == btf->nr_types) { /* Expand 'types' array */ struct btf_type **new_types; u32 expand_by, new_size; if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { btf_verifier_log(env, "Exceeded max num of types"); return -E2BIG; } expand_by = max_t(u32, btf->types_size >> 2, 16); new_size = min_t(u32, BTF_MAX_TYPE, btf->types_size + expand_by); new_types = kvcalloc(new_size, sizeof(*new_types), GFP_KERNEL | __GFP_NOWARN); if (!new_types) return -ENOMEM; if (btf->nr_types == 0) { if (!btf->base_btf) { /* lazily init VOID type */ new_types[0] = &btf_void; btf->nr_types++; } } else { memcpy(new_types, btf->types, sizeof(*btf->types) * btf->nr_types); } kvfree(btf->types); btf->types = new_types; btf->types_size = new_size; } btf->types[btf->nr_types++] = t; return 0; } static int btf_alloc_id(struct btf *btf) { int id; idr_preload(GFP_KERNEL); spin_lock_bh(&btf_idr_lock); id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); if (id > 0) btf->id = id; spin_unlock_bh(&btf_idr_lock); idr_preload_end(); if (WARN_ON_ONCE(!id)) return -ENOSPC; return id > 0 ? 0 : id; } static void btf_free_id(struct btf *btf) { unsigned long flags; /* * In map-in-map, calling map_delete_elem() on outer * map will call bpf_map_put on the inner map. * It will then eventually call btf_free_id() * on the inner map. Some of the map_delete_elem() * implementation may have irq disabled, so * we need to use the _irqsave() version instead * of the _bh() version. */ spin_lock_irqsave(&btf_idr_lock, flags); idr_remove(&btf_idr, btf->id); spin_unlock_irqrestore(&btf_idr_lock, flags); } static void btf_free_kfunc_set_tab(struct btf *btf) { struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; int hook; if (!tab) return; /* For module BTF, we directly assign the sets being registered, so * there is nothing to free except kfunc_set_tab. */ if (btf_is_module(btf)) goto free_tab; for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) kfree(tab->sets[hook]); free_tab: kfree(tab); btf->kfunc_set_tab = NULL; } static void btf_free_dtor_kfunc_tab(struct btf *btf) { struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; if (!tab) return; kfree(tab); btf->dtor_kfunc_tab = NULL; } static void btf_struct_metas_free(struct btf_struct_metas *tab) { int i; if (!tab) return; for (i = 0; i < tab->cnt; i++) btf_record_free(tab->types[i].record); kfree(tab); } static void btf_free_struct_meta_tab(struct btf *btf) { struct btf_struct_metas *tab = btf->struct_meta_tab; btf_struct_metas_free(tab); btf->struct_meta_tab = NULL; } static void btf_free(struct btf *btf) { btf_free_struct_meta_tab(btf); btf_free_dtor_kfunc_tab(btf); btf_free_kfunc_set_tab(btf); kvfree(btf->types); kvfree(btf->resolved_sizes); kvfree(btf->resolved_ids); kvfree(btf->data); kfree(btf); } static void btf_free_rcu(struct rcu_head *rcu) { struct btf *btf = container_of(rcu, struct btf, rcu); btf_free(btf); } void btf_get(struct btf *btf) { refcount_inc(&btf->refcnt); } void btf_put(struct btf *btf) { if (btf && refcount_dec_and_test(&btf->refcnt)) { btf_free_id(btf); call_rcu(&btf->rcu, btf_free_rcu); } } static int env_resolve_init(struct btf_verifier_env *env) { struct btf *btf = env->btf; u32 nr_types = btf->nr_types; u32 *resolved_sizes = NULL; u32 *resolved_ids = NULL; u8 *visit_states = NULL; resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), GFP_KERNEL | __GFP_NOWARN); if (!resolved_sizes) goto nomem; resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), GFP_KERNEL | __GFP_NOWARN); if (!resolved_ids) goto nomem; visit_states = kvcalloc(nr_types, sizeof(*visit_states), GFP_KERNEL | __GFP_NOWARN); if (!visit_states) goto nomem; btf->resolved_sizes = resolved_sizes; btf->resolved_ids = resolved_ids; env->visit_states = visit_states; return 0; nomem: kvfree(resolved_sizes); kvfree(resolved_ids); kvfree(visit_states); return -ENOMEM; } static void btf_verifier_env_free(struct btf_verifier_env *env) { kvfree(env->visit_states); kfree(env); } static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, const struct btf_type *next_type) { switch (env->resolve_mode) { case RESOLVE_TBD: /* int, enum or void is a sink */ return !btf_type_needs_resolve(next_type); case RESOLVE_PTR: /* int, enum, void, struct, array, func or func_proto is a sink * for ptr */ return !btf_type_is_modifier(next_type) && !btf_type_is_ptr(next_type); case RESOLVE_STRUCT_OR_ARRAY: /* int, enum, void, ptr, func or func_proto is a sink * for struct and array */ return !btf_type_is_modifier(next_type) && !btf_type_is_array(next_type) && !btf_type_is_struct(next_type); default: BUG(); } } static bool env_type_is_resolved(const struct btf_verifier_env *env, u32 type_id) { /* base BTF types should be resolved by now */ if (type_id < env->btf->start_id) return true; return env->visit_states[type_id - env->btf->start_id] == RESOLVED; } static int env_stack_push(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { const struct btf *btf = env->btf; struct resolve_vertex *v; if (env->top_stack == MAX_RESOLVE_DEPTH) return -E2BIG; if (type_id < btf->start_id || env->visit_states[type_id - btf->start_id] != NOT_VISITED) return -EEXIST; env->visit_states[type_id - btf->start_id] = VISITED; v = &env->stack[env->top_stack++]; v->t = t; v->type_id = type_id; v->next_member = 0; if (env->resolve_mode == RESOLVE_TBD) { if (btf_type_is_ptr(t)) env->resolve_mode = RESOLVE_PTR; else if (btf_type_is_struct(t) || btf_type_is_array(t)) env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; } return 0; } static void env_stack_set_next_member(struct btf_verifier_env *env, u16 next_member) { env->stack[env->top_stack - 1].next_member = next_member; } static void env_stack_pop_resolved(struct btf_verifier_env *env, u32 resolved_type_id, u32 resolved_size) { u32 type_id = env->stack[--(env->top_stack)].type_id; struct btf *btf = env->btf; type_id -= btf->start_id; /* adjust to local type id */ btf->resolved_sizes[type_id] = resolved_size; btf->resolved_ids[type_id] = resolved_type_id; env->visit_states[type_id] = RESOLVED; } static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) { return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; } /* Resolve the size of a passed-in "type" * * type: is an array (e.g. u32 array[x][y]) * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, * *type_size: (x * y * sizeof(u32)). Hence, *type_size always * corresponds to the return type. * *elem_type: u32 * *elem_id: id of u32 * *total_nelems: (x * y). Hence, individual elem size is * (*type_size / *total_nelems) * *type_id: id of type if it's changed within the function, 0 if not * * type: is not an array (e.g. const struct X) * return type: type "struct X" * *type_size: sizeof(struct X) * *elem_type: same as return type ("struct X") * *elem_id: 0 * *total_nelems: 1 * *type_id: id of type if it's changed within the function, 0 if not */ static const struct btf_type * __btf_resolve_size(const struct btf *btf, const struct btf_type *type, u32 *type_size, const struct btf_type **elem_type, u32 *elem_id, u32 *total_nelems, u32 *type_id) { const struct btf_type *array_type = NULL; const struct btf_array *array = NULL; u32 i, size, nelems = 1, id = 0; for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { switch (BTF_INFO_KIND(type->info)) { /* type->size can be used */ case BTF_KIND_INT: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_ENUM: case BTF_KIND_FLOAT: case BTF_KIND_ENUM64: size = type->size; goto resolved; case BTF_KIND_PTR: size = sizeof(void *); goto resolved; /* Modifiers */ case BTF_KIND_TYPEDEF: case BTF_KIND_VOLATILE: case BTF_KIND_CONST: case BTF_KIND_RESTRICT: case BTF_KIND_TYPE_TAG: id = type->type; type = btf_type_by_id(btf, type->type); break; case BTF_KIND_ARRAY: if (!array_type) array_type = type; array = btf_type_array(type); if (nelems && array->nelems > U32_MAX / nelems) return ERR_PTR(-EINVAL); nelems *= array->nelems; type = btf_type_by_id(btf, array->type); break; /* type without size */ default: return ERR_PTR(-EINVAL); } } return ERR_PTR(-EINVAL); resolved: if (nelems && size > U32_MAX / nelems) return ERR_PTR(-EINVAL); *type_size = nelems * size; if (total_nelems) *total_nelems = nelems; if (elem_type) *elem_type = type; if (elem_id) *elem_id = array ? array->type : 0; if (type_id && id) *type_id = id; return array_type ? : type; } const struct btf_type * btf_resolve_size(const struct btf *btf, const struct btf_type *type, u32 *type_size) { return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); } static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; return btf->resolved_ids[type_id - btf->start_id]; } /* The input param "type_id" must point to a needs_resolve type */ static const struct btf_type *btf_type_id_resolve(const struct btf *btf, u32 *type_id) { *type_id = btf_resolved_type_id(btf, *type_id); return btf_type_by_id(btf, *type_id); } static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; return btf->resolved_sizes[type_id - btf->start_id]; } const struct btf_type *btf_type_id_size(const struct btf *btf, u32 *type_id, u32 *ret_size) { const struct btf_type *size_type; u32 size_type_id = *type_id; u32 size = 0; size_type = btf_type_by_id(btf, size_type_id); if (btf_type_nosize_or_null(size_type)) return NULL; if (btf_type_has_size(size_type)) { size = size_type->size; } else if (btf_type_is_array(size_type)) { size = btf_resolved_type_size(btf, size_type_id); } else if (btf_type_is_ptr(size_type)) { size = sizeof(void *); } else { if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && !btf_type_is_var(size_type))) return NULL; size_type_id = btf_resolved_type_id(btf, size_type_id); size_type = btf_type_by_id(btf, size_type_id); if (btf_type_nosize_or_null(size_type)) return NULL; else if (btf_type_has_size(size_type)) size = size_type->size; else if (btf_type_is_array(size_type)) size = btf_resolved_type_size(btf, size_type_id); else if (btf_type_is_ptr(size_type)) size = sizeof(void *); else return NULL; } *type_id = size_type_id; if (ret_size) *ret_size = size; return size_type; } static int btf_df_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { btf_verifier_log_basic(env, struct_type, "Unsupported check_member"); return -EINVAL; } static int btf_df_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { btf_verifier_log_basic(env, struct_type, "Unsupported check_kflag_member"); return -EINVAL; } /* Used for ptr, array struct/union and float type members. * int, enum and modifier types have their specific callback functions. */ static int btf_generic_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } /* bitfield size is 0, so member->offset represents bit offset only. * It is safe to call non kflag check_member variants. */ return btf_type_ops(member_type)->check_member(env, struct_type, member, member_type); } static int btf_df_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { btf_verifier_log_basic(env, v->t, "Unsupported resolve"); return -EINVAL; } static void btf_df_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offsets, struct btf_show *show) { btf_show(show, "", BTF_INFO_KIND(t->info)); } static int btf_int_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 int_data = btf_type_int(member_type); u32 struct_bits_off = member->offset; u32 struct_size = struct_type->size; u32 nr_copy_bits; u32 bytes_offset; if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { btf_verifier_log_member(env, struct_type, member, "bits_offset exceeds U32_MAX"); return -EINVAL; } struct_bits_off += BTF_INT_OFFSET(int_data); bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); nr_copy_bits = BTF_INT_BITS(int_data) + BITS_PER_BYTE_MASKED(struct_bits_off); if (nr_copy_bits > BITS_PER_U128) { btf_verifier_log_member(env, struct_type, member, "nr_copy_bits exceeds 128"); return -EINVAL; } if (struct_size < bytes_offset || struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_int_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; u32 int_data = btf_type_int(member_type); u32 struct_size = struct_type->size; u32 nr_copy_bits; /* a regular int type is required for the kflag int member */ if (!btf_type_int_is_regular(member_type)) { btf_verifier_log_member(env, struct_type, member, "Invalid member base type"); return -EINVAL; } /* check sanity of bitfield size */ nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); nr_int_data_bits = BTF_INT_BITS(int_data); if (!nr_bits) { /* Not a bitfield member, member offset must be at byte * boundary. */ if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Invalid member offset"); return -EINVAL; } nr_bits = nr_int_data_bits; } else if (nr_bits > nr_int_data_bits) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); if (nr_copy_bits > BITS_PER_U128) { btf_verifier_log_member(env, struct_type, member, "nr_copy_bits exceeds 128"); return -EINVAL; } if (struct_size < bytes_offset || struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_int_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 int_data, nr_bits, meta_needed = sizeof(int_data); u16 encoding; if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } int_data = btf_type_int(t); if (int_data & ~BTF_INT_MASK) { btf_verifier_log_basic(env, t, "Invalid int_data:%x", int_data); return -EINVAL; } nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); if (nr_bits > BITS_PER_U128) { btf_verifier_log_type(env, t, "nr_bits exceeds %zu", BITS_PER_U128); return -EINVAL; } if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); return -EINVAL; } /* * Only one of the encoding bits is allowed and it * should be sufficient for the pretty print purpose (i.e. decoding). * Multiple bits can be allowed later if it is found * to be insufficient. */ encoding = BTF_INT_ENCODING(int_data); if (encoding && encoding != BTF_INT_SIGNED && encoding != BTF_INT_CHAR && encoding != BTF_INT_BOOL) { btf_verifier_log_type(env, t, "Unsupported encoding"); return -ENOTSUPP; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_int_log(struct btf_verifier_env *env, const struct btf_type *t) { int int_data = btf_type_int(t); btf_verifier_log(env, "size=%u bits_offset=%u nr_bits=%u encoding=%s", t->size, BTF_INT_OFFSET(int_data), BTF_INT_BITS(int_data), btf_int_encoding_str(BTF_INT_ENCODING(int_data))); } static void btf_int128_print(struct btf_show *show, void *data) { /* data points to a __int128 number. * Suppose * int128_num = *(__int128 *)data; * The below formulas shows what upper_num and lower_num represents: * upper_num = int128_num >> 64; * lower_num = int128_num & 0xffffffffFFFFFFFFULL; */ u64 upper_num, lower_num; #ifdef __BIG_ENDIAN_BITFIELD upper_num = *(u64 *)data; lower_num = *(u64 *)(data + 8); #else upper_num = *(u64 *)(data + 8); lower_num = *(u64 *)data; #endif if (upper_num == 0) btf_show_type_value(show, "0x%llx", lower_num); else btf_show_type_values(show, "0x%llx%016llx", upper_num, lower_num); } static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, u16 right_shift_bits) { u64 upper_num, lower_num; #ifdef __BIG_ENDIAN_BITFIELD upper_num = print_num[0]; lower_num = print_num[1]; #else upper_num = print_num[1]; lower_num = print_num[0]; #endif /* shake out un-needed bits by shift/or operations */ if (left_shift_bits >= 64) { upper_num = lower_num << (left_shift_bits - 64); lower_num = 0; } else { upper_num = (upper_num << left_shift_bits) | (lower_num >> (64 - left_shift_bits)); lower_num = lower_num << left_shift_bits; } if (right_shift_bits >= 64) { lower_num = upper_num >> (right_shift_bits - 64); upper_num = 0; } else { lower_num = (lower_num >> right_shift_bits) | (upper_num << (64 - right_shift_bits)); upper_num = upper_num >> right_shift_bits; } #ifdef __BIG_ENDIAN_BITFIELD print_num[0] = upper_num; print_num[1] = lower_num; #else print_num[0] = lower_num; print_num[1] = upper_num; #endif } static void btf_bitfield_show(void *data, u8 bits_offset, u8 nr_bits, struct btf_show *show) { u16 left_shift_bits, right_shift_bits; u8 nr_copy_bytes; u8 nr_copy_bits; u64 print_num[2] = {}; nr_copy_bits = nr_bits + bits_offset; nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); memcpy(print_num, data, nr_copy_bytes); #ifdef __BIG_ENDIAN_BITFIELD left_shift_bits = bits_offset; #else left_shift_bits = BITS_PER_U128 - nr_copy_bits; #endif right_shift_bits = BITS_PER_U128 - nr_bits; btf_int128_shift(print_num, left_shift_bits, right_shift_bits); btf_int128_print(show, print_num); } static void btf_int_bits_show(const struct btf *btf, const struct btf_type *t, void *data, u8 bits_offset, struct btf_show *show) { u32 int_data = btf_type_int(t); u8 nr_bits = BTF_INT_BITS(int_data); u8 total_bits_offset; /* * bits_offset is at most 7. * BTF_INT_OFFSET() cannot exceed 128 bits. */ total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); data += BITS_ROUNDDOWN_BYTES(total_bits_offset); bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); btf_bitfield_show(data, bits_offset, nr_bits, show); } static void btf_int_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { u32 int_data = btf_type_int(t); u8 encoding = BTF_INT_ENCODING(int_data); bool sign = encoding & BTF_INT_SIGNED; u8 nr_bits = BTF_INT_BITS(int_data); void *safe_data; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; if (bits_offset || BTF_INT_OFFSET(int_data) || BITS_PER_BYTE_MASKED(nr_bits)) { btf_int_bits_show(btf, t, safe_data, bits_offset, show); goto out; } switch (nr_bits) { case 128: btf_int128_print(show, safe_data); break; case 64: if (sign) btf_show_type_value(show, "%lld", *(s64 *)safe_data); else btf_show_type_value(show, "%llu", *(u64 *)safe_data); break; case 32: if (sign) btf_show_type_value(show, "%d", *(s32 *)safe_data); else btf_show_type_value(show, "%u", *(u32 *)safe_data); break; case 16: if (sign) btf_show_type_value(show, "%d", *(s16 *)safe_data); else btf_show_type_value(show, "%u", *(u16 *)safe_data); break; case 8: if (show->state.array_encoding == BTF_INT_CHAR) { /* check for null terminator */ if (show->state.array_terminated) break; if (*(char *)data == '\0') { show->state.array_terminated = 1; break; } if (isprint(*(char *)data)) { btf_show_type_value(show, "'%c'", *(char *)safe_data); break; } } if (sign) btf_show_type_value(show, "%d", *(s8 *)safe_data); else btf_show_type_value(show, "%u", *(u8 *)safe_data); break; default: btf_int_bits_show(btf, t, safe_data, bits_offset, show); break; } out: btf_show_end_type(show); } static const struct btf_kind_operations int_ops = { .check_meta = btf_int_check_meta, .resolve = btf_df_resolve, .check_member = btf_int_check_member, .check_kflag_member = btf_int_check_kflag_member, .log_details = btf_int_log, .show = btf_int_show, }; static int btf_modifier_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { const struct btf_type *resolved_type; u32 resolved_type_id = member->type; struct btf_member resolved_member; struct btf *btf = env->btf; resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); if (!resolved_type) { btf_verifier_log_member(env, struct_type, member, "Invalid member"); return -EINVAL; } resolved_member = *member; resolved_member.type = resolved_type_id; return btf_type_ops(resolved_type)->check_member(env, struct_type, &resolved_member, resolved_type); } static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { const struct btf_type *resolved_type; u32 resolved_type_id = member->type; struct btf_member resolved_member; struct btf *btf = env->btf; resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); if (!resolved_type) { btf_verifier_log_member(env, struct_type, member, "Invalid member"); return -EINVAL; } resolved_member = *member; resolved_member.type = resolved_type_id; return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, &resolved_member, resolved_type); } static int btf_ptr_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_size, struct_bits_off, bytes_offset; struct_size = struct_type->size; struct_bits_off = member->offset; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } if (struct_size - bytes_offset < sizeof(void *)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_ref_type_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const char *value; if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!BTF_TYPE_ID_VALID(t->type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } /* typedef/type_tag type must have a valid name, and other ref types, * volatile, const, restrict, should have a null name. */ if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { value = btf_name_by_offset(env->btf, t->name_off); if (!value || !value[0]) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } else { if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_modifier_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *t = v->t; const struct btf_type *next_type; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); /* Figure out the resolved next_type_id with size. * They will be stored in the current modifier's * resolved_ids and resolved_sizes such that it can * save us a few type-following when we use it later (e.g. in * pretty print). */ if (!btf_type_id_size(btf, &next_type_id, NULL)) { if (env_type_is_resolved(env, next_type_id)) next_type = btf_type_id_resolve(btf, &next_type_id); /* "typedef void new_void", "const void"...etc */ if (!btf_type_is_void(next_type) && !btf_type_is_fwd(next_type) && !btf_type_is_func_proto(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static int btf_var_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); if (btf_type_is_modifier(next_type)) { const struct btf_type *resolved_type; u32 resolved_type_id; resolved_type_id = next_type_id; resolved_type = btf_type_id_resolve(btf, &resolved_type_id); if (btf_type_is_ptr(resolved_type) && !env_type_is_resolve_sink(env, resolved_type) && !env_type_is_resolved(env, resolved_type_id)) return env_stack_push(env, resolved_type, resolved_type_id); } /* We must resolve to something concrete at this point, no * forward types or similar that would resolve to size of * zero is allowed. */ if (!btf_type_id_size(btf, &next_type_id, NULL)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static int btf_ptr_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, * the modifier may have stopped resolving when it was resolved * to a ptr (last-resolved-ptr). * * We now need to continue from the last-resolved-ptr to * ensure the last-resolved-ptr will not referring back to * the current ptr (t). */ if (btf_type_is_modifier(next_type)) { const struct btf_type *resolved_type; u32 resolved_type_id; resolved_type_id = next_type_id; resolved_type = btf_type_id_resolve(btf, &resolved_type_id); if (btf_type_is_ptr(resolved_type) && !env_type_is_resolve_sink(env, resolved_type) && !env_type_is_resolved(env, resolved_type_id)) return env_stack_push(env, resolved_type, resolved_type_id); } if (!btf_type_id_size(btf, &next_type_id, NULL)) { if (env_type_is_resolved(env, next_type_id)) next_type = btf_type_id_resolve(btf, &next_type_id); if (!btf_type_is_void(next_type) && !btf_type_is_fwd(next_type) && !btf_type_is_func_proto(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static void btf_modifier_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { if (btf->resolved_ids) t = btf_type_id_resolve(btf, &type_id); else t = btf_type_skip_modifiers(btf, type_id, NULL); btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); } static void btf_var_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { t = btf_type_id_resolve(btf, &type_id); btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); } static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { void *safe_data; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ if (show->flags & BTF_SHOW_PTR_RAW) btf_show_type_value(show, "0x%px", *(void **)safe_data); else btf_show_type_value(show, "0x%p", *(void **)safe_data); btf_show_end_type(show); } static void btf_ref_type_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "type_id=%u", t->type); } static struct btf_kind_operations modifier_ops = { .check_meta = btf_ref_type_check_meta, .resolve = btf_modifier_resolve, .check_member = btf_modifier_check_member, .check_kflag_member = btf_modifier_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_modifier_show, }; static struct btf_kind_operations ptr_ops = { .check_meta = btf_ref_type_check_meta, .resolve = btf_ptr_resolve, .check_member = btf_ptr_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_ptr_show, }; static s32 btf_fwd_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (t->type) { btf_verifier_log_type(env, t, "type != 0"); return -EINVAL; } /* fwd type must have a valid name */ if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static void btf_fwd_type_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); } static struct btf_kind_operations fwd_ops = { .check_meta = btf_fwd_check_meta, .resolve = btf_df_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_fwd_type_log, .show = btf_df_show, }; static int btf_array_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; u32 array_type_id, array_size; struct btf *btf = env->btf; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } array_type_id = member->type; btf_type_id_size(btf, &array_type_id, &array_size); struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < array_size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_array_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_array *array = btf_type_array(t); u32 meta_needed = sizeof(*array); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } /* array type should not have a name */ if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (t->size) { btf_verifier_log_type(env, t, "size != 0"); return -EINVAL; } /* Array elem type and index type cannot be in type void, * so !array->type and !array->index_type are not allowed. */ if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { btf_verifier_log_type(env, t, "Invalid elem"); return -EINVAL; } if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { btf_verifier_log_type(env, t, "Invalid index"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static int btf_array_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_array *array = btf_type_array(v->t); const struct btf_type *elem_type, *index_type; u32 elem_type_id, index_type_id; struct btf *btf = env->btf; u32 elem_size; /* Check array->index_type */ index_type_id = array->index_type; index_type = btf_type_by_id(btf, index_type_id); if (btf_type_nosize_or_null(index_type) || btf_type_is_resolve_source_only(index_type)) { btf_verifier_log_type(env, v->t, "Invalid index"); return -EINVAL; } if (!env_type_is_resolve_sink(env, index_type) && !env_type_is_resolved(env, index_type_id)) return env_stack_push(env, index_type, index_type_id); index_type = btf_type_id_size(btf, &index_type_id, NULL); if (!index_type || !btf_type_is_int(index_type) || !btf_type_int_is_regular(index_type)) { btf_verifier_log_type(env, v->t, "Invalid index"); return -EINVAL; } /* Check array->type */ elem_type_id = array->type; elem_type = btf_type_by_id(btf, elem_type_id); if (btf_type_nosize_or_null(elem_type) || btf_type_is_resolve_source_only(elem_type)) { btf_verifier_log_type(env, v->t, "Invalid elem"); return -EINVAL; } if (!env_type_is_resolve_sink(env, elem_type) && !env_type_is_resolved(env, elem_type_id)) return env_stack_push(env, elem_type, elem_type_id); elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); if (!elem_type) { btf_verifier_log_type(env, v->t, "Invalid elem"); return -EINVAL; } if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { btf_verifier_log_type(env, v->t, "Invalid array of int"); return -EINVAL; } if (array->nelems && elem_size > U32_MAX / array->nelems) { btf_verifier_log_type(env, v->t, "Array size overflows U32_MAX"); return -EINVAL; } env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); return 0; } static void btf_array_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_array *array = btf_type_array(t); btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", array->type, array->index_type, array->nelems); } static void __btf_array_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_array *array = btf_type_array(t); const struct btf_kind_operations *elem_ops; const struct btf_type *elem_type; u32 i, elem_size = 0, elem_type_id; u16 encoding = 0; elem_type_id = array->type; elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); if (elem_type && btf_type_has_size(elem_type)) elem_size = elem_type->size; if (elem_type && btf_type_is_int(elem_type)) { u32 int_type = btf_type_int(elem_type); encoding = BTF_INT_ENCODING(int_type); /* * BTF_INT_CHAR encoding never seems to be set for * char arrays, so if size is 1 and element is * printable as a char, we'll do that. */ if (elem_size == 1) encoding = BTF_INT_CHAR; } if (!btf_show_start_array_type(show, t, type_id, encoding, data)) return; if (!elem_type) goto out; elem_ops = btf_type_ops(elem_type); for (i = 0; i < array->nelems; i++) { btf_show_start_array_member(show); elem_ops->show(btf, elem_type, elem_type_id, data, bits_offset, show); data += elem_size; btf_show_end_array_member(show); if (show->state.array_terminated) break; } out: btf_show_end_array_type(show); } static void btf_array_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *m = show->state.member; /* * First check if any members would be shown (are non-zero). * See comments above "struct btf_show" definition for more * details on how this works at a high-level. */ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { if (!show->state.depth_check) { show->state.depth_check = show->state.depth + 1; show->state.depth_to_show = 0; } __btf_array_show(btf, t, type_id, data, bits_offset, show); show->state.member = m; if (show->state.depth_check != show->state.depth + 1) return; show->state.depth_check = 0; if (show->state.depth_to_show <= show->state.depth) return; /* * Reaching here indicates we have recursed and found * non-zero array member(s). */ } __btf_array_show(btf, t, type_id, data, bits_offset, show); } static struct btf_kind_operations array_ops = { .check_meta = btf_array_check_meta, .resolve = btf_array_resolve, .check_member = btf_array_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_array_log, .show = btf_array_show, }; static int btf_struct_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < member_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_struct_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; const struct btf_member *member; u32 meta_needed, last_offset; struct btf *btf = env->btf; u32 struct_size = t->size; u32 offset; u16 i; meta_needed = btf_type_vlen(t) * sizeof(*member); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } /* struct type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); last_offset = 0; for_each_member(i, t, member) { if (!btf_name_offset_valid(btf, member->name_off)) { btf_verifier_log_member(env, t, member, "Invalid member name_offset:%u", member->name_off); return -EINVAL; } /* struct member either no name or a valid one */ if (member->name_off && !btf_name_valid_identifier(btf, member->name_off)) { btf_verifier_log_member(env, t, member, "Invalid name"); return -EINVAL; } /* A member cannot be in type void */ if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { btf_verifier_log_member(env, t, member, "Invalid type_id"); return -EINVAL; } offset = __btf_member_bit_offset(t, member); if (is_union && offset) { btf_verifier_log_member(env, t, member, "Invalid member bits_offset"); return -EINVAL; } /* * ">" instead of ">=" because the last member could be * "char a[0];" */ if (last_offset > offset) { btf_verifier_log_member(env, t, member, "Invalid member bits_offset"); return -EINVAL; } if (BITS_ROUNDUP_BYTES(offset) > struct_size) { btf_verifier_log_member(env, t, member, "Member bits_offset exceeds its struct size"); return -EINVAL; } btf_verifier_log_member(env, t, member, NULL); last_offset = offset; } return meta_needed; } static int btf_struct_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_member *member; int err; u16 i; /* Before continue resolving the next_member, * ensure the last member is indeed resolved to a * type with size info. */ if (v->next_member) { const struct btf_type *last_member_type; const struct btf_member *last_member; u32 last_member_type_id; last_member = btf_type_member(v->t) + v->next_member - 1; last_member_type_id = last_member->type; if (WARN_ON_ONCE(!env_type_is_resolved(env, last_member_type_id))) return -EINVAL; last_member_type = btf_type_by_id(env->btf, last_member_type_id); if (btf_type_kflag(v->t)) err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, last_member, last_member_type); else err = btf_type_ops(last_member_type)->check_member(env, v->t, last_member, last_member_type); if (err) return err; } for_each_member_from(i, v->next_member, v->t, member) { u32 member_type_id = member->type; const struct btf_type *member_type = btf_type_by_id(env->btf, member_type_id); if (btf_type_nosize_or_null(member_type) || btf_type_is_resolve_source_only(member_type)) { btf_verifier_log_member(env, v->t, member, "Invalid member"); return -EINVAL; } if (!env_type_is_resolve_sink(env, member_type) && !env_type_is_resolved(env, member_type_id)) { env_stack_set_next_member(env, i + 1); return env_stack_push(env, member_type, member_type_id); } if (btf_type_kflag(v->t)) err = btf_type_ops(member_type)->check_kflag_member(env, v->t, member, member_type); else err = btf_type_ops(member_type)->check_member(env, v->t, member, member_type); if (err) return err; } env_stack_pop_resolved(env, 0, 0); return 0; } static void btf_struct_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } enum { BTF_FIELD_IGNORE = 0, BTF_FIELD_FOUND = 1, }; struct btf_field_info { enum btf_field_type type; u32 off; union { struct { u32 type_id; } kptr; struct { const char *node_name; u32 value_btf_id; } graph_root; }; }; static int btf_find_struct(const struct btf *btf, const struct btf_type *t, u32 off, int sz, enum btf_field_type field_type, struct btf_field_info *info) { if (!__btf_type_is_struct(t)) return BTF_FIELD_IGNORE; if (t->size != sz) return BTF_FIELD_IGNORE; info->type = field_type; info->off = off; return BTF_FIELD_FOUND; } static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, u32 off, int sz, struct btf_field_info *info) { enum btf_field_type type; u32 res_id; /* Permit modifiers on the pointer itself */ if (btf_type_is_volatile(t)) t = btf_type_by_id(btf, t->type); /* For PTR, sz is always == 8 */ if (!btf_type_is_ptr(t)) return BTF_FIELD_IGNORE; t = btf_type_by_id(btf, t->type); if (!btf_type_is_type_tag(t)) return BTF_FIELD_IGNORE; /* Reject extra tags */ if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) return -EINVAL; if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) type = BPF_KPTR_UNREF; else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) type = BPF_KPTR_REF; else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off))) type = BPF_KPTR_PERCPU; else return -EINVAL; /* Get the base type */ t = btf_type_skip_modifiers(btf, t->type, &res_id); /* Only pointer to struct is allowed */ if (!__btf_type_is_struct(t)) return -EINVAL; info->type = type; info->off = off; info->kptr.type_id = res_id; return BTF_FIELD_FOUND; } const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, int comp_idx, const char *tag_key) { const char *value = NULL; int i; for (i = 1; i < btf_nr_types(btf); i++) { const struct btf_type *t = btf_type_by_id(btf, i); int len = strlen(tag_key); if (!btf_type_is_decl_tag(t)) continue; if (pt != btf_type_by_id(btf, t->type) || btf_type_decl_tag(t)->component_idx != comp_idx) continue; if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) continue; /* Prevent duplicate entries for same type */ if (value) return ERR_PTR(-EEXIST); value = __btf_name_by_offset(btf, t->name_off) + len; } if (!value) return ERR_PTR(-ENOENT); return value; } static int btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, const struct btf_type *t, int comp_idx, u32 off, int sz, struct btf_field_info *info, enum btf_field_type head_type) { const char *node_field_name; const char *value_type; s32 id; if (!