/* * Copyright (c) 2011-2014, The Linux Foundation. All rights reserved. * Copyright (c) 2014,2015, Linaro Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_PMIC_DATA 2 #define MAX_SEQ_DATA 64 #define SPM_CTL_INDEX 0x7f #define SPM_CTL_INDEX_SHIFT 4 #define SPM_CTL_EN BIT(0) enum pm_sleep_mode { PM_SLEEP_MODE_STBY, PM_SLEEP_MODE_RET, PM_SLEEP_MODE_SPC, PM_SLEEP_MODE_PC, PM_SLEEP_MODE_NR, }; enum spm_reg { SPM_REG_CFG, SPM_REG_SPM_CTL, SPM_REG_DLY, SPM_REG_PMIC_DLY, SPM_REG_PMIC_DATA_0, SPM_REG_PMIC_DATA_1, SPM_REG_VCTL, SPM_REG_SEQ_ENTRY, SPM_REG_SPM_STS, SPM_REG_PMIC_STS, SPM_REG_NR, }; struct spm_reg_data { const u8 *reg_offset; u32 spm_cfg; u32 spm_dly; u32 pmic_dly; u32 pmic_data[MAX_PMIC_DATA]; u8 seq[MAX_SEQ_DATA]; u8 start_index[PM_SLEEP_MODE_NR]; }; struct spm_driver_data { void __iomem *reg_base; const struct spm_reg_data *reg_data; }; static const u8 spm_reg_offset_v2_1[SPM_REG_NR] = { [SPM_REG_CFG] = 0x08, [SPM_REG_SPM_CTL] = 0x30, [SPM_REG_DLY] = 0x34, [SPM_REG_SEQ_ENTRY] = 0x80, }; /* SPM register data for 8974, 8084 */ static const struct spm_reg_data spm_reg_8974_8084_cpu = { .reg_offset = spm_reg_offset_v2_1, .spm_cfg = 0x1, .spm_dly = 0x3C102800, .seq = { 0x03, 0x0B, 0x0F, 0x00, 0x20, 0x80, 0x10, 0xE8, 0x5B, 0x03, 0x3B, 0xE8, 0x5B, 0x82, 0x10, 0x0B, 0x30, 0x06, 0x26, 0x30, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 3, }; static const u8 spm_reg_offset_v1_1[SPM_REG_NR] = { [SPM_REG_CFG] = 0x08, [SPM_REG_SPM_CTL] = 0x20, [SPM_REG_PMIC_DLY] = 0x24, [SPM_REG_PMIC_DATA_0] = 0x28, [SPM_REG_PMIC_DATA_1] = 0x2C, [SPM_REG_SEQ_ENTRY] = 0x80, }; /* SPM register data for 8064 */ static const struct spm_reg_data spm_reg_8064_cpu = { .reg_offset = spm_reg_offset_v1_1, .spm_cfg = 0x1F, .pmic_dly = 0x02020004, .pmic_data[0] = 0x0084009C, .pmic_data[1] = 0x00A4001C, .seq = { 0x03, 0x0F, 0x00, 0x24, 0x54, 0x10, 0x09, 0x03, 0x01, 0x10, 0x54, 0x30, 0x0C, 0x24, 0x30, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 2, }; static DEFINE_PER_CPU(struct spm_driver_data *, cpu_spm_drv); typedef int (*idle_fn)(void); static DEFINE_PER_CPU(idle_fn*, qcom_idle_ops); static inline void spm_register_write(struct spm_driver_data *drv, enum spm_reg reg, u32 val) { if (drv->reg_data->reg_offset[reg]) writel_relaxed(val, drv->reg_base + drv->reg_data->reg_offset[reg]); } /* Ensure a guaranteed write, before return */ static inline void spm_register_write_sync(struct spm_driver_data *drv, enum spm_reg reg, u32 val) { u32 ret; if (!drv->reg_data->reg_offset[reg]) return; do { writel_relaxed(val, drv->reg_base + drv->reg_data->reg_offset[reg]); ret = readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]); if (ret == val) break; cpu_relax(); } while (1); } static inline u32 spm_register_read(struct spm_driver_data *drv, enum spm_reg reg) { return readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]); } static void spm_set_low_power_mode(struct spm_driver_data *drv, enum pm_sleep_mode mode) { u32 start_index; u32 ctl_val; start_index = drv->reg_data->start_index[mode]; ctl_val = spm_register_read(drv, SPM_REG_SPM_CTL); ctl_val &= ~(SPM_CTL_INDEX << SPM_CTL_INDEX_SHIFT); ctl_val |= start_index << SPM_CTL_INDEX_SHIFT; ctl_val |= SPM_CTL_EN; spm_register_write_sync(drv, SPM_REG_SPM_CTL, ctl_val); } static int qcom_pm_collapse(unsigned long int unused) { qcom_scm_cpu_power_down(QCOM_SCM_CPU_PWR_DOWN_L2_ON); /* * Returns here only if there was a pending interrupt and we did not * power down as a result. */ return -1; } static int qcom_cpu_spc(void) { int ret; struct spm_driver_data *drv = __this_cpu_read(cpu_spm_drv); spm_set_low_power_mode(drv, PM_SLEEP_MODE_SPC); ret = cpu_suspend(0, qcom_pm_collapse); /* * ARM common code executes WFI without calling into our driver and * if the SPM mode is not reset, then we may accidently power down the * cpu when we intended only to gate the cpu clock. * Ensure the state is set to standby before returning. */ spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY); return ret; } static int qcom_idle_enter(unsigned long index) { return __this_cpu_read(qcom_idle_ops)[index](); } static const struct of_device_id qcom_idle_state_match[] __initconst = { { .compatible = "qcom,idle-state-spc", .data = qcom_cpu_spc }, { }, }; static int __init