// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qcom-vadc-common.h" #define ADC5_USR_REVISION1 0x0 #define ADC5_USR_STATUS1 0x8 #define ADC5_USR_STATUS1_REQ_STS BIT(1) #define ADC5_USR_STATUS1_EOC BIT(0) #define ADC5_USR_STATUS1_REQ_STS_EOC_MASK 0x3 #define ADC5_USR_STATUS2 0x9 #define ADC5_USR_STATUS2_CONV_SEQ_MASK 0x70 #define ADC5_USR_STATUS2_CONV_SEQ_MASK_SHIFT 0x5 #define ADC5_USR_IBAT_MEAS 0xf #define ADC5_USR_IBAT_MEAS_SUPPORTED BIT(0) #define ADC5_USR_DIG_PARAM 0x42 #define ADC5_USR_DIG_PARAM_CAL_VAL BIT(6) #define ADC5_USR_DIG_PARAM_CAL_VAL_SHIFT 6 #define ADC5_USR_DIG_PARAM_CAL_SEL 0x30 #define ADC5_USR_DIG_PARAM_CAL_SEL_SHIFT 4 #define ADC5_USR_DIG_PARAM_DEC_RATIO_SEL 0xc #define ADC5_USR_DIG_PARAM_DEC_RATIO_SEL_SHIFT 2 #define ADC5_USR_FAST_AVG_CTL 0x43 #define ADC5_USR_FAST_AVG_CTL_EN BIT(7) #define ADC5_USR_FAST_AVG_CTL_SAMPLES_MASK 0x7 #define ADC5_USR_CH_SEL_CTL 0x44 #define ADC5_USR_DELAY_CTL 0x45 #define ADC5_USR_HW_SETTLE_DELAY_MASK 0xf #define ADC5_USR_EN_CTL1 0x46 #define ADC5_USR_EN_CTL1_ADC_EN BIT(7) #define ADC5_USR_CONV_REQ 0x47 #define ADC5_USR_CONV_REQ_REQ BIT(7) #define ADC5_USR_DATA0 0x50 #define ADC5_USR_DATA1 0x51 #define ADC5_USR_IBAT_DATA0 0x52 #define ADC5_USR_IBAT_DATA1 0x53 /* * Conversion time varies based on the decimation, clock rate, fast average * samples and measurements queued across different VADC peripherals. * Set the timeout to a max of 100ms. */ #define ADC5_CONV_TIME_MIN_US 263 #define ADC5_CONV_TIME_MAX_US 264 #define ADC5_CONV_TIME_RETRY 400 #define ADC5_CONV_TIMEOUT msecs_to_jiffies(100) /* Digital version >= 5.3 supports hw_settle_2 */ #define ADC5_HW_SETTLE_DIFF_MINOR 3 #define ADC5_HW_SETTLE_DIFF_MAJOR 5 enum adc5_cal_method { ADC5_NO_CAL = 0, ADC5_RATIOMETRIC_CAL, ADC5_ABSOLUTE_CAL }; enum adc5_cal_val { ADC5_TIMER_CAL = 0, ADC5_NEW_CAL }; /** * struct adc5_channel_prop - ADC channel property. * @channel: channel number, refer to the channel list. * @cal_method: calibration method. * @cal_val: calibration value * @decimation: sampling rate supported for the channel. * @prescale: channel scaling performed on the input signal. * @hw_settle_time: the time between AMUX being configured and the * start of conversion. * @avg_samples: ability to provide single result from the ADC * that is an average of multiple measurements. * @scale_fn_type: Represents the scaling function to convert voltage * physical units desired by the client for the channel. * @datasheet_name: Channel name used in device tree. */ struct adc5_channel_prop { unsigned int channel; enum adc5_cal_method cal_method; enum adc5_cal_val cal_val; unsigned int decimation; unsigned int prescale; unsigned int hw_settle_time; unsigned int avg_samples; enum vadc_scale_fn_type scale_fn_type; const char *datasheet_name; }; /** * struct adc5_chip - ADC private structure. * @regmap: SPMI ADC5 peripheral register map field. * @dev: SPMI ADC5 device. * @base: base address for the ADC peripheral. * @nchannels: number of ADC channels. * @chan_props: array of ADC channel properties. * @iio_chans: array of IIO channels specification. * @poll_eoc: use polling instead