__btf_type_is_struct(t)) return BTF_FIELD_IGNORE; if (t->size != sz) return BTF_FIELD_IGNORE; value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); if (IS_ERR(value_type)) return -EINVAL; node_field_name = strstr(value_type, ":"); if (!node_field_name) return -EINVAL; value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); if (!value_type) return -ENOMEM; id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); kfree(value_type); if (id < 0) return id; node_field_name++; if (str_is_empty(node_field_name)) return -EINVAL; info->type = head_type; info->off = off; info->graph_root.value_btf_id = id; info->graph_root.node_name = node_field_name; return BTF_FIELD_FOUND; } #define field_mask_test_name(field_type, field_type_str) \ if (field_mask & field_type && !strcmp(name, field_type_str)) { \ type = field_type; \ goto end; \ } static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, int *align, int *sz) { int type = 0; if (field_mask & BPF_SPIN_LOCK) { if (!strcmp(name, "bpf_spin_lock")) { if (*seen_mask & BPF_SPIN_LOCK) return -E2BIG; *seen_mask |= BPF_SPIN_LOCK; type = BPF_SPIN_LOCK; goto end; } } if (field_mask & BPF_TIMER) { if (!strcmp(name, "bpf_timer")) { if (*seen_mask & BPF_TIMER) return -E2BIG; *seen_mask |= BPF_TIMER; type = BPF_TIMER; goto end; } } field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); /* Only return BPF_KPTR when all other types with matchable names fail */ if (field_mask & BPF_KPTR) { type = BPF_KPTR_REF; goto end; } return 0; end: *sz = btf_field_type_size(type); *align = btf_field_type_align(type); return type; } #undef field_mask_test_name static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, u32 field_mask, struct btf_field_info *info, int info_cnt) { int ret, idx = 0, align, sz, field_type; const struct btf_member *member; struct btf_field_info tmp; u32 i, off, seen_mask = 0; for_each_member(i, t, member) { const struct btf_type *member_type = btf_type_by_id(btf, member->type); field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), field_mask, &seen_mask, &align, &sz); if (field_type == 0) continue; if (field_type < 0) return field_type; off = __btf_member_bit_offset(t, member); if (off % 8) /* valid C code cannot generate such BTF */ return -EINVAL; off /= 8; if (off % align) continue; switch (field_type) { case BPF_SPIN_LOCK: case BPF_TIMER: case BPF_LIST_NODE: case BPF_RB_NODE: case BPF_REFCOUNT: ret = btf_find_struct(btf, member_type, off, sz, field_type, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: ret = btf_find_kptr(btf, member_type, off, sz, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; case BPF_LIST_HEAD: case BPF_RB_ROOT: ret = btf_find_graph_root(btf, t, member_type, i, off, sz, idx < info_cnt ? &info[idx] : &tmp, field_type); if (ret < 0) return ret; break; default: return -EFAULT; } if (ret == BTF_FIELD_IGNORE) continue; if (idx >= info_cnt) return -E2BIG; ++idx; } return idx; } static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, u32 field_mask, struct btf_field_info *info, int info_cnt) { int ret, idx = 0, align, sz, field_type; const struct btf_var_secinfo *vsi; struct btf_field_info tmp; u32 i, off, seen_mask = 0; for_each_vsi(i, t, vsi) { const struct btf_type *var = btf_type_by_id(btf, vsi->type); const struct btf_type *var_type = btf_type_by_id(btf, var->type); field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), field_mask, &seen_mask, &align, &sz); if (field_type == 0) continue; if (field_type < 0) return field_type; off = vsi->offset; if (vsi->size != sz) continue; if (off % align) continue; switch (field_type) { case BPF_SPIN_LOCK: case BPF_TIMER: case BPF_LIST_NODE: case BPF_RB_NODE: case BPF_REFCOUNT: ret = btf_find_struct(btf, var_type, off, sz, field_type, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: ret = btf_find_kptr(btf, var_type, off, sz, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; case BPF_LIST_HEAD: case BPF_RB_ROOT: ret = btf_find_graph_root(btf, var, var_type, -1, off, sz, idx < info_cnt ? &info[idx] : &tmp, field_type); if (ret < 0) return ret; break; default: return -EFAULT; } if (ret == BTF_FIELD_IGNORE) continue; if (idx >= info_cnt) return -E2BIG; ++idx; } return idx; } static int btf_find_field(const struct btf *btf, const struct btf_type *t, u32 field_mask, struct btf_field_info *info, int info_cnt) { if (__btf_type_is_struct(t)) return btf_find_struct_field(btf, t, field_mask, info, info_cnt); else if (btf_type_is_datasec(t)) return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); return -EINVAL; } static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, struct btf_field_info *info) { struct module *mod = NULL; const struct btf_type *t; /* If a matching btf type is found in kernel or module BTFs, kptr_ref * is that BTF, otherwise it's program BTF */ struct btf *kptr_btf; int ret; s32 id; /* Find type in map BTF, and use it to look up the matching type * in vmlinux or module BTFs, by name and kind. */ t = btf_type_by_id(btf, info->kptr.type_id); id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), &kptr_btf); if (id == -ENOENT) { /* btf_parse_kptr should only be called w/ btf = program BTF */ WARN_ON_ONCE(btf_is_kernel(btf)); /* Type exists only in program BTF. Assume that it's a MEM_ALLOC * kptr allocated via bpf_obj_new */ field->kptr.dtor = NULL; id = info->kptr.type_id; kptr_btf = (struct btf *)btf; btf_get(kptr_btf); goto found_dtor; } if (id < 0) return id; /* Find and stash the function pointer for the destruction function that * needs to be eventually invoked from the map free path. */ if (info->type == BPF_KPTR_REF) { const struct btf_type *dtor_func; const char *dtor_func_name; unsigned long addr; s32 dtor_btf_id; /* This call also serves as a whitelist of allowed objects that * can be used as a referenced pointer and be stored in a map at * the same time. */ dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); if (dtor_btf_id < 0) { ret = dtor_btf_id; goto end_btf; } dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); if (!dtor_func) { ret = -ENOENT; goto end_btf; } if (btf_is_module(kptr_btf)) { mod = btf_try_get_module(kptr_btf); if (!mod) { ret = -ENXIO; goto end_btf; } } /* We already verified dtor_func to be btf_type_is_func * in register_btf_id_dtor_kfuncs. */ dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); addr = kallsyms_lookup_name(dtor_func_name); if (!addr) { ret = -EINVAL; goto end_mod; } field->kptr.dtor = (void *)addr; } found_dtor: field->kptr.btf_id = id; field->kptr.btf = kptr_btf; field->kptr.module = mod; return 0; end_mod: module_put(mod); end_btf: btf_put(kptr_btf); return ret; } static int btf_parse_graph_root(const struct btf *btf, struct btf_field *field, struct btf_field_info *info, const char *node_type_name, size_t node_type_align) { const struct btf_type *t, *n = NULL; const struct btf_member *member; u32 offset; int i; t = btf_type_by_id(btf, info->graph_root.value_btf_id); /* We've already checked that value_btf_id is a struct type. We * just need to figure out the offset of the list_node, and * verify its type. */ for_each_member(i, t, member) { if (strcmp(info->graph_root.node_name, __btf_name_by_offset(btf, member->name_off))) continue; /* Invalid BTF, two members with same name */ if (n) return -EINVAL; n = btf_type_by_id(btf, member->type); if (!__btf_type_is_struct(n)) return -EINVAL; if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) return -EINVAL; offset = __btf_member_bit_offset(n, member); if (offset % 8) return -EINVAL; offset /= 8; if (offset % node_type_align) return -EINVAL; field->graph_root.btf = (struct btf *)btf; field->graph_root.value_btf_id = info->graph_root.value_btf_id; field->graph_root.node_offset = offset; } if (!n) return -ENOENT; return 0; } static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, struct btf_field_info *info) { return btf_parse_graph_root(btf, field, info, "bpf_list_node", __alignof__(struct bpf_list_node)); } static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, struct btf_field_info *info) { return btf_parse_graph_root(btf, field, info, "bpf_rb_node", __alignof__(struct bpf_rb_node)); } static int btf_field_cmp(const void *_a, const void *_b, const void *priv) { const struct btf_field *a = (const struct btf_field *)_a; const struct btf_field *b = (const struct btf_field *)_b; if (a->offset < b->offset) return -1; else if (a->offset > b->offset) return 1; return 0; } struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, u32 field_mask, u32 value_size) { struct btf_field_info info_arr[BTF_FIELDS_MAX]; u32 next_off = 0, field_type_size; struct btf_record *rec; int ret, i, cnt; ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); if (ret < 0) return ERR_PTR(ret); if (!ret) return NULL; cnt = ret; /* This needs to be kzalloc to zero out padding and unused fields, see * comment in btf_record_equal. */ rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); if (!rec) return ERR_PTR(-ENOMEM); rec->spin_lock_off = -EINVAL; rec->timer_off = -EINVAL; rec->refcount_off = -EINVAL; for (i = 0; i < cnt; i++) { field_type_size = btf_field_type_size(info_arr[i].type); if (info_arr[i].off + field_type_size > value_size) { WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); ret = -EFAULT; goto end; } if (info_arr[i].off < next_off) { ret = -EEXIST; goto end; } next_off = info_arr[i].off + field_type_size; rec->field_mask |= info_arr[i].type; rec->fields[i].offset = info_arr[i].off; rec->fields[i].type = info_arr[i].type; rec->fields[i].size = field_type_size; switch (info_arr[i].type) { case BPF_SPIN_LOCK: WARN_ON_ONCE(rec->spin_lock_off >= 0); /* Cache offset for faster lookup at runtime */ rec->spin_lock_off = rec->fields[i].offset; break; case BPF_TIMER: WARN_ON_ONCE(rec->timer_off >= 0); /* Cache offset for faster lookup at runtime */ rec->timer_off = rec->fields[i].offset; break; case BPF_REFCOUNT: WARN_ON_ONCE(rec->refcount_off >= 0); /* Cache offset for faster lookup at runtime */ rec->refcount_off = rec->fields[i].offset; break; case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); if (ret < 0) goto end; break; case BPF_LIST_HEAD: ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); if (ret < 0) goto end; break; case BPF_RB_ROOT: ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); if (ret < 0) goto end; break; case BPF_LIST_NODE: case BPF_RB_NODE: break; default: ret = -EFAULT; goto end; } rec->cnt++; } /* bpf_{list_head, rb_node} require bpf_spin_lock */ if ((btf_record_has_field(rec, BPF_LIST_HEAD) || btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { ret = -EINVAL; goto end; } if (rec->refcount_off < 0 && btf_record_has_field(rec, BPF_LIST_NODE) && btf_record_has_field(rec, BPF_RB_NODE)) { ret = -EINVAL; goto end; } sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, NULL, rec); return rec; end: btf_record_free(rec); return ERR_PTR(ret); } #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT) #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE) int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) { int i; /* There are three types that signify ownership of some other type: * kptr_ref, bpf_list_head, bpf_rb_root. * kptr_ref only supports storing kernel types, which can't store * references to program allocated local types. * * Hence we only need to ensure that bpf_{list_head,rb_root} ownership * does not form cycles. */ if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK)) return 0; for (i = 0; i < rec->cnt; i++) { struct btf_struct_meta *meta; u32 btf_id; if (!(rec->fields[i].type & GRAPH_ROOT_MASK)) continue; btf_id = rec->fields[i].graph_root.value_btf_id; meta = btf_find_struct_meta(btf, btf_id); if (!meta) return -EFAULT; rec->fields[i].graph_root.value_rec = meta->record; /* We need to set value_rec for all root types, but no need * to check ownership cycle for a type unless it's also a * node type. */ if (!(rec->field_mask & GRAPH_NODE_MASK)) continue; /* We need to ensure ownership acyclicity among all types. The * proper way to do it would be to topologically sort all BTF * IDs based on the ownership edges, since there can be multiple * bpf_{list_head,rb_node} in a type. Instead, we use the * following resaoning: * * - A type can only be owned by another type in user BTF if it * has a bpf_{list,rb}_node. Let's call these node types. * - A type can only _own_ another type in user BTF if it has a * bpf_{list_head,rb_root}. Let's call these root types. * * We ensure that if a type is both a root and node, its * element types cannot be root types. * * To ensure acyclicity: * * When A is an root type but not a node, its ownership * chain can be: * A -> B -> C * Where: * - A is an root, e.g. has bpf_rb_root. * - B is both a root and node, e.g. has bpf_rb_node and * bpf_list_head. * - C is only an root, e.g. has bpf_list_node * * When A is both a root and node, some other type already * owns it in the BTF domain, hence it can not own * another root type through any of the ownership edges. * A -> B * Where: * - A is both an root and node. * - B is only an node. */ if (meta->record->field_mask & GRAPH_ROOT_MASK) return -ELOOP; } return 0; } static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *member; void *safe_data; u32 i; safe_data = btf_show_start_struct_type(show, t, type_id, data); if (!safe_data) return; for_each_member(i, t, member) { const struct btf_type *member_type = btf_type_by_id(btf, member->type); const struct btf_kind_operations *ops; u32 member_offset, bitfield_size; u32 bytes_offset; u8 bits8_offset; btf_show_start_member(show, member); member_offset = __btf_member_bit_offset(t, member); bitfield_size = __btf_member_bitfield_size(t, member); bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); bits8_offset = BITS_PER_BYTE_MASKED(member_offset); if (bitfield_size) { safe_data = btf_show_start_type(show, member_type, member->type, data + bytes_offset); if (safe_data) btf_bitfield_show(safe_data, bits8_offset, bitfield_size, show); btf_show_end_type(show); } else { ops = btf_type_ops(member_type); ops->show(btf, member_type, member->type, data + bytes_offset, bits8_offset, show); } btf_show_end_member(show); } btf_show_end_struct_type(show); } static void btf_struct_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *m = show->state.member; /* * First check if any members would be shown (are non-zero). * See comments above "struct btf_show" definition for more * details on how this works at a high-level. */ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { if (!show->state.depth_check) { show->state.depth_check = show->state.depth + 1; show->state.depth_to_show = 0; } __btf_struct_show(btf, t, type_id, data, bits_offset, show); /* Restore saved member data here */ show->state.member = m; if (show->state.depth_check != show->state.depth + 1) return; show->state.depth_check = 0; if (show->state.depth_to_show <= show->state.depth) return; /* * Reaching here indicates we have recursed and found * non-zero child values. */ } __btf_struct_show(btf, t, type_id, data, bits_offset, show); } static struct btf_kind_operations struct_ops = { .check_meta = btf_struct_check_meta, .resolve = btf_struct_resolve, .check_member = btf_struct_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_struct_log, .show = btf_struct_show, }; static int btf_enum_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < member_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_enum_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off, nr_bits, bytes_end, struct_size; u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); if (!nr_bits) { if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } nr_bits = int_bitsize; } else if (nr_bits > int_bitsize) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } struct_size = struct_type->size; bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); if (struct_size < bytes_end) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_enum_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_enum *enums = btf_type_enum(t); struct btf *btf = env->btf; const char *fmt_str; u16 i, nr_enums; u32 meta_needed; nr_enums = btf_type_vlen(t); meta_needed = nr_enums * sizeof(*enums); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (t->size > 8 || !is_power_of_2(t->size)) { btf_verifier_log_type(env, t, "Unexpected size"); return -EINVAL; } /* enum type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for (i = 0; i < nr_enums; i++) { if (!btf_name_offset_valid(btf, enums[i].name_off)) { btf_verifier_log(env, "\tInvalid name_offset:%u", enums[i].name_off); return -EINVAL; } /* enum member must have a valid name */ if (!enums[i].name_off || !btf_name_valid_identifier(btf, enums[i].name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (env->log.level == BPF_LOG_KERNEL) continue; fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; btf_verifier_log(env, fmt_str, __btf_name_by_offset(btf, enums[i].name_off), enums[i].val); } return meta_needed; } static void btf_enum_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } static void btf_enum_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_enum *enums = btf_type_enum(t); u32 i, nr_enums = btf_type_vlen(t); void *safe_data; int v; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; v = *(int *)safe_data; for (i = 0; i < nr_enums; i++) { if (v != enums[i].val) continue; btf_show_type_value(show, "%s", __btf_name_by_offset(btf, enums[i].name_off)); btf_show_end_type(show); return; } if (btf_type_kflag(t)) btf_show_type_value(show, "%d", v); else btf_show_type_value(show, "%u", v); btf_show_end_type(show); } static struct btf_kind_operations enum_ops = { .check_meta = btf_enum_check_meta, .resolve = btf_df_resolve, .check_member = btf_enum_check_member, .check_kflag_member = btf_enum_check_kflag_member, .log_details = btf_enum_log, .show = btf_enum_show, }; static s32 btf_enum64_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_enum64 *enums = btf_type_enum64(t); struct btf *btf = env->btf; const char *fmt_str; u16 i, nr_enums; u32 meta_needed; nr_enums = btf_type_vlen(t); meta_needed = nr_enums * sizeof(*enums); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (t->size > 8 || !is_power_of_2(t->size)) { btf_verifier_log_type(env, t, "Unexpected size"); return -EINVAL; } /* enum type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for (i = 0; i < nr_enums; i++) { if (!btf_name_offset_valid(btf, enums[i].name_off)) { btf_verifier_log(env, "\tInvalid name_offset:%u", enums[i].name_off); return -EINVAL; } /* enum member must have a valid name */ if (!enums[i].name_off || !btf_name_valid_identifier(btf, enums[i].name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (env->log.level == BPF_LOG_KERNEL) continue; fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; btf_verifier_log(env, fmt_str, __btf_name_by_offset(btf, enums[i].name_off), btf_enum64_value(enums + i)); } return meta_needed; } static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_enum64 *enums = btf_type_enum64(t); u32 i, nr_enums = btf_type_vlen(t); void *safe_data; s64 v; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; v = *(u64 *)safe_data; for (i = 0; i < nr_enums; i++) { if (v != btf_enum64_value(enums + i)) continue; btf_show_type_value(show, "%s", __btf_name_by_offset(btf, enums[i].name_off)); btf_show_end_type(show); return; } if (btf_type_kflag(t)) btf_show_type_value(show, "%lld", v); else btf_show_type_value(show, "%llu", v); btf_show_end_type(show); } static struct btf_kind_operations enum64_ops = { .check_meta = btf_enum64_check_meta, .resolve = btf_df_resolve, .check_member = btf_enum_check_member, .check_kflag_member = btf_enum_check_kflag_member, .log_details = btf_enum_log, .show = btf_enum64_show, }; static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_func_proto_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_param *args = (const struct btf_param *)(t + 1); u16 nr_args = btf_type_vlen(t), i; btf_verifier_log(env, "return=%u args=(", t->type); if (!nr_args) { btf_verifier_log(env, "void"); goto done; } if (nr_args == 1 && !args[0].type) { /* Only one vararg */ btf_verifier_log(env, "vararg"); goto done; } btf_verifier_log(env, "%u %s", args[0].type, __btf_name_by_offset(env->btf, args[0].name_off)); for (i = 1; i < nr_args - 1; i++) btf_verifier_log(env, ", %u %s", args[i].type, __btf_name_by_offset(env->btf, args[i].name_off)); if (nr_args > 1) { const struct btf_param *last_arg = &args[nr_args - 1]; if (last_arg->type) btf_verifier_log(env, ", %u %s", last_arg->type, __btf_name_by_offset(env->btf, last_arg->name_off)); else btf_verifier_log(env, ", vararg"); } done: btf_verifier_log(env, ")"); } static struct btf_kind_operations func_proto_ops = { .check_meta = btf_func_proto_check_meta, .resolve = btf_df_resolve, /* * BTF_KIND_FUNC_PROTO cannot be directly referred by * a struct's member. * * It should be a function pointer instead. * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) * * Hence, there is no btf_func_check_member(). */ .