qcom_cpuidle_init(struct device_node *cpu_node, int cpu) { const struct of_device_id *match_id; struct device_node *state_node; int i; int state_count = 1; idle_fn idle_fns[CPUIDLE_STATE_MAX]; idle_fn *fns; cpumask_t mask; bool use_scm_power_down = false; for (i = 0; ; i++) { state_node = of_parse_phandle(cpu_node, "cpu-idle-states", i); if (!state_node) break; if (!of_device_is_available(state_node)) continue; if (i == CPUIDLE_STATE_MAX) { pr_warn("%s: cpuidle states reached max possible\n", __func__); break; } match_id = of_match_node(qcom_idle_state_match, state_node); if (!match_id) return -ENODEV; idle_fns[state_count] = match_id->data; /* Check if any of the states allow power down */ if (match_id->data == qcom_cpu_spc) use_scm_power_down = true; state_count++; } if (state_count == 1) goto check_spm; fns = devm_kcalloc(get_cpu_device(cpu), state_count, sizeof(*fns), GFP_KERNEL); if (!fns) return -ENOMEM; for (i = 1; i < state_count; i++) fns[i] = idle_fns[i]; if (use_scm_power_down) { /* We have atleast one power down mode */ cpumask_clear(&mask); cpumask_set_cpu(cpu, &mask); qcom_scm_set_warm_boot_addr(cpu_resume_arm, &mask); } per_cpu(qcom_idle_ops, cpu) = fns; /* * SPM probe for the cpu should have happened by now, if the * SPM device does not exist, return -ENXIO to indicate that the * cpu does not support idle states. */ check_spm: return per_cpu(cpu_spm_drv, cpu) ? 0 : -ENXIO; } static const struct cpuidle_ops qcom_cpuidle_ops __initconst = { .suspend = qcom_idle_enter, .init = qcom_cpuidle_init, }; CPUIDLE_METHOD_OF_DECLARE(qcom_idle_v1, "qcom,kpss-acc-v1", &qcom_cpuidle_ops); CPUIDLE_METHOD_OF_DECLARE(qcom_idle_v2, "qcom,kpss-acc-v2", &qcom_cpuidle_ops); static struct spm_driver_data *spm_get_drv(struct platform_device *pdev, int *spm_cpu) { struct spm_driver_data *drv = NULL; struct device_node *cpu_node, *saw_node; int cpu; bool found = 0; for_each_possible_cpu(cpu) { cpu_node = of_cpu_device_node_get(cpu); if (!cpu_node) continue; saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0); found = (saw_node == pdev->dev.of_node); of_node_put(saw_node); of_node_put(cpu_node); if (found) break; } if (found) { drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); if (drv) *spm_cpu = cpu; } return drv; } static const struct of_device_id spm_match_table[] = { { .compatible = "qcom,msm8974-saw2-v2.1-cpu", .data = &spm_reg_8974_8084_cpu }, { .compatible = "qcom,apq8084-saw2-v2.1-cpu", .data = &spm_reg_8974_8084_cpu }, { .compatible = "qcom,apq8064-saw2-v1.1-cpu", .data = &spm_reg_8064_cpu }, { }, }; static int spm_dev_probe(struct platform_device *pdev) { struct spm_driver_data *drv; struct resource *res; const struct of_device_id *match_id; void __iomem *addr; int cpu; drv = spm_get_drv(pdev, &cpu); if (!drv) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); drv->reg_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(drv->reg_base)) return PTR_ERR(drv->reg_base); match_id = of_match_node(spm_match_table, pdev->dev.of_node); if (!match_id) return -ENODEV; drv->reg_data = match_id->data; /* Write the SPM sequences first.. */ addr = drv->reg_base + drv->reg_data->reg_offset[SPM_REG_SEQ_ENTRY]; __iowrite32_copy(addr, drv->reg_data->seq, ARRAY_SIZE(drv->reg_data->seq) / 4); /* * ..and then the control registers. * On some SoC if the control registers are written first and if the * CPU was held in reset, the reset signal could trigger the SPM state * machine, before the sequences are completely written. */ spm_register_write(drv, SPM_REG_CFG, drv->reg_data->spm_cfg); spm_register_write(drv, SPM_REG_DLY, drv->reg_data->spm_dly); spm_register_write(drv, SPM_REG_PMIC_DLY, drv->reg_data->pmic_dly); spm_register_write(drv, SPM_REG_PMIC_DATA_0, drv->reg_data->pmic_data[0]); spm_register_write(drv, SPM_REG_PMIC_DATA_1, drv->reg_data->pmic_data[1]); /* Set up Standby as the default low power mode */ spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY); per_cpu(cpu_spm_drv, cpu) = drv; return 0; } static struct platform_driver spm_driver = { .probe = spm_dev_probe, .driver = { .name = "saw", .of_match_table = spm_match_table, }, }; module_platform_driver(spm_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("SAW power controller driver"); MODULE_ALIAS("platform:saw");