of interrupt. * @complete: ADC result notification after interrupt is received. * @lock: ADC lock for access to the peripheral. * @data: software configuration data. */ struct adc5_chip { struct regmap *regmap; struct device *dev; u16 base; unsigned int nchannels; struct adc5_channel_prop *chan_props; struct iio_chan_spec *iio_chans; bool poll_eoc; struct completion complete; struct mutex lock; const struct adc5_data *data; }; static const struct vadc_prescale_ratio adc5_prescale_ratios[] = { {.num = 1, .den = 1}, {.num = 1, .den = 3}, {.num = 1, .den = 4}, {.num = 1, .den = 6}, {.num = 1, .den = 20}, {.num = 1, .den = 8}, {.num = 10, .den = 81}, {.num = 1, .den = 10}, {.num = 1, .den = 16} }; static int adc5_read(struct adc5_chip *adc, u16 offset, u8 *data, int len) { return regmap_bulk_read(adc->regmap, adc->base + offset, data, len); } static int adc5_write(struct adc5_chip *adc, u16 offset, u8 *data, int len) { return regmap_bulk_write(adc->regmap, adc->base + offset, data, len); } static int adc5_prescaling_from_dt(u32 num, u32 den) { unsigned int pre; for (pre = 0; pre < ARRAY_SIZE(adc5_prescale_ratios); pre++) if (adc5_prescale_ratios[pre].num == num && adc5_prescale_ratios[pre].den == den) break; if (pre == ARRAY_SIZE(adc5_prescale_ratios)) return -EINVAL; return pre; } static int adc5_hw_settle_time_from_dt(u32 value, const unsigned int *hw_settle) { unsigned int i; for (i = 0; i < VADC_HW_SETTLE_SAMPLES_MAX; i++) { if (value == hw_settle[i]) return i; } return -EINVAL; } static int adc5_avg_samples_from_dt(u32 value) { if (!is_power_of_2(value) || value > ADC5_AVG_SAMPLES_MAX) return -EINVAL; return __ffs(value); } static int adc5_decimation_from_dt(u32 value, const unsigned int *decimation) { unsigned int i; for (i = 0; i < ADC5_DECIMATION_SAMPLES_MAX; i++) { if (value == decimation[i]) return i; } return -EINVAL; } static int adc5_read_voltage_data(struct adc5_chip *adc, u16 *data) { int ret; u8 rslt_lsb, rslt_msb; ret = adc5_read(adc, ADC5_USR_DATA0, &rslt_lsb, sizeof(rslt_lsb)); if (ret) return ret; ret = adc5_read(adc, ADC5_USR_DATA1, &rslt_msb, sizeof(rslt_lsb)); if (ret) return ret; *data = (rslt_msb << 8) | rslt_lsb; if (*data == ADC5_USR_DATA_CHECK) { pr_err("Invalid data:0x%x\n", *data); return -EINVAL; } pr_debug("voltage raw code:0x%x\n", *data); return 0; } static int adc5_poll_wait_eoc(struct adc5_chip *adc) { unsigned int count, retry = ADC5_CONV_TIME_RETRY; u8 status1; int ret; for (count = 0; count < retry; count++) { ret = adc5_read(adc, ADC5_USR_STATUS1, &status1, sizeof(status1)); if (ret) return ret; status1 &= ADC5_USR_STATUS1_REQ_STS_EOC_MASK; if (status1 == ADC5_USR_STATUS1_EOC) return 0; usleep_range(ADC5_CONV_TIME_MIN_US, ADC5_CONV_TIME_MAX_US); } return -ETIMEDOUT; } static void adc5_update_dig_param(struct adc5_chip *adc, struct adc5_channel_prop *prop, u8 *data) { /* Update calibration value */ *data &= ~ADC5_USR_DIG_PARAM_CAL_VAL; *data |= (prop->cal_val << ADC5_USR_DIG_PARAM_CAL_VAL_SHIFT); /* Update calibration select */ *data &= ~ADC5_USR_DIG_PARAM_CAL_SEL; *data |= (prop->cal_method << ADC5_USR_DIG_PARAM_CAL_SEL_SHIFT); /* Update