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_func_proto_log, .show = btf_df_show, }; static s32 btf_func_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { btf_verifier_log_type(env, t, "Invalid func linkage"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_func_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *t = v->t; u32 next_type_id = t->type; int err; err = btf_func_check(env, t); if (err) return err; env_stack_pop_resolved(env, next_type_id, 0); return 0; } static struct btf_kind_operations func_ops = { .check_meta = btf_func_check_meta, .resolve = btf_func_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_df_show, }; static s32 btf_var_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_var *var; u32 meta_needed = sizeof(*var); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!t->name_off || !__btf_name_valid(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } /* A var cannot be in type void */ if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } var = btf_type_var(t); if (var->linkage != BTF_VAR_STATIC && var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { btf_verifier_log_type(env, t, "Linkage not supported"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_var *var = btf_type_var(t); btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); } static const struct btf_kind_operations var_ops = { .check_meta = btf_var_check_meta, .resolve = btf_var_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_var_log, .show = btf_var_show, }; static s32 btf_datasec_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_var_secinfo *vsi; u64 last_vsi_end_off = 0, sum = 0; u32 i, meta_needed; meta_needed = btf_type_vlen(t) * sizeof(*vsi); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (!t->size) { btf_verifier_log_type(env, t, "size == 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!t->name_off || !btf_name_valid_section(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for_each_vsi(i, t, vsi) { /* A var cannot be in type void */ if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { btf_verifier_log_vsi(env, t, vsi, "Invalid type_id"); return -EINVAL; } if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid offset"); return -EINVAL; } if (!vsi->size || vsi->size > t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid size"); return -EINVAL; } last_vsi_end_off = vsi->offset + vsi->size; if (last_vsi_end_off > t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid offset+size"); return -EINVAL; } btf_verifier_log_vsi(env, t, vsi, NULL); sum += vsi->size; } if (t->size < sum) { btf_verifier_log_type(env, t, "Invalid btf_info size"); return -EINVAL; } return meta_needed; } static int btf_datasec_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_var_secinfo *vsi; struct btf *btf = env->btf; u16 i; env->resolve_mode = RESOLVE_TBD; for_each_vsi_from(i, v->next_member, v->t, vsi) { u32 var_type_id = vsi->type, type_id, type_size = 0; const struct btf_type *var_type = btf_type_by_id(env->btf, var_type_id); if (!var_type || !btf_type_is_var(var_type)) { btf_verifier_log_vsi(env, v->t, vsi, "Not a VAR kind member"); return -EINVAL; } if (!env_type_is_resolve_sink(env, var_type) && !env_type_is_resolved(env, var_type_id)) { env_stack_set_next_member(env, i + 1); return env_stack_push(env, var_type, var_type_id); } type_id = var_type->type; if (!btf_type_id_size(btf, &type_id, &type_size)) { btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); return -EINVAL; } if (vsi->size < type_size) { btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); return -EINVAL; } } env_stack_pop_resolved(env, 0, 0); return 0; } static void btf_datasec_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } static void btf_datasec_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_var_secinfo *vsi; const struct btf_type *var; u32 i; if (!btf_show_start_type(show, t, type_id, data)) return; btf_show_type_value(show, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off)); for_each_vsi(i, t, vsi) { var = btf_type_by_id(btf, vsi->type); if (i) btf_show(show, ","); btf_type_ops(var)->show(btf, var, vsi->type, data + vsi->offset, bits_offset, show); } btf_show_end_type(show); } static const struct btf_kind_operations datasec_ops = { .check_meta = btf_datasec_check_meta, .resolve = btf_datasec_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_datasec_log, .show = btf_datasec_show, }; static s32 btf_float_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && t->size != 16) { btf_verifier_log_type(env, t, "Invalid type_size"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_float_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u64 start_offset_bytes; u64 end_offset_bytes; u64 misalign_bits; u64 align_bytes; u64 align_bits; /* Different architectures have different alignment requirements, so * here we check only for the reasonable minimum. This way we ensure * that types after CO-RE can pass the kernel BTF verifier. */ align_bytes = min_t(u64, sizeof(void *), member_type->size); align_bits = align_bytes * BITS_PER_BYTE; div64_u64_rem(member->offset, align_bits, &misalign_bits); if (misalign_bits) { btf_verifier_log_member(env, struct_type, member, "Member is not properly aligned"); return -EINVAL; } start_offset_bytes = member->offset / BITS_PER_BYTE; end_offset_bytes = start_offset_bytes + member_type->size; if (end_offset_bytes > struct_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static void btf_float_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u", t->size); } static const struct btf_kind_operations float_ops = { .check_meta = btf_float_check_meta, .resolve = btf_df_resolve, .check_member = btf_float_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_float_log, .show = btf_df_show, }; static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_decl_tag *tag; u32 meta_needed = sizeof(*tag); s32 component_idx; const char *value; if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } value = btf_name_by_offset(env->btf, t->name_off); if (!value || !value[0]) { btf_verifier_log_type(env, t, "Invalid value"); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } component_idx = btf_type_decl_tag(t)->component_idx; if (component_idx < -1) { btf_verifier_log_type(env, t, "Invalid component_idx"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static int btf_decl_tag_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; s32 component_idx; u32 vlen; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || !btf_type_is_decl_tag_target(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); component_idx = btf_type_decl_tag(t)->component_idx; if (component_idx != -1) { if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { btf_verifier_log_type(env, v->t, "Invalid component_idx"); return -EINVAL; } if (btf_type_is_struct(next_type)) { vlen = btf_type_vlen(next_type); } else { /* next_type should be a function */ next_type = btf_type_by_id(btf, next_type->type); vlen = btf_type_vlen(next_type); } if ((u32)component_idx >= vlen) { btf_verifier_log_type(env, v->t, "Invalid component_idx"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "type=%u component_idx=%d", t->type, btf_type_decl_tag(t)->component_idx); } static const struct btf_kind_operations decl_tag_ops = { .check_meta = btf_decl_tag_check_meta, .resolve = btf_decl_tag_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_decl_tag_log, .show = btf_df_show, }; static int btf_func_proto_check(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_type *ret_type; const struct btf_param *args; const struct btf *btf; u16 nr_args, i; int err; btf = env->btf; args = (const struct btf_param *)(t + 1); nr_args = btf_type_vlen(t); /* Check func return type which could be "void" (t->type == 0) */ if (t->type) { u32 ret_type_id = t->type; ret_type = btf_type_by_id(btf, ret_type_id); if (!ret_type) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } if (btf_type_is_resolve_source_only(ret_type)) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } if (btf_type_needs_resolve(ret_type) && !env_type_is_resolved(env, ret_type_id)) { err = btf_resolve(env, ret_type, ret_type_id); if (err) return err; } /* Ensure the return type is a type that has a size */ if (!btf_type_id_size(btf, &ret_type_id, NULL)) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } } if (!nr_args) return 0; /* Last func arg type_id could be 0 if it is a vararg */ if (!args[nr_args - 1].type) { if (args[nr_args - 1].name_off) { btf_verifier_log_type(env, t, "Invalid arg#%u", nr_args); return -EINVAL; } nr_args--; } for (i = 0; i < nr_args; i++) { const struct btf_type *arg_type; u32 arg_type_id; arg_type_id = args[i].type; arg_type = btf_type_by_id(btf, arg_type_id); if (!arg_type) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } if (btf_type_is_resolve_source_only(arg_type)) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } if (args[i].name_off && (!btf_name_offset_valid(btf, args[i].name_off) || !btf_name_valid_identifier(btf, args[i].name_off))) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } if (btf_type_needs_resolve(arg_type) && !env_type_is_resolved(env, arg_type_id)) { err = btf_resolve(env, arg_type, arg_type_id); if (err) return err; } if (!btf_type_id_size(btf, &arg_type_id, NULL)) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } } return 0; } static int btf_func_check(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_type *proto_type; const struct btf_param *args; const struct btf *btf; u16 nr_args, i; btf = env->btf; proto_type = btf_type_by_id(btf, t->type); if (!proto_type || !btf_type_is_func_proto(proto_type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } args = (const struct btf_param *)(proto_type + 1); nr_args = btf_type_vlen(proto_type); for (i = 0; i < nr_args; i++) { if (!args[i].name_off && args[i].type) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } } return 0; } static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { [BTF_KIND_INT] = &int_ops, [BTF_KIND_PTR] = &ptr_ops, [BTF_KIND_ARRAY] = &array_ops, [BTF_KIND_STRUCT] = &struct_ops, [BTF_KIND_UNION] = &struct_ops, [BTF_KIND_ENUM] = &enum_ops, [BTF_KIND_FWD] = &fwd_ops, [BTF_KIND_TYPEDEF] = &modifier_ops, [BTF_KIND_VOLATILE] = &modifier_ops, [BTF_KIND_CONST] = &modifier_ops, [BTF_KIND_RESTRICT] = &modifier_ops, [BTF_KIND_FUNC] = &func_ops, [BTF_KIND_FUNC_PROTO] = &func_proto_ops, [BTF_KIND_VAR] = &var_ops, [BTF_KIND_DATASEC] = &datasec_ops, [BTF_KIND_FLOAT] = &float_ops, [BTF_KIND_DECL_TAG] = &decl_tag_ops, [BTF_KIND_TYPE_TAG] = &modifier_ops, [BTF_KIND_ENUM64] = &enum64_ops, }; static s32 btf_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 saved_meta_left = meta_left; s32 var_meta_size; if (meta_left < sizeof(*t)) { btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", env->log_type_id, meta_left, sizeof(*t)); return -EINVAL; } meta_left -= sizeof(*t); if (t->info & ~BTF_INFO_MASK) { btf_verifier_log(env, "[%u] Invalid btf_info:%x", env->log_type_id, t->info); return -EINVAL; } if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { btf_verifier_log(env, "[%u] Invalid kind:%u", env->log_type_id, BTF_INFO_KIND(t->info)); return -EINVAL; } if (!btf_name_offset_valid(env->btf, t->name_off)) { btf_verifier_log(env, "[%u] Invalid name_offset:%u", env->log_type_id, t->name_off); return -EINVAL; } var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); if (var_meta_size < 0) return var_meta_size; meta_left -= var_meta_size; return saved_meta_left - meta_left; } static int btf_check_all_metas(struct btf_verifier_env *env) { struct btf *btf = env->btf; struct btf_header *hdr; void *cur, *end; hdr = &btf->hdr; cur = btf->nohdr_data + hdr->type_off; end = cur + hdr->type_len; env->log_type_id = btf->base_btf ? btf->start_id : 1; while (cur < end) { struct btf_type *t = cur; s32 meta_size; meta_size = btf_check_meta(env, t, end - cur); if (meta_size < 0) return meta_size; btf_add_type(env, t); cur += meta_size; env->log_type_id++; } return 0; } static bool btf_resolve_valid(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { struct btf *btf = env->btf; if (!env_type_is_resolved(env, type_id)) return false; if (btf_type_is_struct(t) || btf_type_is_datasec(t)) return !btf_resolved_type_id(btf, type_id) && !btf_resolved_type_size(btf, type_id); if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) return btf_resolved_type_id(btf, type_id) && !btf_resolved_type_size(btf, type_id); if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || btf_type_is_var(t)) { t = btf_type_id_resolve(btf, &type_id); return t && !btf_type_is_modifier(t) && !btf_type_is_var(t) && !btf_type_is_datasec(t); } if (btf_type_is_array(t)) { const struct btf_array *array = btf_type_array(t); const struct btf_type *elem_type; u32 elem_type_id = array->type; u32 elem_size; elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); return elem_type && !btf_type_is_modifier(elem_type) && (array->nelems * elem_size == btf_resolved_type_size(btf, type_id)); } return false; } static int btf_resolve(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { u32 save_log_type_id = env->log_type_id; const struct resolve_vertex *v; int err = 0; env->resolve_mode = RESOLVE_TBD; env_stack_push(env, t, type_id); while (!err && (v = env_stack_peak(env))) { env->log_type_id = v->type_id; err = btf_type_ops(v->t)->resolve(env, v); } env->log_type_id = type_id; if (err == -E2BIG) { btf_verifier_log_type(env, t, "Exceeded max resolving depth:%u", MAX_RESOLVE_DEPTH); } else if (err == -EEXIST) { btf_verifier_log_type(env, t, "Loop detected"); } /* Final sanity check */ if (!err && !btf_resolve_valid(env, t, type_id)) { btf_verifier_log_type(env, t, "Invalid resolve state"); err = -EINVAL; } env->log_type_id = save_log_type_id; return err; } static int btf_check_all_types(struct btf_verifier_env *env) { struct btf *btf = env->btf; const struct btf_type *t; u32 type_id, i; int err; err = env_resolve_init(env); if (err) return err; env->phase++; for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { type_id = btf->start_id + i; t = btf_type_by_id(btf, type_id); env->log_type_id = type_id; if (btf_type_needs_resolve(t) && !env_type_is_resolved(env, type_id)) { err = btf_resolve(env, t, type_id); if (err) return err; } if (btf_type_is_func_proto(t)) { err = btf_func_proto_check(env, t); if (err) return err; } } return 0; } static int btf_parse_type_sec(struct btf_verifier_env *env) { const struct btf_header *hdr = &env->btf->hdr; int err; /* Type section must align to 4 bytes */ if (hdr->type_off & (sizeof(u32) - 1)) { btf_verifier_log(env, "Unaligned type_off"); return -EINVAL; } if (!env->btf->base_btf && !hdr->type_len) { btf_verifier_log(env, "No type found"); return -EINVAL; } err = btf_check_all_metas(env); if (err) return err; return btf_check_all_types(env); } static int btf_parse_str_sec(struct btf_verifier_env *env) { const struct btf_header *hdr; struct btf *btf = env->btf; const char *start, *end; hdr = &btf->hdr; start = btf->nohdr_data + hdr->str_off; end = start + hdr->str_len; if (end != btf->data + btf->data_size) { btf_verifier_log(env, "String section is not at the end"); return -EINVAL; } btf->strings = start; if (btf->base_btf && !hdr->str_len) return 0; if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { btf_verifier_log(env, "Invalid string section"); return -EINVAL; } if (!btf->base_btf && start[0]) { btf_verifier_log(env, "Invalid string section"); return -EINVAL; } return 0; } static const size_t btf_sec_info_offset[] = { offsetof(struct btf_header, type_off), offsetof(struct btf_header, str_off), }; static int btf_sec_info_cmp(const void *a, const void *b) { const struct btf_sec_info *x = a; const struct btf_sec_info *y = b; return (int)(x->off - y->off) ? : (int)(x->len - y->len); } static int btf_check_sec_info(struct btf_verifier_env *env, u32 btf_data_size) { struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; u32 total, expected_total, i; const struct btf_header *hdr; const struct btf *btf; btf = env->btf; hdr = &btf->hdr; /* Populate the secs from hdr */ for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) secs[i] = *(struct btf_sec_info *)((void *)hdr + btf_sec_info_offset[i]); sort(secs, ARRAY_SIZE(btf_sec_info_offset), sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); /* Check for gaps and overlap among sections */ total = 0; expected_total = btf_data_size - hdr->hdr_len; for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { if (expected_total < secs[i].off) { btf_verifier_log(env, "Invalid section offset"); return -EINVAL; } if (total < secs[i].off) { /* gap */ btf_verifier_log(env, "Unsupported section found"); return -EINVAL; } if (total > secs[i].off) { btf_verifier_log(env, "Section overlap found"); return -EINVAL; } if (expected_total - total < secs[i].len) { btf_verifier_log(env, "Total section length too long"); return -EINVAL; } total += secs[i].len; } /* There is data other than hdr and known sections */ if (expected_total != total) { btf_verifier_log(env, "Unsupported section found"); return -EINVAL; } return 0; } static int btf_parse_hdr(struct btf_verifier_env *env) { u32 hdr_len, hdr_copy, btf_data_size; const struct btf_header *hdr; struct btf *btf; btf = env->btf; btf_data_size = btf->data_size; if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { btf_verifier_log(env, "hdr_len not found"); return -EINVAL; } hdr = btf->data; hdr_len = hdr->hdr_len; if (btf_data_size < hdr_len) { btf_verifier_log(env, "btf_header not found"); return -EINVAL; } /* Ensure the unsupported header fields are zero */ if (hdr_len > sizeof(btf->hdr)) { u8 *expected_zero = btf->data + sizeof(btf->hdr); u8 *end = btf->data + hdr_len; for (; expected_zero < end; expected_zero++) { if (*expected_zero) { btf_verifier_log(env, "Unsupported btf_header"); return -E2BIG; } } } hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); memcpy(&btf->hdr, btf->data, hdr_copy); hdr = &btf->hdr; btf_verifier_log_hdr(env, btf_data_size); if (hdr->magic != BTF_MAGIC) { btf_verifier_log(env, "Invalid magic"); return -EINVAL; } if (hdr->version != BTF_VERSION) { btf_verifier_log(env, "Unsupported version"); return -ENOTSUPP; } if (hdr->flags) { btf_verifier_log(env, "Unsupported flags"); return -ENOTSUPP; } if (!btf->base_btf && btf_data_size == hdr->hdr_len) { btf_verifier_log(env, "No data"); return -EINVAL; } return btf_check_sec_info(env, btf_data_size); } static const char *alloc_obj_fields[] = { "bpf_spin_lock", "bpf_list_head", "bpf_list_node", "bpf_rb_root", "bpf_rb_node", "bpf_refcount", }; static struct btf_struct_metas * btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) { union { struct btf_id_set set; struct { u32 _cnt; u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; } _arr; } aof; struct btf_struct_metas *tab = NULL; int i, n, id, ret; BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); memset(&aof, 0, sizeof(aof)); for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { /* Try to find whether this special type exists in user BTF, and * if so remember its ID so we can easily find it among members * of structs that we iterate in the next loop. */ id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); if (id < 0) continue; aof.set.ids[aof.set.cnt++] = id; } if (!aof.set.cnt) return NULL; sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); n = btf_nr_types(btf); for (i = 1; i < n; i++) { struct btf_struct_metas *new_tab; const struct btf_member *member; struct btf_struct_meta *type; struct btf_record *record; const struct btf_type *t; int j, tab_cnt; t = btf_type_by_id(btf, i); if (!t) { ret = -EINVAL; goto free; } if (!