decimation ratio select */ *data &= ~ADC5_USR_DIG_PARAM_DEC_RATIO_SEL; *data |= (prop->decimation << ADC5_USR_DIG_PARAM_DEC_RATIO_SEL_SHIFT); } static int adc5_configure(struct adc5_chip *adc, struct adc5_channel_prop *prop) { int ret; u8 buf[6]; /* Read registers 0x42 through 0x46 */ ret = adc5_read(adc, ADC5_USR_DIG_PARAM, buf, sizeof(buf)); if (ret < 0) return ret; /* Digital param selection */ adc5_update_dig_param(adc, prop, &buf[0]); /* Update fast average sample value */ buf[1] &= (u8) ~ADC5_USR_FAST_AVG_CTL_SAMPLES_MASK; buf[1] |= prop->avg_samples; /* Select ADC channel */ buf[2] = prop->channel; /* Select HW settle delay for channel */ buf[3] &= (u8) ~ADC5_USR_HW_SETTLE_DELAY_MASK; buf[3] |= prop->hw_settle_time; /* Select ADC enable */ buf[4] |= ADC5_USR_EN_CTL1_ADC_EN; /* Select CONV request */ buf[5] |= ADC5_USR_CONV_REQ_REQ; if (!adc->poll_eoc) reinit_completion(&adc->complete); return adc5_write(adc, ADC5_USR_DIG_PARAM, buf, sizeof(buf)); } static int adc5_do_conversion(struct adc5_chip *adc, struct adc5_channel_prop *prop, struct iio_chan_spec const *chan, u16 *data_volt, u16 *data_cur) { int ret; mutex_lock(&adc->lock); ret = adc5_configure(adc, prop); if (ret) { pr_err("ADC configure failed with %d\n", ret); goto unlock; } if (adc->poll_eoc) { ret = adc5_poll_wait_eoc(adc); if (ret < 0) { pr_err("EOC bit not set\n"); goto unlock; } } else { ret = wait_for_completion_timeout(&adc->complete, ADC5_CONV_TIMEOUT); if (!ret) { pr_debug("Did not get completion timeout.\n"); ret = adc5_poll_wait_eoc(adc); if (ret < 0) { pr_err("EOC bit not set\n"); goto unlock; } } } ret = adc5_read_voltage_data(adc, data_volt); unlock: mutex_unlock(&adc->lock); return ret; } static irqreturn_t adc5_isr(int irq, void *dev_id) { struct adc5_chip *adc = dev_id; complete(&adc->complete); return IRQ_HANDLED; } static int adc5_of_xlate(struct iio_dev *indio_dev, const struct of_phandle_args *iiospec) { struct adc5_chip *adc = iio_priv(indio_dev); int i; for (i = 0; i < adc->nchannels; i++) if (adc->chan_props[i].channel == iiospec->args[0]) return i; return -EINVAL; } static int adc5_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adc5_chip *adc = iio_priv(indio_dev); struct adc5_channel_prop *prop; u16 adc_code_volt, adc_code_cur; int ret; prop = &adc->chan_props[chan->address]; switch (mask) { case IIO_CHAN_INFO_PROCESSED: ret = adc5_do_conversion(adc, prop, chan, &adc_code_volt, &adc_code_cur); if (ret) return ret; ret = qcom_adc5_hw_scale(prop->scale_fn_type, &adc5_prescale_ratios[prop->prescale], adc->data, adc_code_volt, val); if (ret) return ret; return IIO_VAL_INT; default: return -EINVAL; } return 0; } static const struct iio_info adc5_info = { .read_raw = adc5_read_raw, .of_xlate = adc5_of_xlate, }; struct adc5_channels { const char *datasheet_name; unsigned int prescale_index; enum iio_chan_type type; long info_mask; enum vadc_scale_fn_type scale_fn_type; }; #define ADC5_CHAN(_dname, _type, _mask, _pre, _scale) \ { \ .datasheet_name = _dname, \ .prescale_index = _pre, \ .type = _type, \ .info_mask = _mask, \ .scale_fn_type = _scale, \ }, \ #define ADC5_CHAN_TEMP(_dname, _pre, _scale) \ ADC5_CHAN(_dname, IIO_TEMP, \ BIT(IIO_CHAN_INFO_PROCESSED), \ _pre, _scale) \ #define ADC5_CHAN_VOLT(_dname, _pre, _scale) \ ADC5_CHAN(_dname, IIO_VOLTAGE, \ BIT(IIO_CHAN_INFO_PROCESSED), \ _pre, _scale) \ static const struct adc5_channels adc5_chans_pmic[ADC5_MAX_CHANNEL] = { [ADC5_REF_GND] = ADC5_CHAN_VOLT("ref_gnd", 1, SCALE_HW_CALIB_DEFAULT) [ADC5_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 1, SCALE_HW_CALIB_DEFAULT) [ADC5_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 3, SCALE_HW_CALIB_DEFAULT) [ADC5_VBAT_SNS] = ADC5_CHAN_VOLT("vbat_sns", 3, SCALE_HW_CALIB_DEFAULT) [ADC5_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 1, SCALE_HW_CALIB_PMIC_THERM) [ADC5_USB_IN_I] = ADC5_CHAN_VOLT("usb_in_i_uv", 1, SCALE_HW_CALIB_DEFAULT) [ADC5_USB_IN_V_16] = ADC5_CHAN_VOLT("usb_in_v_div_16", 16, SCALE_HW_CALIB_DEFAULT) [ADC5_CHG_TEMP] = ADC5_CHAN_TEMP("chg_temp", 1, SCALE_HW_CALIB_PM5_CHG_TEMP) /* Charger prescales SBUx and MID_CHG to fit within 1.8V upper unit */ [ADC5_SBUx] = ADC5_CHAN_VOLT("chg_sbux", 3, SCALE_HW_CALIB_DEFAULT) [ADC5_MID_CHG_DIV6] = ADC5_CHAN_VOLT("chg_mid_chg", 6, SCALE_HW_CALIB_DEFAULT) [ADC5_XO_THERM_100K_PU] = ADC5_CHAN_TEMP("xo_therm", 1, SCALE_HW_CALIB_XOTHERM) [ADC5_AMUX_THM1_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_AMUX_THM2_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_AMUX_THM3_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_AMUX_THM2] = ADC5_CHAN_TEMP("amux_thm2", 1, SCALE_HW_CALIB_PM5_SMB_TEMP) }; static const struct adc5_channels adc5_chans_rev2[ADC5_MAX_CHANNEL] = { [ADC5_REF_GND] = ADC5_CHAN_VOLT("ref_gnd", 1, SCALE_HW_CALIB_DEFAULT) [ADC5_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 1, SCALE_HW_CALIB_DEFAULT) [ADC5_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 3, SCALE_HW_CALIB_DEFAULT) [ADC5_VBAT_SNS] = ADC5_CHAN_VOLT("vbat_sns", 3, SCALE_HW_CALIB_DEFAULT) [ADC5_VCOIN] = ADC5_CHAN_VOLT("vcoin", 3, SCALE_HW_CALIB_DEFAULT) [ADC5_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 1, SCALE_HW_CALIB_PMIC_THERM) [ADC5_AMUX_THM1_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_AMUX_THM2_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_AMUX_THM3_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_AMUX_THM4_100K_PU] = ADC5_CHAN_TEMP("amux_thm4_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_AMUX_THM5_100K_PU] = ADC5_CHAN_TEMP("amux_thm5_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) [ADC5_XO_THERM_100K_PU] = ADC5_CHAN_TEMP("xo_therm_100k_pu", 1, SCALE_HW_CALIB_THERM_100K_PULLUP) }; static int adc5_get_dt_channel_data(struct adc5_chip *adc, struct adc5_channel_prop *prop, struct device_node *node, const struct adc5_data *data) { const char *name = node->name, *channel_name; u32 chan, value, varr[2]; int ret; struct device *dev = adc->dev; ret = of_property_read_u32(node, "reg", &chan); if (ret) { dev_err(dev, "invalid channel number %s\n", name); return ret; } if (chan > ADC5_PARALLEL_ISENSE_VBAT_IDATA) { dev_err(dev, "%s invalid channel number %d\n", name, chan); return -EINVAL; } /* the channel has DT description */ prop->channel = chan; channel_name = of_get_property(node, "label", NULL) ? : node->name; if (!channel_name) { pr_err("Invalid channel name\n"); return -EINVAL; } prop->datasheet_name = channel_name; ret = of_property_read_u32(node, "qcom,decimation", &value); if (!ret) { ret = adc5_decimation_from_dt(value, data->decimation); if (ret < 0) { dev_err(dev, "%02x invalid decimation %d\n", chan, value); return ret; } prop->decimation = ret; } else { prop->decimation = ADC5_DECIMATION_DEFAULT; } ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2); if (!ret) { ret = adc5_prescaling_from_dt(varr[0], varr[1]); if (ret < 0) { dev_err(dev, "%02x invalid pre-scaling <%d %d>\n", chan, varr[0], varr[1]); return ret; } prop->prescale = ret; } ret = of_property_read_u32(node, "qcom,hw-settle-time", &value); if (!ret) { u8 dig_version[2]; ret = adc5_read(adc, ADC5_USR_REVISION1, dig_version, sizeof(dig_version)); if (ret < 0) { dev_err(dev, "Invalid dig version read %d\n", ret); return ret; } pr_debug("dig_ver:minor:%d, major:%d\n", dig_version[0], dig_version[1]); /* Digital controller >= 5.3 have hw_settle_2 option */ if (dig_version[0] >= ADC5_HW_SETTLE_DIFF_MINOR && dig_version[1] >= ADC5_HW_SETTLE_DIFF_MAJOR) ret = adc5_hw_settle_time_from_dt(value, data->hw_settle_2); else ret = adc5_hw_settle_time_from_dt(value, data->hw_settle_1); if (ret < 0) { dev_err(dev, "%02x invalid hw-settle-time %d us\n", chan, value); return ret; } prop->hw_settle_time = ret; } else { prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME; } ret = of_property_read_u32(node, "qcom,avg-samples", &value); if (!ret) { ret = adc5_avg_samples_from_dt(value); if (ret < 0) { dev_err(dev, "%02x invalid avg-samples %d\n", chan, value); return ret; } prop->avg_samples = ret; } else { prop->avg_samples = VADC_DEF_AVG_SAMPLES; } if (of_property_read_bool(node, "qcom,ratiometric")) prop->cal_method = ADC5_RATIOMETRIC_CAL; else prop->cal_method = ADC5_ABSOLUTE_CAL; /* * Default to using timer calibration. Using a fresh calibration value * for every conversion will increase the overall time for a request. */ prop->cal_val = ADC5_TIMER_CAL; dev_dbg(dev, "%02x name %s\n", chan, name); return 0; } static const struct adc5_data adc5_data_pmic = { .full_scale_code_volt = 0x70e4, .full_scale_code_cur = 0x2710, .adc_chans = adc5_chans_pmic, .decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX]) {250, 420, 840}, .hw_settle_1 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX]) {15, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1, 2, 4, 6, 8, 10}, .hw_settle_2 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX]) {15, 100, 200, 300, 400, 500, 600, 700, 1, 2, 4, 8, 16, 32, 64, 128}, }; static const struct adc5_data adc5_data_pmic_rev2 = { .full_scale_code_volt = 0x4000, .full_scale_code_cur = 0x1800, .adc_chans = adc5_chans_rev2, .decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX]) {256, 512, 1024}, .hw_settle_1 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX]) {0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1, 2, 4, 6, 8, 10}, .hw_settle_2 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX]) {15, 