__btf_type_is_struct(t)) continue; cond_resched(); for_each_member(j, t, member) { if (btf_id_set_contains(&aof.set, member->type)) goto parse; } continue; parse: tab_cnt = tab ? tab->cnt : 0; new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), GFP_KERNEL | __GFP_NOWARN); if (!new_tab) { ret = -ENOMEM; goto free; } if (!tab) new_tab->cnt = 0; tab = new_tab; type = &tab->types[tab->cnt]; type->btf_id = i; record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); /* The record cannot be unset, treat it as an error if so */ if (IS_ERR_OR_NULL(record)) { ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; goto free; } type->record = record; tab->cnt++; } return tab; free: btf_struct_metas_free(tab); return ERR_PTR(ret); } struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) { struct btf_struct_metas *tab; BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); tab = btf->struct_meta_tab; if (!tab) return NULL; return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); } static int btf_check_type_tags(struct btf_verifier_env *env, struct btf *btf, int start_id) { int i, n, good_id = start_id - 1; bool in_tags; n = btf_nr_types(btf); for (i = start_id; i < n; i++) { const struct btf_type *t; int chain_limit = 32; u32 cur_id = i; t = btf_type_by_id(btf, i); if (!t) return -EINVAL; if (!btf_type_is_modifier(t)) continue; cond_resched(); in_tags = btf_type_is_type_tag(t); while (btf_type_is_modifier(t)) { if (!chain_limit--) { btf_verifier_log(env, "Max chain length or cycle detected"); return -ELOOP; } if (btf_type_is_type_tag(t)) { if (!in_tags) { btf_verifier_log(env, "Type tags don't precede modifiers"); return -EINVAL; } } else if (in_tags) { in_tags = false; } if (cur_id <= good_id) break; /* Move to next type */ cur_id = t->type; t = btf_type_by_id(btf, cur_id); if (!t) return -EINVAL; } good_id = i; } return 0; } static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) { u32 log_true_size; int err; err = bpf_vlog_finalize(log, &log_true_size); if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), &log_true_size, sizeof(log_true_size))) err = -EFAULT; return err; } static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) { bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); struct btf_struct_metas *struct_meta_tab; struct btf_verifier_env *env = NULL; struct btf *btf = NULL; u8 *data; int err, ret; if (attr->btf_size > BTF_MAX_SIZE) return ERR_PTR(-E2BIG); env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); /* user could have requested verbose verifier output * and supplied buffer to store the verification trace */ err = bpf_vlog_init(&env->log, attr->btf_log_level, log_ubuf, attr->btf_log_size); if (err) goto errout_free; btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); if (!data) { err = -ENOMEM; goto errout; } btf->data = data; btf->data_size = attr->btf_size; if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { err = -EFAULT; goto errout; } err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_parse_type_sec(env); if (err) goto errout; err = btf_check_type_tags(env, btf, 1); if (err) goto errout; struct_meta_tab = btf_parse_struct_metas(&env->log, btf); if (IS_ERR(struct_meta_tab)) { err = PTR_ERR(struct_meta_tab); goto errout; } btf->struct_meta_tab = struct_meta_tab; if (struct_meta_tab) { int i; for (i = 0; i < struct_meta_tab->cnt; i++) { err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); if (err < 0) goto errout_meta; } } err = finalize_log(&env->log, uattr, uattr_size); if (err) goto errout_free; btf_verifier_env_free(env); refcount_set(&btf->refcnt, 1); return btf; errout_meta: btf_free_struct_meta_tab(btf); errout: /* overwrite err with -ENOSPC or -EFAULT */ ret = finalize_log(&env->log, uattr, uattr_size); if (ret) err = ret; errout_free: btf_verifier_env_free(env); if (btf) btf_free(btf); return ERR_PTR(err); } extern char __weak __start_BTF[]; extern char __weak __stop_BTF[]; extern struct btf *btf_vmlinux; #define BPF_MAP_TYPE(_id, _ops) #define BPF_LINK_TYPE(_id, _name) static union { struct bpf_ctx_convert { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ prog_ctx_type _id##_prog; \ kern_ctx_type _id##_kern; #include #undef BPF_PROG_TYPE } *__t; /* 't' is written once under lock. Read many times. */ const struct btf_type *t; } bpf_ctx_convert; enum { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ __ctx_convert##_id, #include #undef BPF_PROG_TYPE __ctx_convert_unused, /* to avoid empty enum in extreme .config */ }; static u8 bpf_ctx_convert_map[] = { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ [_id] = __ctx_convert##_id, #include #undef BPF_PROG_TYPE 0, /* avoid empty array */ }; #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE const struct btf_member * btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, enum bpf_prog_type prog_type, int arg) { const struct btf_type *conv_struct; const struct btf_type *ctx_struct; const struct btf_member *ctx_type; const char *tname, *ctx_tname; conv_struct = bpf_ctx_convert.t; if (!conv_struct) { bpf_log(log, "btf_vmlinux is malformed\n"); return NULL; } t = btf_type_by_id(btf, t->type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!btf_type_is_struct(t)) { /* Only pointer to struct is supported for now. * That means that BPF_PROG_TYPE_TRACEPOINT with BTF * is not supported yet. * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. */ return NULL; } tname = btf_name_by_offset(btf, t->name_off); if (!tname) { bpf_log(log, "arg#%d struct doesn't have a name\n", arg); return NULL; } /* prog_type is valid bpf program type. No need for bounds check. */ ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; /* ctx_struct is a pointer to prog_ctx_type in vmlinux. * Like 'struct __sk_buff' */ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); if (!ctx_struct) /* should not happen */ return NULL; again: ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); if (!ctx_tname) { /* should not happen */ bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); return NULL; } /* only compare that prog's ctx type name is the same as * kernel expects. No need to compare field by field. * It's ok for bpf prog to do: * struct __sk_buff {}; * int socket_filter_bpf_prog(struct __sk_buff *skb) * { // no fields of skb are ever used } */ if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) return ctx_type; if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) return ctx_type; if (strcmp(ctx_tname, tname)) { /* bpf_user_pt_regs_t is a typedef, so resolve it to * underlying struct and check name again */ if (!btf_type_is_modifier(ctx_struct)) return NULL; while (btf_type_is_modifier(ctx_struct)) ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); goto again; } return ctx_type; } static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *t, enum bpf_prog_type prog_type, int arg) { const struct btf_member *prog_ctx_type, *kern_ctx_type; prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); if (!prog_ctx_type) return -ENOENT; kern_ctx_type = prog_ctx_type + 1; return kern_ctx_type->type; } int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) { const struct btf_member *kctx_member; const struct btf_type *conv_struct; const struct btf_type *kctx_type; u32 kctx_type_id; conv_struct = bpf_ctx_convert.t; /* get member for kernel ctx type */ kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; kctx_type_id = kctx_member->type; kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); if (!btf_type_is_struct(kctx_type)) { bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); return -EINVAL; } return kctx_type_id; } BTF_ID_LIST(bpf_ctx_convert_btf_id) BTF_ID(struct, bpf_ctx_convert) struct btf *btf_parse_vmlinux(void) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL; int err; env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; log->level = BPF_LOG_KERNEL; btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; btf->data = __start_BTF; btf->data_size = __stop_BTF - __start_BTF; btf->kernel_btf = true; snprintf(btf->name, sizeof(btf->name), "vmlinux"); err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_check_all_metas(env); if (err) goto errout; err = btf_check_type_tags(env, btf, 1); if (err) goto errout; /* btf_parse_vmlinux() runs under bpf_verifier_lock */ bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); bpf_struct_ops_init(btf, log); refcount_set(&btf->refcnt, 1); err = btf_alloc_id(btf); if (err) goto errout; btf_verifier_env_free(env); return btf; errout: btf_verifier_env_free(env); if (btf) { kvfree(btf->types); kfree(btf); } return ERR_PTR(err); } #ifdef CONFIG_DEBUG_INFO_BTF_MODULES static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL, *base_btf; int err; base_btf = bpf_get_btf_vmlinux(); if (IS_ERR(base_btf)) return base_btf; if (!base_btf) return ERR_PTR(-EINVAL); env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; log->level = BPF_LOG_KERNEL; btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; btf->base_btf = base_btf; btf->start_id = base_btf->nr_types; btf->start_str_off = base_btf->hdr.str_len; btf->kernel_btf = true; snprintf(btf->name, sizeof(btf->name), "%s", module_name); btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); if (!btf->data) { err = -ENOMEM; goto errout; } memcpy(btf->data, data, data_size); btf->data_size = data_size; err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_check_all_metas(env); if (err) goto errout; err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); if (err) goto errout; btf_verifier_env_free(env); refcount_set(&btf->refcnt, 1); return btf; errout: btf_verifier_env_free(env); if (btf) { kvfree(btf->data); kvfree(btf->types); kfree(btf); } return ERR_PTR(err); } #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) { struct bpf_prog *tgt_prog = prog->aux->dst_prog; if (tgt_prog) return tgt_prog->aux->btf; else return prog->aux->attach_btf; } static bool is_int_ptr(struct btf *btf, const struct btf_type *t) { /* skip modifiers */ t = btf_type_skip_modifiers(btf, t->type, NULL); return btf_type_is_int(t); } static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, int off) { const struct btf_param *args; const struct btf_type *t; u32 offset = 0, nr_args; int i; if (!func_proto) return off / 8; nr_args = btf_type_vlen(func_proto); args = (const struct btf_param *)(func_proto + 1); for (i = 0; i < nr_args; i++) { t = btf_type_skip_modifiers(btf, args[i].type, NULL); offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); if (off < offset) return i; } t = btf_type_skip_modifiers(btf, func_proto->type, NULL); offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); if (off < offset) return nr_args; return nr_args + 1; } static bool prog_args_trusted(const struct bpf_prog *prog) { enum bpf_attach_type atype = prog->expected_attach_type; switch (prog->type) { case BPF_PROG_TYPE_TRACING: return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; case BPF_PROG_TYPE_LSM: return bpf_lsm_is_trusted(prog); case BPF_PROG_TYPE_STRUCT_OPS: return true; default: return false; } } bool btf_ctx_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const struct btf_type *t = prog->aux->attach_func_proto; struct bpf_prog *tgt_prog = prog->aux->dst_prog; struct btf *btf = bpf_prog_get_target_btf(prog); const char *tname = prog->aux->attach_func_name; struct bpf_verifier_log *log = info->log; const struct btf_param *args; const char *tag_value; u32 nr_args, arg; int i, ret; if (off % 8) { bpf_log(log, "func '%s' offset %d is not multiple of 8\n", tname, off); return false; } arg = get_ctx_arg_idx(btf, t, off); args = (const struct btf_param *)(t + 1); /* if (t == NULL) Fall back to default BPF prog with * MAX_BPF_FUNC_REG_ARGS u64 arguments. */ nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; if (prog->aux->attach_btf_trace) { /* skip first 'void *__data' argument in btf_trace_##name typedef */ args++; nr_args--; } if (arg > nr_args) { bpf_log(log, "func '%s' doesn't have %d-th argument\n", tname, arg + 1); return false; } if (arg == nr_args) { switch (prog->expected_attach_type) { case BPF_LSM_CGROUP: case BPF_LSM_MAC: case BPF_TRACE_FEXIT: /* When LSM programs are attached to void LSM hooks * they use FEXIT trampolines and when attached to * int LSM hooks, they use MODIFY_RETURN trampolines. * * While the LSM programs are BPF_MODIFY_RETURN-like * the check: * * if (ret_type != 'int') * return -EINVAL; * * is _not_ done here. This is still safe as LSM hooks * have only void and int return types. */ if (!t) return true; t = btf_type_by_id(btf, t->type); break; case BPF_MODIFY_RETURN: /* For now the BPF_MODIFY_RETURN can only be attached to * functions that return an int. */ if (!t) return false; t = btf_type_skip_modifiers(btf, t->type, NULL); if (!btf_type_is_small_int(t)) { bpf_log(log, "ret type %s not allowed for fmod_ret\n", btf_type_str(t)); return false; } break; default: bpf_log(log, "func '%s' doesn't have %d-th argument\n", tname, arg + 1); return false; } } else { if (!t) /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ return true; t = btf_type_by_id(btf, args[arg].type); } /* skip modifiers */ while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) /* accessing a scalar */ return true; if (!btf_type_is_ptr(t)) { bpf_log(log, "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", tname, arg, __btf_name_by_offset(btf, t->name_off), btf_type_str(t)); return false; } /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; u32 type, flag; type = base_type(ctx_arg_info->reg_type); flag = type_flag(ctx_arg_info->reg_type); if (ctx_arg_info->offset == off && type == PTR_TO_BUF && (flag & PTR_MAYBE_NULL)) { info->reg_type = ctx_arg_info->reg_type; return true; } } if (t->type == 0) /* This is a pointer to void. * It is the same as scalar from the verifier safety pov. * No further pointer walking is allowed. */ return true; if (is_int_ptr(btf, t)) return true; /* this is a pointer to another type */ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; if (ctx_arg_info->offset == off) { if (!ctx_arg_info->btf_id) { bpf_log(log,"invalid btf_id for context argument offset %u\n", off); return false; } info->reg_type = ctx_arg_info->reg_type; info->btf = btf_vmlinux; info->btf_id = ctx_arg_info->btf_id; return true; } } info->reg_type = PTR_TO_BTF_ID; if (prog_args_trusted(prog)) info->reg_type |= PTR_TRUSTED; if (tgt_prog) { enum bpf_prog_type tgt_type; if (tgt_prog->type == BPF_PROG_TYPE_EXT) tgt_type = tgt_prog->aux->saved_dst_prog_type; else tgt_type = tgt_prog->type; ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); if (ret > 0) { info->btf = btf_vmlinux; info->btf_id = ret; return true; } else { return false; } } info->btf = btf; info->btf_id = t->type; t = btf_type_by_id(btf, t->type); if (btf_type_is_type_tag(t)) { tag_value = __btf_name_by_offset(btf, t->name_off); if (strcmp(tag_value, "user") == 0) info->reg_type |= MEM_USER; if (strcmp(tag_value, "percpu") == 0) info->reg_type |= MEM_PERCPU; } /* skip modifiers */ while (btf_type_is_modifier(t)) { info->btf_id = t->type; t = btf_type_by_id(btf, t->type); } if (!btf_type_is_struct(t)) { bpf_log(log, "func '%s' arg%d type %s is not a struct\n", tname, arg, btf_type_str(t)); return false; } bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", tname, arg, info->btf_id, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); return true; } enum bpf_struct_walk_result { /* < 0 error */ WALK_SCALAR = 0, WALK_PTR, WALK_STRUCT, }; static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int off, int size, u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name) { u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; const struct btf_type *mtype, *elem_type = NULL; const struct btf_member *member; const char *tname, *mname, *tag_value; u32 vlen, elem_id, mid; again: if (btf_type_is_modifier(t)) t = btf_type_skip_modifiers(btf, t->type, NULL); tname = __btf_name_by_offset(btf, t->name_off); if (!btf_type_is_struct(t)) { bpf_log(log, "Type '%s' is not a struct\n", tname); return -EINVAL; } vlen = btf_type_vlen(t); if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) /* * walking unions yields untrusted pointers * with exception of __bpf_md_ptr and other * unions with a single member */ *flag |= PTR_UNTRUSTED; if (off + size > t->size) { /* If the last element is a variable size array, we may * need to relax the rule. */ struct btf_array *array_elem; if (vlen == 0) goto error; member = btf_type_member(t) + vlen - 1; mtype = btf_type_skip_modifiers(btf, member->type, NULL); if (!btf_type_is_array(mtype)) goto error; array_elem = (struct btf_array *)(mtype + 1); if (array_elem->nelems != 0) goto error; moff = __btf_member_bit_offset(t, member) / 8; if (off < moff) goto error; /* allow structure and integer */ t = btf_type_skip_modifiers(btf, array_elem->type, NULL); if (btf_type_is_int(t)) return WALK_SCALAR; if (!btf_type_is_struct(t)) goto error; off = (off - moff) % t->size; goto again; error: bpf_log(log, "access beyond struct %s at off %u size %u\n", tname, off, size); return -EACCES; } for_each_member(i, t, member) { /* offset of the field in bytes */ moff = __btf_member_bit_offset(t, member) / 8; if (off + size <= moff) /* won't find anything, field is already too far */ break; if (__btf_member_bitfield_size(t, member)) { u32 end_bit = __btf_member_bit_offset(t, member) + __btf_member_bitfield_size(t, member); /* off <= moff instead of off == moff because clang * does not generate a BTF member for anonymous * bitfield like the ":16" here: * struct { * int :16; * int x:8; * }; */ if (off <= moff && BITS_ROUNDUP_BYTES(end_bit) <= off + size) return WALK_SCALAR; /* off may be accessing a following member * * or * * Doing partial access at either end of this * bitfield. Continue on this case also to * treat it as not accessing this bitfield * and eventually error out as field not * found to keep it simple. * It could be relaxed if there was a legit * partial access case later. */ continue; } /* In case of "off" is pointing to holes of a struct */ if (off < moff) break; /* type of the field */ mid = member->type; mtype = btf_type_by_id(btf, member->type); mname = __btf_name_by_offset(btf, member->name_off); mtype = __btf_resolve_size(btf, mtype, &msize, &elem_type, &elem_id, &total_nelems, &mid); if (IS_ERR(mtype)) { bpf_log(log, "field %s doesn't have size\n", mname); return -EFAULT; } mtrue_end = moff + msize; if (off >= mtrue_end) /* no overlap with member, keep iterating */ continue; if (btf_type_is_array(mtype)) { u32 elem_idx; /* __btf_resolve_size() above helps to * linearize a multi-dimensional array. * * The logic here is treating an array * in a struct as the following way: * * struct outer { * struct inner array[2][2]; * }; * * looks like: * * struct outer { * struct inner array_elem0; * struct inner array_elem1; * struct inner array_elem2; * struct inner array_elem3; * }; * * When accessing outer->array[1][0], it moves * moff to "array_elem2", set mtype to * "struct inner", and msize also becomes * sizeof(struct inner). Then most of the * remaining logic will fall through without * caring the current member is an array or * not. * * Unlike mtype/msize/moff, mtrue_end does not * change. The naming difference ("_true") tells * that it is not always corresponding to * the current mtype/msize/moff. * It is the true end of the current * member (i.e. array in this case). That * will allow an int array to be accessed like * a scratch space, * i.e. allow access beyond the size of * the array's element as long as it is * within the mtrue_end boundary. */ /* skip empty array */ if (moff == mtrue_end) continue; msize /= total_nelems; elem_idx = (off - moff) / msize; moff += elem_idx * msize; mtype = elem_type; mid = elem_id; } /* the 'off' we're looking for is either equal to start * of this field or inside of this struct */ if (btf_type_is_struct(mtype)) { /* our field must be inside that union or struct */ t = mtype; /* return if the offset matches the member offset */ if (off == moff) { *next_btf_id = mid; return WALK_STRUCT; } /* adjust offset we're looking for */ off -= moff; goto again; } if (btf_type_is_ptr(mtype)) { const struct btf_type *stype, *t; enum bpf_type_flag tmp_flag = 0; u32 id; if (msize != size || off != moff) { bpf_log(log, "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", mname, moff, tname, off, size); return -EACCES; } /* check type tag */ t = btf_type_by_id(btf, mtype->type); if (btf_type_is_type_tag(t)) { tag_value = __btf_name_by_offset(btf, t->name_off); /* check __user tag */ if (strcmp(tag_value, "user") == 0) tmp_flag = MEM_USER; /* check __percpu tag */ if (strcmp(tag_value, "percpu") == 0) tmp_flag = MEM_PERCPU; /* check __rcu tag */ if (strcmp(tag_value, "rcu") == 0) tmp_flag = MEM_RCU; } stype = btf_type_skip_modifiers(btf, mtype->type, &id); if (btf_type_is_struct(stype)) { *next_btf_id = id; *flag |= tmp_flag; if (field_name) *field_name = mname; return WALK_PTR; } } /* Allow more flexible access within an int as long as * it is within mtrue_end. * Since mtrue_end could be the end of an array, * that also allows using an array of int as a scratch * space. e.g. skb->cb[]. */ if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { bpf_log(log, "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", mname, mtrue_end, tname, off, size); return -EACCES; } return WALK_SCALAR; } bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); return -EINVAL; } int btf_struct_access(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size, enum bpf_access_type atype __maybe_unused, u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name) { const struct btf *btf = reg->btf; enum bpf_type_flag tmp_flag = 0; const struct btf_type *t; u32 id = reg->btf_id; int err; while (type_is_alloc(reg->type)) { struct btf_struct_meta *meta; struct btf_record *rec; int i; meta = btf_find_struct_meta(btf, id); if (!meta) break; rec = meta->record; for (i = 0; i < rec->cnt; i++) { struct btf_field *field = &rec->fields[i]; u32 offset = field->offset; if (off < offset + btf_field_type_size(field->type) && offset < off + size) { bpf_log(log, "direct access to %s is disallowed\n", btf_field_type_name(field->type)); return -EACCES; } } break; } t = btf_type_by_id(btf, id); do { err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); switch (err) { case WALK_PTR: /* For local types, the destination register cannot * become a pointer again. */ if (type_is_alloc(reg->type)) return SCALAR_VALUE; /* If we found the pointer or scalar on t+off, * we're done. */ *next_btf_id = id; *flag = tmp_flag; return PTR_TO_BTF_ID; case WALK_SCALAR: return SCALAR_VALUE; case WALK_STRUCT: /* We found nested struct, so continue the search * by diving in it. At this point the offset is * aligned with the new type, so set it to 0. */ t = btf_type_by_id(btf, id); off = 0; break; default: /* It's either error or unknown return value.. * scream and leave. */ if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) return -EINVAL; return err; } } while (t); return -EINVAL; } /* Check that two BTF types, each specified as an BTF object + id, are exactly * the same. Trivial ID check is not enough due to module BTFs, because we can * end up with two different module BTFs, but IDs point to the common type in * vmlinux BTF. */ bool btf_types_are_same(const struct btf *btf1, u32 id1, const struct btf *btf2, u32 id2) { if (id1 != id2) return false; if (btf1 == btf2) return true; return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); } bool btf_struct_ids_match(struct bpf_verifier_log *log, const struct btf *btf, u32 id, int off, const struct btf *need_btf, u32 need_type_id, bool strict) { const struct btf_type *type; enum bpf_type_flag flag = 0; int err; /* Are we already done? */ if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) return true; /* In case of strict type match, we do not walk struct, the top level * type match must succeed. When strict is true, off should have already * been 0. */ if (strict) return false; again: type = btf_type_by_id(btf, id); if (!type) return false; err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); if (err != WALK_STRUCT) return false; /* We found nested struct object. If it matches * the requested ID, we're done. Otherwise let's * continue the search with offset 0 in the new * type. */ if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { off = 0; goto again; } return true; } static int __get_type_size(struct btf *btf, u32 btf_id, const struct btf_type **ret_type) { const struct btf_type *t; *ret_type = btf_type_by_id(btf, 0); if (!btf_id) /* void */ return 0; t = btf_type_by_id(btf, btf_id); while (t && btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!t) return -EINVAL; *ret_type = t; if (btf_type_is_ptr(t)) /* kernel size of pointer. Not BPF's size of pointer*/ return sizeof(void *); if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) return t->size; return -EINVAL; } static u8 __get_type_fmodel_flags(const struct btf_type *t) { u8 flags = 0; if (__btf_type_is_struct(t)) flags |= BTF_FMODEL_STRUCT_ARG; if (btf_type_is_signed_int(t)) flags |= BTF_FMODEL_SIGNED_ARG; return flags; } int btf_distill_func_proto(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *func, const char *tname, struct btf_func_model *m) { const struct btf_param *args; const struct btf_type *t; u32 i, nargs; int ret; if (!func) { /* BTF function prototype doesn't match the verifier types. * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. */ for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { m->arg_size[i] = 8; m->arg_flags[i] = 0; } m->ret_size = 8; m->ret_flags = 0; m->nr_args = MAX_BPF_FUNC_REG_ARGS; return 0; } args = (const struct btf_param *)(func + 1); nargs = btf_type_vlen(func); if (nargs > MAX_BPF_FUNC_ARGS) { bpf_log(log, "The function %s has %d arguments. Too many.\n", tname, nargs); return -EINVAL; } ret = __get_type_size(btf, func->type, &t); if (ret < 0 || __btf_type_is_struct(t)) { bpf_log(log, "The function %s return type %s is unsupported.\n", tname, btf_type_str(t)); return -EINVAL; } m->ret_size = ret; m->ret_flags = __get_type_fmodel_flags(t); for (i = 0; i < nargs; i++) { if (i == nargs - 1 && args[i].type == 0) { bpf_log(log, "The function %s with variable args is unsupported.\n", tname); return -EINVAL; } ret = __get_type_size(btf, args[i].type, &t); /* No support of struct argument size greater than 16 bytes */ if (ret < 0 || ret > 16) { bpf_log(log, "The function %s arg%d type %s is unsupported.\n", tname, i, btf_type_str(t)); return -EINVAL; } if (ret == 0) { bpf_log(log, "The function %s has malformed void argument.\n", tname); return -EINVAL; } m->arg_size[i] = ret; m->arg_flags[i] = __get_type_fmodel_flags(t); } m->nr_args = nargs; return 0; } /* Compare BTFs of two functions assuming only scalars and pointers to context. * t1 points to BTF_KIND_FUNC in btf1 * t2 points to BTF_KIND_FUNC in btf2 * Returns: * EINVAL - function prototype mismatch * EFAULT - verifier bug * 0 - 99% match. The last 1% is validated by the verifier. */ static int btf_check_func_type_match(struct bpf_verifier_log *log, struct btf *btf1, const struct btf_type *t1, struct btf *btf2, const struct btf_type *t2) { const struct btf_param *args1, *args2; const char *fn1, *fn2, *s1, *s2; u32 nargs1, nargs2, i; fn1 = btf_name_by_offset(btf1, t1->name_off); fn2 = btf_name_by_offset(btf2, t2->name_off); if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { bpf_log(log, "%s() is not a global function\n", fn1); return -EINVAL; } if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { bpf_log(log, "%s() is not a global function\n", fn2); return -EINVAL; } t1 = btf_type_by_id(btf1, t1->type); if (!t1 || !btf_type_is_func_proto(t1)) return -EFAULT; t2 = btf_type_by_id(btf2, t2->type); if (!t2 || !btf_type_is_func_proto(t2)) return -EFAULT; args1 = (const struct btf_param *)(t1 + 1); nargs1 = btf_type_vlen(t1); args2 = (const struct btf_param *)(t2 + 1); nargs2 = btf_type_vlen(t2); if (nargs1 != nargs2) { bpf_log(log, "%s() has %d args while %s() has %d args\n", fn1, nargs1, fn2, nargs2); return -EINVAL; } t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); if (t1->info != t2->info) { bpf_log(log, "Return type %s of %s() doesn't match type %s of %s()\n", btf_type_str(t1), fn1, btf_type_str(t2), fn2); return -EINVAL; } for (i = 0; i < nargs1; i++) { t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); if (t1->info != t2->info) { bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", i, fn1, btf_type_str(t1), fn2, btf_type_str(t2)); return -EINVAL; } if (btf_type_has_size(t1) && t1->size != t2->size) { bpf_log(log, "arg%d in %s() has size %d while %s() has %d\n", i, fn1, t1->size, fn2, t2->size); return -EINVAL; } /* global functions are validated with scalars and pointers * to context only. And only global functions can be replaced. * Hence type check only those types. */ if (btf_type_is_int(t1) || btf_is_any_enum(t1)) continue; if (!btf_type_is_ptr(t1)) { bpf_log(log, "arg%d in %s() has unrecognized type\n", i, fn1); return -EINVAL; } t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); if (!btf_type_is_struct(t1)) { bpf_log(log, "arg%d in %s() is not a pointer to context\n", i, fn1); return -EINVAL; } if (!btf_type_is_struct(t2)) { bpf_log(log, "arg%d in %s() is not a pointer to context\n", i, fn2); return -EINVAL; } /* This is an optional check to make program writing easier. * Compare names of structs and report an error to the user. * btf_prepare_func_args() already checked that t2 struct * is a context type. btf_prepare_func_args() will check * later that t1 struct is a context type as well. */ s1 = btf_name_by_offset(btf1, t1->name_off); s2 = btf_name_by_offset(btf2, t2->name_off); if (strcmp(s1, s2)) { bpf_log(log, "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", i, fn1, s1, fn2, s2); return -EINVAL; } } return 0; } /* Compare BTFs of given program with BTF of target program */ int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, struct btf *btf2, const struct btf_type *t2) { struct btf *btf1 = prog->aux->btf; const struct btf_type *t1; u32 btf_id = 0; if (!prog->aux->func_info) { bpf_log(log, "Program extension requires BTF\n"); return -EINVAL; } btf_id = prog->aux->func_info[0].type_id; if (!btf_id) return -EFAULT; t1 = btf_type_by_id(btf1, btf_id); if (!t1 || !btf_type_is_func(t1)) return -EFAULT; return btf_check_func_type_match(log, btf1, t1, btf2, t2); } static int btf_check_func_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id, struct bpf_reg_state *regs, bool ptr_to_mem_ok, bool processing_call) { enum bpf_prog_type prog_type = resolve_prog_type(env->prog); struct bpf_verifier_log *log = &env->log; const char *func_name, *ref_tname; const struct btf_type *t, *ref_t; const struct btf_param *args; u32 i, nargs, ref_id; int ret; t = btf_type_by_id(btf, func_id); if (!t || !btf_type_is_func(t)) { /* These checks were already done by the verifier while loading * struct bpf_func_info or in add_kfunc_call(). */ bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", func_id); return -EFAULT; } func_name = btf_name_by_offset(btf, t->name_off); t = btf_type_by_id(btf, t->type); if (!t || !btf_type_is_func_proto(t)) { bpf_log(log, "Invalid BTF of func %s\n", func_name); return -EFAULT; } args = (const struct btf_param *)(t + 1); nargs = btf_type_vlen(t); if (nargs > MAX_BPF_FUNC_REG_ARGS) { bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, MAX_BPF_FUNC_REG_ARGS); return -EINVAL; } /* check that BTF function arguments match actual types that the * verifier sees. */ for (i = 0; i < nargs; i++) { enum bpf_arg_type arg_type = ARG_DONTCARE; u32 regno = i + 1; struct bpf_reg_state *reg = ®s[regno]; t = btf_type_skip_modifiers(btf, args[i].type, NULL); if (btf_type_is_scalar(t)) { if (reg->type == SCALAR_VALUE) continue; bpf_log(log, "R%d is not a scalar\n", regno); return -EINVAL; } if (!btf_type_is_ptr(t)) { bpf_log(log, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); return -EINVAL; } ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); ref_tname = btf_name_by_offset(btf, ref_t->name_off); ret = check_func_arg_reg_off(env, reg, regno, arg_type); if (ret < 0) return ret; if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { /* If function expects ctx type in BTF check that caller * is passing PTR_TO_CTX. */ if (reg->type != PTR_TO_CTX) { bpf_log(log, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); return -EINVAL; } } else if (ptr_to_mem_ok && processing_call) { const struct btf_type *resolve_ret; u32 type_size; resolve_ret = btf_resolve_size(btf, ref_t, &type_size); if (IS_ERR(resolve_ret)) { bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); return -EINVAL; } if (check_mem_reg(env, reg, regno, type_size)) return -EINVAL; } else { bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, func_name, func_id); return -EINVAL; } } return 0; } /* Compare BTF of a function declaration with given bpf_reg_state. * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - there is a type mismatch or BTF is not available. * 0 - BTF matches with what bpf_reg_state expects. * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. */ int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs) { struct bpf_prog *prog = env->prog; struct btf *btf = prog->aux->btf; bool is_global; u32 btf_id; int err; if (!prog->aux->func_info) return -EINVAL; btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) return -EFAULT; if (prog->aux->func_info_aux[subprog].unreliable) return -EINVAL; is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); /* Compiler optimizations can remove arguments from static functions * or mismatched type can be passed into a global function. * In such cases mark the function as unreliable from BTF point of view. */ if (err) prog->aux->func_info_aux[subprog].unreliable = true; return err; } /* Compare BTF of a function call with given bpf_reg_state. * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - there is a type mismatch or BTF is not available. * 0 - BTF matches with what bpf_reg_state expects. * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. * * NOTE: the code is duplicated from btf_check_subprog_arg_match() * because btf_check_func_arg_match() is still doing both. Once that * function is split in 2, we can call from here btf_check_subprog_arg_match() * first, and then treat the calling part in a new code path. */ int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs) { struct bpf_prog *prog = env->prog; struct btf *btf = prog->aux->btf; bool is_global; u32 btf_id; int err; if (!prog->aux->func_info) return -EINVAL; btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) return -EFAULT; if (prog->aux->func_info_aux[subprog].unreliable) return -EINVAL; is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); /* Compiler optimizations can remove arguments from static functions * or mismatched type can be passed into a global function. * In such cases mark the function as unreliable from BTF point of view. */ if (err) prog->aux->func_info_aux[subprog].unreliable = true; return err; } /* Convert BTF of a function into bpf_reg_state if possible * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - cannot convert BTF. * 0 - Successfully converted BTF into bpf_reg_state * (either PTR_TO_CTX or SCALAR_VALUE). */ int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs, bool is_ex_cb) { struct bpf_verifier_log *log = &env->log; struct bpf_prog *prog = env->prog; enum bpf_prog_type prog_type = prog->type; struct btf *btf = prog->aux->btf; const struct btf_param *args; const struct btf_type *t, *ref_t; u32 i, nargs, btf_id; const char *tname; if (!prog->aux->func_info || prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { bpf_log(log, "Verifier bug\n"); return -EFAULT; } btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) { bpf_log(log, "Global functions need valid BTF\n"); return -EFAULT; } t = btf_type_by_id(btf, btf_id); if (!t || !btf_type_is_func(t)) { /* These checks were already done by the verifier while loading * struct bpf_func_info */ bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", subprog); return -EFAULT; } tname = btf_name_by_offset(btf, t->name_off); if (log->level & BPF_LOG_LEVEL) bpf_log(log, "Validating %s() func#%d...