100, 200, 300, 400, 500, 600, 700, 1, 2, 4, 8, 16, 32, 64, 128}, }; static const struct of_device_id adc5_match_table[] = { { .compatible = "qcom,spmi-adc5", .data = &adc5_data_pmic, }, { .compatible = "qcom,spmi-adc-rev2", .data = &adc5_data_pmic_rev2, }, { } }; static int adc5_get_dt_data(struct adc5_chip *adc, struct device_node *node) { const struct adc5_channels *adc_chan; struct iio_chan_spec *iio_chan; struct adc5_channel_prop prop, *chan_props; struct device_node *child; unsigned int index = 0; const struct of_device_id *id; const struct adc5_data *data; int ret; adc->nchannels = of_get_available_child_count(node); if (!adc->nchannels) return -EINVAL; adc->iio_chans = devm_kcalloc(adc->dev, adc->nchannels, sizeof(*adc->iio_chans), GFP_KERNEL); if (!adc->iio_chans) return -ENOMEM; adc->chan_props = devm_kcalloc(adc->dev, adc->nchannels, sizeof(*adc->chan_props), GFP_KERNEL); if (!adc->chan_props) return -ENOMEM; chan_props = adc->chan_props; iio_chan = adc->iio_chans; id = of_match_node(adc5_match_table, node); if (id) data = id->data; else data = &adc5_data_pmic; adc->data = data; for_each_available_child_of_node(node, child) { ret = adc5_get_dt_channel_data(adc, &prop, child, data); if (ret) { of_node_put(child); return ret; } prop.scale_fn_type = data->adc_chans[prop.channel].scale_fn_type; *chan_props = prop; adc_chan = &data->adc_chans[prop.channel]; iio_chan->channel = prop.channel; iio_chan->datasheet_name = prop.datasheet_name; iio_chan->extend_name = prop.datasheet_name; iio_chan->info_mask_separate = adc_chan->info_mask; iio_chan->type = adc_chan->type; iio_chan->address = index; iio_chan++; chan_props++; index++; } return 0; } static int adc5_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct adc5_chip *adc; struct regmap *regmap; int ret, irq_eoc; u32 reg; regmap = dev_get_regmap(dev->parent, NULL); if (!regmap) return -ENODEV; ret = of_property_read_u32(node, "reg", ®); if (ret < 0) return ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*adc)); if (!indio_dev) return -ENOMEM; adc = iio_priv(indio_dev); adc->regmap = regmap; adc->dev = dev; adc->base = reg; init_completion(&adc->complete); mutex_init(&adc->lock); ret = adc5_get_dt_data(adc, node); if (ret) { pr_err("adc get dt data failed\n"); return ret; } irq_eoc = platform_get_irq(pdev, 0); if (irq_eoc < 0) { if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL) return irq_eoc; adc->poll_eoc = true; } else { ret = devm_request_irq(dev, irq_eoc, adc5_isr, 0, "pm-adc5", adc); if (ret) return ret; } indio_dev->dev.parent = dev; indio_dev->dev.of_node = node; indio_dev->name = pdev->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &adc5_info; indio_dev->channels = adc->iio_chans; indio_dev->num_channels = adc->nchannels; return devm_iio_device_register(dev, indio_dev); } static struct platform_driver adc5_driver = { .driver = { .name = "qcom-spmi-adc5.c", .of_match_table = adc5_match_table, }, .probe = adc5_probe, }; module_platform_driver(adc5_driver); MODULE_ALIAS("platform:qcom-spmi-adc5"); MODULE_DESCRIPTION("Qualcomm Technologies Inc. PMIC5 ADC driver"); MODULE_LICENSE("GPL v2");