\n", tname, subprog); if (prog->aux->func_info_aux[subprog].unreliable) { bpf_log(log, "Verifier bug in function %s()\n", tname); return -EFAULT; } if (prog_type == BPF_PROG_TYPE_EXT) prog_type = prog->aux->dst_prog->type; t = btf_type_by_id(btf, t->type); if (!t || !btf_type_is_func_proto(t)) { bpf_log(log, "Invalid type of function %s()\n", tname); return -EFAULT; } args = (const struct btf_param *)(t + 1); nargs = btf_type_vlen(t); if (nargs > MAX_BPF_FUNC_REG_ARGS) { bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", tname, nargs, MAX_BPF_FUNC_REG_ARGS); return -EINVAL; } /* check that function returns int, exception cb also requires this */ t = btf_type_by_id(btf, t->type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { bpf_log(log, "Global function %s() doesn't return scalar. Only those are supported.\n", tname); return -EINVAL; } /* Convert BTF function arguments into verifier types. * Only PTR_TO_CTX and SCALAR are supported atm. */ for (i = 0; i < nargs; i++) { struct bpf_reg_state *reg = ®s[i + 1]; t = btf_type_by_id(btf, args[i].type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (btf_type_is_int(t) || btf_is_any_enum(t)) { reg->type = SCALAR_VALUE; continue; } if (btf_type_is_ptr(t)) { if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { reg->type = PTR_TO_CTX; continue; } t = btf_type_skip_modifiers(btf, t->type, NULL); ref_t = btf_resolve_size(btf, t, ®->mem_size); if (IS_ERR(ref_t)) { bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), PTR_ERR(ref_t)); return -EINVAL; } reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; reg->id = ++env->id_gen; continue; } bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", i, btf_type_str(t), tname); return -EINVAL; } /* We have already ensured that the callback returns an integer, just * like all global subprogs. We need to determine it only has a single * scalar argument. */ if (is_ex_cb && (nargs != 1 || regs[BPF_REG_1].type != SCALAR_VALUE)) { bpf_log(log, "exception cb only supports single integer argument\n"); return -EINVAL; } return 0; } static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, struct btf_show *show) { const struct btf_type *t = btf_type_by_id(btf, type_id); show->btf = btf; memset(&show->state, 0, sizeof(show->state)); memset(&show->obj, 0, sizeof(show->obj)); btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); } static void btf_seq_show(struct btf_show *show, const char *fmt, va_list args) { seq_vprintf((struct seq_file *)show->target, fmt, args); } int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, void *obj, struct seq_file *m, u64 flags) { struct btf_show sseq; sseq.target = m; sseq.showfn = btf_seq_show; sseq.flags = flags; btf_type_show(btf, type_id, obj, &sseq); return sseq.state.status; } void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, struct seq_file *m) { (void) btf_type_seq_show_flags(btf, type_id, obj, m, BTF_SHOW_NONAME | BTF_SHOW_COMPACT | BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); } struct btf_show_snprintf { struct btf_show show; int len_left; /* space left in string */ int len; /* length we would have written */ }; static void btf_snprintf_show(struct btf_show *show, const char *fmt, va_list args) { struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; int len; len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); if (len < 0) { ssnprintf->len_left = 0; ssnprintf->len = len; } else if (len >= ssnprintf->len_left) { /* no space, drive on to get length we would have written */ ssnprintf->len_left = 0; ssnprintf->len += len; } else { ssnprintf->len_left -= len; ssnprintf->len += len; show->target += len; } } int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, char *buf, int len, u64 flags) { struct btf_show_snprintf ssnprintf; ssnprintf.show.target = buf; ssnprintf.show.flags = flags; ssnprintf.show.showfn = btf_snprintf_show; ssnprintf.len_left = len; ssnprintf.len = 0; btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); /* If we encountered an error, return it. */ if (ssnprintf.show.state.status) return ssnprintf.show.state.status; /* Otherwise return length we would have written */ return ssnprintf.len; } #ifdef CONFIG_PROC_FS static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) { const struct btf *btf = filp->private_data; seq_printf(m, "btf_id:\t%u\n", btf->id); } #endif static int btf_release(struct inode *inode, struct file *filp) { btf_put(filp->private_data); return 0; } const struct file_operations btf_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = bpf_btf_show_fdinfo, #endif .release = btf_release, }; static int __btf_new_fd(struct btf *btf) { return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); } int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) { struct btf *btf; int ret; btf = btf_parse(attr, uattr, uattr_size); if (IS_ERR(btf)) return PTR_ERR(btf); ret = btf_alloc_id(btf); if (ret) { btf_free(btf); return ret; } /* * The BTF ID is published to the userspace. * All BTF free must go through call_rcu() from * now on (i.e. free by calling btf_put()). */ ret = __btf_new_fd(btf); if (ret < 0) btf_put(btf); return ret; } struct btf *btf_get_by_fd(int fd) { struct btf *btf; struct fd f; f = fdget(fd); if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &btf_fops) { fdput(f); return ERR_PTR(-EINVAL); } btf = f.file->private_data; refcount_inc(&btf->refcnt); fdput(f); return btf; } int btf_get_info_by_fd(const struct btf *btf, const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_btf_info __user *uinfo; struct bpf_btf_info info; u32 info_copy, btf_copy; void __user *ubtf; char __user *uname; u32 uinfo_len, uname_len, name_len; int ret = 0; uinfo = u64_to_user_ptr(attr->info.info); uinfo_len = attr->info.info_len; info_copy = min_t(u32, uinfo_len, sizeof(info)); memset(&info, 0, sizeof(info)); if (copy_from_user(&info, uinfo, info_copy)) return -EFAULT; info.id = btf->id; ubtf = u64_to_user_ptr(info.btf); btf_copy = min_t(u32, btf->data_size, info.btf_size); if (copy_to_user(ubtf, btf->data, btf_copy)) return -EFAULT; info.btf_size = btf->data_size; info.kernel_btf = btf->kernel_btf; uname = u64_to_user_ptr(info.name); uname_len = info.name_len; if (!uname ^ !uname_len) return -EINVAL; name_len = strlen(btf->name); info.name_len = name_len; if (uname) { if (uname_len >= name_len + 1) { if (copy_to_user(uname, btf->name, name_len + 1)) return -EFAULT; } else { char zero = '\0'; if (copy_to_user(uname, btf->name, uname_len - 1)) return -EFAULT; if (put_user(zero, uname + uname_len - 1)) return -EFAULT; /* let user-space know about too short buffer */ ret = -ENOSPC; } } if (copy_to_user(uinfo, &info, info_copy) || put_user(info_copy, &uattr->info.info_len)) return -EFAULT; return ret; } int btf_get_fd_by_id(u32 id) { struct btf *btf; int fd; rcu_read_lock(); btf = idr_find(&btf_idr, id); if (!btf || !refcount_inc_not_zero(&btf->refcnt)) btf = ERR_PTR(-ENOENT); rcu_read_unlock(); if (IS_ERR(btf)) return PTR_ERR(btf); fd = __btf_new_fd(btf); if (fd < 0) btf_put(btf); return fd; } u32 btf_obj_id(const struct btf *btf) { return btf->id; } bool btf_is_kernel(const struct btf *btf) { return btf->kernel_btf; } bool btf_is_module(const struct btf *btf) { return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; } enum { BTF_MODULE_F_LIVE = (1 << 0), }; #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module { struct list_head list; struct module *module; struct btf *btf; struct bin_attribute *sysfs_attr; int flags; }; static LIST_HEAD(btf_modules); static DEFINE_MUTEX(btf_module_mutex); static ssize_t btf_module_read(struct file *file, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t len) { const struct btf *btf = bin_attr->private; memcpy(buf, btf->data + off, len); return len; } static void purge_cand_cache(struct btf *btf); static int btf_module_notify(struct notifier_block *nb, unsigned long op, void *module) { struct btf_module *btf_mod, *tmp; struct module *mod = module; struct btf *btf; int err = 0; if (mod->btf_data_size == 0 || (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && op != MODULE_STATE_GOING)) goto out; switch (op) { case MODULE_STATE_COMING: btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); if (!btf_mod) { err = -ENOMEM; goto out; } btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); if (IS_ERR(btf)) { kfree(btf_mod); if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { pr_warn("failed to validate module [%s] BTF: %ld\n", mod->name, PTR_ERR(btf)); err = PTR_ERR(btf); } else { pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); } goto out; } err = btf_alloc_id(btf); if (err) { btf_free(btf); kfree(btf_mod); goto out; } purge_cand_cache(NULL); mutex_lock(&btf_module_mutex); btf_mod->module = module; btf_mod->btf = btf; list_add(&btf_mod->list, &btf_modules); mutex_unlock(&btf_module_mutex); if (IS_ENABLED(CONFIG_SYSFS)) { struct bin_attribute *attr; attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (!attr) goto out; sysfs_bin_attr_init(attr); attr->attr.name = btf->name; attr->attr.mode = 0444; attr->size = btf->data_size; attr->private = btf; attr->read = btf_module_read; err = sysfs_create_bin_file(btf_kobj, attr); if (err) { pr_warn("failed to register module [%s] BTF in sysfs: %d\n", mod->name, err); kfree(attr); err = 0; goto out; } btf_mod->sysfs_attr = attr; } break; case MODULE_STATE_LIVE: mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; btf_mod->flags |= BTF_MODULE_F_LIVE; break; } mutex_unlock(&btf_module_mutex); break; case MODULE_STATE_GOING: mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; list_del(&btf_mod->list); if (btf_mod->sysfs_attr) sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); purge_cand_cache(btf_mod->btf); btf_put(btf_mod->btf); kfree(btf_mod->sysfs_attr); kfree(btf_mod); break; } mutex_unlock(&btf_module_mutex); break; } out: return notifier_from_errno(err); } static struct notifier_block btf_module_nb = { .notifier_call = btf_module_notify, }; static int __init btf_module_init(void) { register_module_notifier(&btf_module_nb); return 0; } fs_initcall(btf_module_init); #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ struct module *btf_try_get_module(const struct btf *btf) { struct module *res = NULL; #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module *btf_mod, *tmp; mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->btf != btf) continue; /* We must only consider module whose __init routine has * finished, hence we must check for BTF_MODULE_F_LIVE flag, * which is set from the notifier callback for * MODULE_STATE_LIVE. */ if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) res = btf_mod->module; break; } mutex_unlock(&btf_module_mutex); #endif return res; } /* Returns struct btf corresponding to the struct module. * This function can return NULL or ERR_PTR. */ static struct btf *btf_get_module_btf(const struct module *module) { #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module *btf_mod, *tmp; #endif struct btf *btf = NULL; if (!module) { btf = bpf_get_btf_vmlinux(); if (!IS_ERR_OR_NULL(btf)) btf_get(btf); return btf; } #ifdef CONFIG_DEBUG_INFO_BTF_MODULES mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; btf_get(btf_mod->btf); btf = btf_mod->btf; break; } mutex_unlock(&btf_module_mutex); #endif return btf; } BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) { struct btf *btf = NULL; int btf_obj_fd = 0; long ret; if (flags) return -EINVAL; if (name_sz <= 1 || name[name_sz - 1]) return -EINVAL; ret = bpf_find_btf_id(name, kind, &btf); if (ret > 0 && btf_is_module(btf)) { btf_obj_fd = __btf_new_fd(btf); if (btf_obj_fd < 0) { btf_put(btf); return btf_obj_fd; } return ret | (((u64)btf_obj_fd) << 32); } if (ret > 0) btf_put(btf); return ret; } const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { .func = bpf_btf_find_by_name_kind, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) BTF_TRACING_TYPE_xxx #undef BTF_TRACING_TYPE static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, const struct btf_type *func, u32 func_flags) { u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); const char *name, *sfx, *iter_name; const struct btf_param *arg; const struct btf_type *t; char exp_name[128]; u32 nr_args; /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ if (!flags || (flags & (flags - 1))) return -EINVAL; /* any BPF iter kfunc should have `struct bpf_iter_ *` first arg */ nr_args = btf_type_vlen(func); if (nr_args < 1) return -EINVAL; arg = &btf_params(func)[0]; t = btf_type_skip_modifiers(btf, arg->type, NULL); if (!t || !btf_type_is_ptr(t)) return -EINVAL; t = btf_type_skip_modifiers(btf, t->type, NULL); if (!t || !__btf_type_is_struct(t)) return -EINVAL; name = btf_name_by_offset(btf, t->name_off); if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) return -EINVAL; /* sizeof(struct bpf_iter_) should be a multiple of 8 to * fit nicely in stack slots */ if (t->size == 0 || (t->size % 8)) return -EINVAL; /* validate bpf_iter__{new,next,destroy}(struct bpf_iter_ *) * naming pattern */ iter_name = name + sizeof(ITER_PREFIX) - 1; if (flags & KF_ITER_NEW) sfx = "new"; else if (flags & KF_ITER_NEXT) sfx = "next"; else /* (flags & KF_ITER_DESTROY) */ sfx = "destroy"; snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); if (strcmp(func_name, exp_name)) return -EINVAL; /* only iter constructor should have extra arguments */ if (!(flags & KF_ITER_NEW) && nr_args != 1) return -EINVAL; if (flags & KF_ITER_NEXT) { /* bpf_iter__next() should return pointer */ t = btf_type_skip_modifiers(btf, func->type, NULL); if (!t || !btf_type_is_ptr(t)) return -EINVAL; } if (flags & KF_ITER_DESTROY) { /* bpf_iter__destroy() should return void */ t = btf_type_by_id(btf, func->type); if (!t || !btf_type_is_void(t)) return -EINVAL; } return 0; } static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) { const struct btf_type *func; const char *func_name; int err; /* any kfunc should be FUNC -> FUNC_PROTO */ func = btf_type_by_id(btf, func_id); if (!func || !btf_type_is_func(func)) return -EINVAL; /* sanity check kfunc name */ func_name = btf_name_by_offset(btf, func->name_off); if (!func_name || !func_name[0]) return -EINVAL; func = btf_type_by_id(btf, func->type); if (!func || !btf_type_is_func_proto(func)) return -EINVAL; if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); if (err) return err; } return 0; } /* Kernel Function (kfunc) BTF ID set registration API */ static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, const struct btf_kfunc_id_set *kset) { struct btf_kfunc_hook_filter *hook_filter; struct btf_id_set8 *add_set = kset->set; bool vmlinux_set = !btf_is_module(btf); bool add_filter = !!kset->filter; struct btf_kfunc_set_tab *tab; struct btf_id_set8 *set; u32 set_cnt; int ret; if (hook >= BTF_KFUNC_HOOK_MAX) { ret = -EINVAL; goto end; } if (!add_set->cnt) return 0; tab = btf->kfunc_set_tab; if (tab && add_filter) { u32 i; hook_filter = &tab->hook_filters[hook]; for (i = 0; i < hook_filter->nr_filters; i++) { if (hook_filter->filters[i] == kset->filter) { add_filter = false; break; } } if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { ret = -E2BIG; goto end; } } if (!tab) { tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); if (!tab) return -ENOMEM; btf->kfunc_set_tab = tab; } set = tab->sets[hook]; /* Warn when register_btf_kfunc_id_set is called twice for the same hook * for module sets. */ if (WARN_ON_ONCE(set && !vmlinux_set)) { ret = -EINVAL; goto end; } /* We don't need to allocate, concatenate, and sort module sets, because * only one is allowed per hook. Hence, we can directly assign the * pointer and return. */ if (!vmlinux_set) { tab->sets[hook] = add_set; goto do_add_filter; } /* In case of vmlinux sets, there may be more than one set being * registered per hook. To create a unified set, we allocate a new set * and concatenate all individual sets being registered. While each set * is individually sorted, they may become unsorted when concatenated, * hence re-sorting the final set again is required to make binary * searching the set using btf_id_set8_contains function work. */ set_cnt = set ? set->cnt : 0; if (set_cnt > U32_MAX - add_set->cnt) { ret = -EOVERFLOW; goto end; } if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { ret = -E2BIG; goto end; } /* Grow set */ set = krealloc(tab->sets[hook], offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), GFP_KERNEL | __GFP_NOWARN); if (!set) { ret = -ENOMEM; goto end; } /* For newly allocated set, initialize set->cnt to 0 */ if (!tab->sets[hook]) set->cnt = 0; tab->sets[hook] = set; /* Concatenate the two sets */ memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); set->cnt += add_set->cnt; sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); do_add_filter: if (add_filter) { hook_filter = &tab->hook_filters[hook]; hook_filter->filters[hook_filter->nr_filters++] = kset->filter; } return 0; end: btf_free_kfunc_set_tab(btf); return ret; } static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, enum btf_kfunc_hook hook, u32 kfunc_btf_id, const struct bpf_prog *prog) { struct btf_kfunc_hook_filter *hook_filter; struct btf_id_set8 *set; u32 *id, i; if (hook >= BTF_KFUNC_HOOK_MAX) return NULL; if (!btf->kfunc_set_tab) return NULL; hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; for (i = 0; i < hook_filter->nr_filters; i++) { if (hook_filter->filters[i](prog, kfunc_btf_id)) return NULL; } set = btf->kfunc_set_tab->sets[hook]; if (!set) return NULL; id = btf_id_set8_contains(set, kfunc_btf_id); if (!id) return NULL; /* The flags for BTF ID are located next to it */ return id + 1; } static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) { switch (prog_type) { case BPF_PROG_TYPE_UNSPEC: return BTF_KFUNC_HOOK_COMMON; case BPF_PROG_TYPE_XDP: return BTF_KFUNC_HOOK_XDP; case BPF_PROG_TYPE_SCHED_CLS: return BTF_KFUNC_HOOK_TC; case BPF_PROG_TYPE_STRUCT_OPS: return BTF_KFUNC_HOOK_STRUCT_OPS; case BPF_PROG_TYPE_TRACING: case BPF_PROG_TYPE_LSM: return BTF_KFUNC_HOOK_TRACING; case BPF_PROG_TYPE_SYSCALL: return BTF_KFUNC_HOOK_SYSCALL; case BPF_PROG_TYPE_CGROUP_SKB: return BTF_KFUNC_HOOK_CGROUP_SKB; case BPF_PROG_TYPE_SCHED_ACT: return BTF_KFUNC_HOOK_SCHED_ACT; case BPF_PROG_TYPE_SK_SKB: return BTF_KFUNC_HOOK_SK_SKB; case BPF_PROG_TYPE_SOCKET_FILTER: return BTF_KFUNC_HOOK_SOCKET_FILTER; case BPF_PROG_TYPE_LWT_OUT: case BPF_PROG_TYPE_LWT_IN: case BPF_PROG_TYPE_LWT_XMIT: case BPF_PROG_TYPE_LWT_SEG6LOCAL: return BTF_KFUNC_HOOK_LWT; case BPF_PROG_TYPE_NETFILTER: return BTF_KFUNC_HOOK_NETFILTER; default: return BTF_KFUNC_HOOK_MAX; } } /* Caution: * Reference to the module (obtained using btf_try_get_module) corresponding to * the struct btf *MUST* be held when calling this function from verifier * context. This is usually true as we stash references in prog's kfunc_btf_tab; * keeping the reference for the duration of the call provides the necessary * protection for looking up a well-formed btf->kfunc_set_tab. */ u32 *btf_kfunc_id_set_contains(const struct btf *btf, u32 kfunc_btf_id, const struct bpf_prog *prog) { enum bpf_prog_type prog_type = resolve_prog_type(prog); enum btf_kfunc_hook hook; u32 *kfunc_flags; kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); if (kfunc_flags) return kfunc_flags; hook = bpf_prog_type_to_kfunc_hook(prog_type); return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); } u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, const struct bpf_prog *prog) { return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); } static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, const struct btf_kfunc_id_set *kset) { struct btf *btf; int ret, i; btf = btf_get_module_btf(kset->owner); if (!btf) { if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { pr_err("missing vmlinux BTF, cannot register kfuncs\n"); return -ENOENT; } if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) pr_warn("missing module BTF, cannot register kfuncs\n"); return 0; } if (IS_ERR(btf)) return PTR_ERR(btf); for (i = 0; i < kset->set->cnt; i++) { ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, kset->set->pairs[i].flags); if (ret) goto err_out; } ret = btf_populate_kfunc_set(btf, hook, kset); err_out: btf_put(btf); return ret; } /* This function must be invoked only from initcalls/module init functions */ int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, const struct btf_kfunc_id_set *kset) { enum btf_kfunc_hook hook; hook = bpf_prog_type_to_kfunc_hook(prog_type); return __register_btf_kfunc_id_set(hook, kset); } EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); /* This function must be invoked only from initcalls/module init functions */ int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) { return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); } EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) { struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; struct btf_id_dtor_kfunc *dtor; if (!tab) return -ENOENT; /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. */ BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); if (!dtor) return -ENOENT; return dtor->kfunc_btf_id; } static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) { const struct btf_type *dtor_func, *dtor_func_proto, *t; const struct btf_param *args; s32 dtor_btf_id; u32 nr_args, i; for (i = 0; i < cnt; i++) { dtor_btf_id = dtors[i].kfunc_btf_id; dtor_func = btf_type_by_id(btf, dtor_btf_id); if (!dtor_func || !btf_type_is_func(dtor_func)) return -EINVAL; dtor_func_proto = btf_type_by_id(btf, dtor_func->type); if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) return -EINVAL; /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ t = btf_type_by_id(btf, dtor_func_proto->type); if (!t || !btf_type_is_void(t)) return -EINVAL; nr_args = btf_type_vlen(dtor_func_proto); if (nr_args != 1) return -EINVAL; args = btf_params(dtor_func_proto); t = btf_type_by_id(btf, args[0].type); /* Allow any pointer type, as width on targets Linux supports * will be same for all pointer types (i.e. sizeof(void *)) */ if (!t || !btf_type_is_ptr(t)) return -EINVAL; } return 0; } /* This function must be invoked only from initcalls/module init functions */ int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, struct module *owner) { struct btf_id_dtor_kfunc_tab *tab; struct btf *btf; u32 tab_cnt; int ret; btf = btf_get_module_btf(owner); if (!btf) { if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); return -ENOENT; } if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { pr_err("missing module BTF, cannot register dtor kfuncs\n"); return -ENOENT; } return 0; } if (IS_ERR(btf)) return PTR_ERR(btf); if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); ret = -E2BIG; goto end; } /* Ensure that the prototype of dtor kfuncs being registered is sane */ ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); if (ret < 0) goto end; tab = btf->dtor_kfunc_tab; /* Only one call allowed for modules */ if (WARN_ON_ONCE(tab && btf_is_module(btf))) { ret = -EINVAL; goto end; } tab_cnt = tab ? tab->cnt : 0; if (tab_cnt > U32_MAX - add_cnt) { ret = -EOVERFLOW; goto end; } if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); ret = -E2BIG; goto end; } tab = krealloc(btf->dtor_kfunc_tab, offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), GFP_KERNEL | __GFP_NOWARN); if (!tab) { ret = -ENOMEM; goto end; } if (!btf->dtor_kfunc_tab) tab->cnt = 0; btf->dtor_kfunc_tab = tab; memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); tab->cnt += add_cnt; sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); end: if (ret) btf_free_dtor_kfunc_tab(btf); btf_put(btf); return ret; } EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); #define MAX_TYPES_ARE_COMPAT_DEPTH 2 /* Check local and target types for compatibility. This check is used for * type-based CO-RE relocations and follow slightly different rules than * field-based relocations. This function assumes that root types were already * checked for name match. Beyond that initial root-level name check, names * are completely ignored. Compatibility rules are as follows: * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but * kind should match for local and target types (i.e., STRUCT is not * compatible with UNION); * - for ENUMs/ENUM64s, the size is ignored; * - for INT, size and signedness are ignored; * - for ARRAY, dimensionality is ignored, element types are checked for * compatibility recursively; * - CONST/VOLATILE/RESTRICT modifiers are ignored; * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; * - FUNC_PROTOs are compatible if they have compatible signature: same * number of input args and compatible return and argument types. * These rules are not set in stone and probably will be adjusted as we get * more experience with using BPF CO-RE relocations. */ int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf, __u32 targ_id) { return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, MAX_TYPES_ARE_COMPAT_DEPTH); } #define MAX_TYPES_MATCH_DEPTH 2 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, const struct btf *targ_btf, u32 targ_id) { return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, MAX_TYPES_MATCH_DEPTH); } static bool bpf_core_is_flavor_sep(const char *s) { /* check X___Y name pattern, where X and Y are not underscores */ return s[0] != '_' && /* X */ s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ s[4] != '_'; /* Y */ } size_t bpf_core_essential_name_len(const char *name) { size_t n = strlen(name); int i; for (i = n - 5; i >= 0; i--) { if (bpf_core_is_flavor_sep(name + i)) return i + 1; } return n; } struct bpf_cand_cache { const char *name; u32 name_len; u16 kind; u16 cnt; struct { const struct btf *btf; u32 id; } cands[]; }; static void bpf_free_cands(struct bpf_cand_cache *cands) { if (!cands->cnt) /* empty candidate array was allocated on stack */ return; kfree(cands); } static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) { kfree(cands->name); kfree(cands); } #define VMLINUX_CAND_CACHE_SIZE 31 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; #define MODULE_CAND_CACHE_SIZE 31 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; static DEFINE_MUTEX(cand_cache_mutex); static void __print_cand_cache(struct bpf_verifier_log *log, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache *cc; int i, j; for (i = 0; i < cache_size; i++) { cc = cache[i]; if (!cc) continue; bpf_log(log, "[%d]%s(", i, cc->name); for (j = 0; j < cc->cnt; j++) { bpf_log(log, "%d", cc->cands[j].id); if (j < cc->cnt - 1) bpf_log(log, " "); } bpf_log(log, "), "); } } static void print_cand_cache(struct bpf_verifier_log *log) { mutex_lock(&cand_cache_mutex); bpf_log(log, "vmlinux_cand_cache:"); __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); bpf_log(log, "\nmodule_cand_cache:"); __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); bpf_log(log, "\n"); mutex_unlock(&cand_cache_mutex); } static u32 hash_cands(struct bpf_cand_cache *cands) { return jhash(cands->name, cands->name_len, 0); } static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; if (cc && cc->name_len == cands->name_len && !strncmp(cc->name, cands->name, cands->name_len)) return cc; return NULL; } static size_t sizeof_cands(int cnt) { return offsetof(struct bpf_cand_cache, cands[cnt]); } static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; if (*cc) { bpf_free_cands_from_cache(*cc); *cc = NULL; } new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); if (!new_cands) { bpf_free_cands(cands); return ERR_PTR(-ENOMEM); } /* strdup the name, since it will stay in cache. * the cands->name points to strings in prog's BTF and the prog can be unloaded. */ new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); bpf_free_cands(cands); if (!new_cands->name) { kfree(new_cands); return ERR_PTR(-ENOMEM); } *cc = new_cands; return new_cands; } #ifdef CONFIG_DEBUG_INFO_BTF_MODULES static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache *cc; int i, j; for (i = 0; i < cache_size; i++) { cc = cache[i]; if (!cc) continue; if (!btf) { /* when new module is loaded purge all of module_cand_cache, * since new module might have candidates with the name * that matches cached cands. */ bpf_free_cands_from_cache(cc); cache[i] = NULL; continue; } /* when module is unloaded purge cache entries * that match module's btf */ for (j = 0; j < cc->cnt; j++) if (cc->cands[j].btf == btf) { bpf_free_cands_from_cache(cc); cache[i] = NULL; break; } } } static void purge_cand_cache(struct btf *btf) { mutex_lock(&cand_cache_mutex); __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); mutex_unlock(&cand_cache_mutex); } #endif static struct bpf_cand_cache * bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, int targ_start_id) { struct bpf_cand_cache *new_cands; const struct btf_type *t; const char *targ_name; size_t targ_essent_len; int n, i; n = btf_nr_types(targ_btf); for (i = targ_start_id; i < n; i++) { t = btf_type_by_id(targ_btf, i); if (btf_kind(t) != cands->kind) continue; targ_name = btf_name_by_offset(targ_btf, t->name_off); if (!targ_name) continue; /* the resched point is before strncmp to make sure that search * for non-existing name will have a chance to schedule(). */ cond_resched(); if (strncmp(cands->name, targ_name, cands->name_len) != 0) continue; targ_essent_len = bpf_core_essential_name_len(targ_name); if (targ_essent_len != cands->name_len) continue; /* most of the time there is only one candidate for a given kind+name pair */ new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); if (!new_cands) { bpf_free_cands(cands); return ERR_PTR(-ENOMEM); } memcpy(new_cands, cands, sizeof_cands(cands->cnt)); bpf_free_cands(cands); cands = new_cands; cands->cands[cands->cnt].btf = targ_btf; cands->cands[cands->cnt].id = i; cands->cnt++; } return cands; } static struct bpf_cand_cache * bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) { struct bpf_cand_cache *cands, *cc, local_cand = {}; const struct btf *local_btf = ctx->btf; const struct btf_type *local_type; const struct btf *main_btf; size_t local_essent_len; struct btf *mod_btf; const char *name; int id; main_btf = bpf_get_btf_vmlinux(); if (IS_ERR(main_btf)) return ERR_CAST(main_btf); if (!main_btf) return ERR_PTR(-EINVAL); local_type = btf_type_by_id(local_btf, local_type_id); if (!local_type) return ERR_PTR(-EINVAL); name = btf_name_by_offset(local_btf, local_type->name_off); if (str_is_empty(name)) return ERR_PTR(-EINVAL); local_essent_len = bpf_core_essential_name_len(name); cands = &local_cand; cands->name = name; cands->kind = btf_kind(local_type); cands->name_len = local_essent_len; cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); /* cands is a pointer to stack here */ if (cc) { if (cc->cnt) return cc; goto check_modules; } /* Attempt to find target candidates in vmlinux BTF first */ cands = bpf_core_add_cands(cands, main_btf, 1); if (IS_ERR(cands)) return ERR_CAST(cands); /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ /* populate cache even when cands->cnt == 0 */ cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); if (IS_ERR(cc)) return ERR_CAST(cc); /* if vmlinux BTF has any candidate, don't go for module BTFs */ if (cc->cnt) return cc; check_modules: /* cands is a pointer to stack here and cands->cnt == 0 */ cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); if (cc) /* if cache has it return it even if cc->cnt == 0 */ return cc; /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ spin_lock_bh(&btf_idr_lock); idr_for_each_entry(&btf_idr, mod_btf, id) { if (!btf_is_module(mod_btf)) continue; /* linear search could be slow hence unlock/lock * the IDR to avoiding holding it for too long */ btf_get(mod_btf); spin_unlock_bh(&btf_idr_lock); cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); btf_put(mod_btf); if (IS_ERR(cands)) return ERR_CAST(cands); spin_lock_bh(&btf_idr_lock); } spin_unlock_bh(&btf_idr_lock); /* cands is a pointer to kmalloced memory here if cands->cnt > 0 * or pointer to stack if cands->cnd == 0. * Copy it into the cache even when cands->cnt == 0 and * return the result. */ return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); } int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, int relo_idx, void *insn) { bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; struct bpf_core_cand_list cands = {}; struct bpf_core_relo_res targ_res; struct bpf_core_spec *specs; int err; /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" * into arrays of btf_ids of struct fields and array indices. */ specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); if (!specs) return -ENOMEM; if (need_cands) { struct bpf_cand_cache *cc; int i; mutex_lock(&cand_cache_mutex); cc = bpf_core_find_cands(ctx, relo->type_id); if (IS_ERR(cc)) { bpf_log(ctx->log, "target candidate search failed for %d\n", relo->type_id); err = PTR_ERR(cc); goto out; } if (cc->cnt) { cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); if (!cands.cands) { err = -ENOMEM; goto out; } } for (i = 0; i < cc->cnt; i++) { bpf_log(ctx->log, "CO-RE relocating %s %s: found target candidate [%d]\n", btf_kind_str[cc->kind], cc->name, cc->cands[i].id); cands.cands[i].btf = cc->cands[i].btf; cands.cands[i].id = cc->cands[i].id; } cands.len = cc->cnt; /* cand_cache_mutex needs to span the cache lookup and * copy of btf pointer into bpf_core_cand_list, * since module can be unloaded while bpf_core_calc_relo_insn * is working with module's btf. */ } err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, &targ_res); if (err) goto out; err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, &targ_res); out: kfree(specs); if (need_cands) { kfree(cands.cands); mutex_unlock(&cand_cache_mutex); if (ctx->log->level & BPF_LOG_LEVEL2) print_cand_cache(ctx->log); } return err; } bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, const char *field_name, u32 btf_id, const char *suffix) { struct btf *btf = reg->btf; const struct btf_type *walk_type, *safe_type; const char *tname; char safe_tname[64]; long ret, safe_id; const struct btf_member *member; u32 i; walk_type = btf_type_by_id(btf, reg->btf_id); if (!walk_type) return false; tname = btf_name_by_offset(btf, walk_type->name_off); ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); if (ret >= sizeof(safe_tname)) return false; safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); if (safe_id < 0) return false; safe_type = btf_type_by_id(btf, safe_id); if (!safe_type) return false; for_each_member(i, safe_type, member) { const char *m_name = __btf_name_by_offset(btf, member->name_off); const struct btf_type *mtype = btf_type_by_id(btf, member->type); u32 id; if (!btf_type_is_ptr(mtype)) continue; btf_type_skip_modifiers(btf, mtype->type, &id); /* If we match on both type and name, the field is considered trusted. */ if (btf_id == id && !strcmp(field_name, m_name)) return true; } return false; } bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, const struct btf *reg_btf, u32 reg_id, const struct btf *arg_btf, u32 arg_id) { const char *reg_name, *arg_name, *search_needle; const struct btf_type *reg_type, *arg_type; int reg_len, arg_len, cmp_len; size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); reg_type = btf_type_by_id(reg_btf, reg_id); if (!reg_type) return false; arg_type = btf_type_by_id(arg_btf, arg_id); if (!arg_type) return false; reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); reg_len = strlen(reg_name); arg_len = strlen(arg_name); /* Exactly one of the two type names may be suffixed with ___init, so * if the strings are the same size, they can't possibly be no-cast * aliases of one another. If you have two of the same type names, e.g. * they're both nf_conn___init, it would be improper to return true * because they are _not_ no-cast aliases, they are the same type. */ if (reg_len == arg_len) return false; /* Either of the two names must be the other name, suffixed with ___init. */ if ((reg_len != arg_len + pattern_len) && (arg_len != reg_len + pattern_len)) return false; if (reg_len < arg_len) { search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); cmp_len = reg_len; } else { search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); cmp_len = arg_len; } if (!search_needle) return false; /* ___init suffix must come at the end of the name */ if (*(search_needle + pattern_len) != '\0') return false; return !strncmp(reg_name, arg_name, cmp_len); }