/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * ********************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lpfc_version.h" #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_nvme.h" #include "lpfc_scsi.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #include "lpfc_debugfs.h" /* NVME initiator-based functions */ static struct lpfc_nvme_buf * lpfc_get_nvme_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx, int expedite); static void lpfc_release_nvme_buf(struct lpfc_hba *, struct lpfc_nvme_buf *); static struct nvme_fc_port_template lpfc_nvme_template; static union lpfc_wqe128 lpfc_iread_cmd_template; static union lpfc_wqe128 lpfc_iwrite_cmd_template; static union lpfc_wqe128 lpfc_icmnd_cmd_template; /* Setup WQE templates for NVME IOs */ void lpfc_nvme_cmd_template(void) { union lpfc_wqe128 *wqe; /* IREAD template */ wqe = &lpfc_iread_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - cmd_buff_len, payload_offset_len is zero */ /* Word 4 - total_xfer_len is variable */ /* Word 5 - is zero */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag is variable */ /* Word 10 - dbde, wqes is variable */ bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); bf_set(wqe_nvme, &wqe->fcp_iread.wqe_com, 1); bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); /* Word 11 - pbde is variable */ bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, NVME_READ_CMD); bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); /* Word 12 - is zero */ /* Word 13, 14, 15 - PBDE is variable */ /* IWRITE template */ wqe = &lpfc_iwrite_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - cmd_buff_len, payload_offset_len is zero */ /* Word 4 - total_xfer_len is variable */ /* Word 5 - initial_xfer_len is variable */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag is variable */ /* Word 10 - dbde, wqes is variable */ bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); bf_set(wqe_nvme, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); /* Word 11 - pbde is variable */ bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, NVME_WRITE_CMD); bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); /* Word 12 - is zero */ /* Word 13, 14, 15 - PBDE is variable */ /* ICMND template */ wqe = &lpfc_icmnd_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - payload_offset_len is variable */ /* Word 4, 5 - is zero */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag is variable */ /* Word 10 - dbde, wqes is variable */ bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); bf_set(wqe_nvme, &wqe->fcp_icmd.wqe_com, 1); bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); /* Word 11 */ bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, FCP_COMMAND); bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); /* Word 12, 13, 14, 15 - is zero */ } /** * lpfc_nvme_create_queue - * @lpfc_pnvme: Pointer to the driver's nvme instance data * @qidx: An cpu index used to affinitize IO queues and MSIX vectors. * @handle: An opaque driver handle used in follow-up calls. * * Driver registers this routine to preallocate and initialize any * internal data structures to bind the @qidx to its internal IO queues. * A hardware queue maps (qidx) to a specific driver MSI-X vector/EQ/CQ/WQ. * * Return value : * 0 - Success * -EINVAL - Unsupported input value. * -ENOMEM - Could not alloc necessary memory **/ static int lpfc_nvme_create_queue(struct nvme_fc_local_port *pnvme_lport, unsigned int qidx, u16 qsize, void **handle) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; struct lpfc_nvme_qhandle *qhandle; char *str; if (!pnvme_lport->private) return -ENOMEM; lport = (struct lpfc_nvme_lport *)pnvme_lport->private; vport = lport->vport; qhandle = kzalloc(sizeof(struct lpfc_nvme_qhandle), GFP_KERNEL); if (qhandle == NULL) return -ENOMEM; qhandle->cpu_id = smp_processor_id(); qhandle->qidx = qidx; /* * NVME qidx == 0 is the admin queue, so both admin queue * and first IO queue will use MSI-X vector and associated * EQ/CQ/WQ at index 0. After that they are sequentially assigned. */ if (qidx) { str = "IO "; /* IO queue */ qhandle->index = ((qidx - 1) % vport->phba->cfg_hdw_queue); } else { str = "ADM"; /* Admin queue */ qhandle->index = qidx; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6073 Binding %s HdwQueue %d (cpu %d) to " "hdw_queue %d qhandle %p\n", str, qidx, qhandle->cpu_id, qhandle->index, qhandle); *handle = (void *)qhandle; return 0; } /** * lpfc_nvme_delete_queue - * @lpfc_pnvme: Pointer to the driver's nvme instance data * @qidx: An cpu index used to affinitize IO queues and MSIX vectors. * @handle: An opaque driver handle from lpfc_nvme_create_queue * * Driver registers this routine to free * any internal data structures to bind the @qidx to its internal * IO queues. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static void lpfc_nvme_delete_queue(struct nvme_fc_local_port *pnvme_lport, unsigned int qidx, void *handle) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; if (!pnvme_lport->private) return; lport = (struct lpfc_nvme_lport *)pnvme_lport->private; vport = lport->vport; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6001 ENTER. lpfc_pnvme %p, qidx x%x qhandle %p\n", lport, qidx, handle); kfree(handle); } static void lpfc_nvme_localport_delete(struct nvme_fc_local_port *localport) { struct lpfc_nvme_lport *lport = localport->private; lpfc_printf_vlog(lport->vport, KERN_INFO, LOG_NVME, "6173 localport %p delete complete\n", lport); /* release any threads waiting for the unreg to complete */ complete(&lport->lport_unreg_done); } /* lpfc_nvme_remoteport_delete * * @remoteport: Pointer to an nvme transport remoteport instance. * * This is a template downcall. NVME transport calls this function * when it has completed the unregistration of a previously * registered remoteport. * * Return value : * None */ void lpfc_nvme_remoteport_delete(struct nvme_fc_remote_port *remoteport) { struct lpfc_nvme_rport *rport = remoteport->private; struct lpfc_vport *vport; struct lpfc_nodelist *ndlp; ndlp = rport->ndlp; if (!ndlp) goto rport_err; vport = ndlp->vport; if (!vport) goto rport_err; /* Remove this rport from the lport's list - memory is owned by the * transport. Remove the ndlp reference for the NVME transport before * calling state machine to remove the node. */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6146 remoteport delete of remoteport %p\n", remoteport); spin_lock_irq(&vport->phba->hbalock); /* The register rebind might have occurred before the delete * downcall. Guard against this race. */ if (ndlp->upcall_flags & NLP_WAIT_FOR_UNREG) { ndlp->nrport = NULL; ndlp->upcall_flags &= ~NLP_WAIT_FOR_UNREG; } spin_unlock_irq(&vport->phba->hbalock); /* Remove original register reference. The host transport * won't reference this rport/remoteport any further. */ lpfc_nlp_put(ndlp); rport_err: return; } static void lpfc_nvme_cmpl_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_wcqe_complete *wcqe) { struct lpfc_vport *vport = cmdwqe->vport; struct lpfc_nvme_lport *lport; uint32_t status; struct nvmefc_ls_req *pnvme_lsreq; struct lpfc_dmabuf *buf_ptr; struct lpfc_nodelist *ndlp; pnvme_lsreq = (struct nvmefc_ls_req *)cmdwqe->context2; status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; if (vport->localport) { lport = (struct lpfc_nvme_lport *)vport->localport->private; if (lport) { atomic_inc(&lport->fc4NvmeLsCmpls); if (status) { if (bf_get(lpfc_wcqe_c_xb, wcqe)) atomic_inc(&lport->cmpl_ls_xb); atomic_inc(&lport->cmpl_ls_err); } } } ndlp = (struct lpfc_nodelist *)cmdwqe->context1; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6047 nvme cmpl Enter " "Data %p DID %x Xri: %x status %x reason x%x cmd:%p " "lsreg:%p bmp:%p ndlp:%p\n", pnvme_lsreq, ndlp ? ndlp->nlp_DID : 0, cmdwqe->sli4_xritag, status, (wcqe->parameter & 0xffff), cmdwqe, pnvme_lsreq, cmdwqe->context3, ndlp); lpfc_nvmeio_data(phba, "NVME LS CMPL: xri x%x stat x%x parm x%x\n", cmdwqe->sli4_xritag, status, wcqe->parameter); if (cmdwqe->context3) { buf_ptr = (struct lpfc_dmabuf *)cmdwqe->context3; lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); kfree(buf_ptr); cmdwqe->context3 = NULL; } if (pnvme_lsreq->done) pnvme_lsreq->done(pnvme_lsreq, status); else lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_DISC, "6046 nvme cmpl without done call back? " "Data %p DID %x Xri: %x status %x\n", pnvme_lsreq, ndlp ? ndlp->nlp_DID : 0, cmdwqe->sli4_xritag, status); if (ndlp) { lpfc_nlp_put(ndlp); cmdwqe->context1 = NULL; } lpfc_sli_release_iocbq(phba, cmdwqe); } static int lpfc_nvme_gen_req(struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, struct lpfc_dmabuf *inp, struct nvmefc_ls_req *pnvme_lsreq, void (*cmpl)(struct lpfc_hba *, struct lpfc_iocbq *, struct lpfc_wcqe_complete *), struct lpfc_nodelist *ndlp, uint32_t num_entry, uint32_t tmo, uint8_t retry) { struct lpfc_hba *phba = vport->phba; union lpfc_wqe128 *wqe; struct lpfc_iocbq *genwqe; struct ulp_bde64 *bpl; struct ulp_bde64 bde; int i, rc, xmit_len, first_len; /* Allocate buffer for command WQE */ genwqe = lpfc_sli_get_iocbq(phba); if (genwqe == NULL) return 1; wqe = &genwqe->wqe; memset(wqe, 0, sizeof(union lpfc_wqe)); genwqe->context3 = (uint8_t *)bmp; genwqe->iocb_flag |= LPFC_IO_NVME_LS; /* Save for completion so we can release these resources */ genwqe->context1 = lpfc_nlp_get(ndlp); genwqe->context2 = (uint8_t *)pnvme_lsreq; /* Fill in payload, bp points to frame payload */ if (!tmo) /* FC spec states we need 3 * ratov for CT requests */ tmo = (3 * phba->fc_ratov); /* For this command calculate the xmit length of the request bde. */ xmit_len = 0; first_len = 0; bpl = (struct ulp_bde64 *)bmp->virt; for (i = 0; i < num_entry; i++) { bde.tus.w = bpl[i].tus.w; if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) break; xmit_len += bde.tus.f.bdeSize; if (i == 0) first_len = xmit_len; } genwqe->rsvd2 = num_entry; genwqe->hba_wqidx = 0; /* Words 0 - 2 */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->generic.bde.tus.f.bdeSize = first_len; wqe->generic.bde.addrLow = bpl[0].addrLow; wqe->generic.bde.addrHigh = bpl[0].addrHigh; /* Word 3 */ wqe->gen_req.request_payload_len = first_len; /* Word 4 */ /* Word 5 */ bf_set(wqe_dfctl, &wqe->gen_req.wge_ctl, 0); bf_set(wqe_si, &wqe->gen_req.wge_ctl, 1); bf_set(wqe_la, &wqe->gen_req.wge_ctl, 1); bf_set(wqe_rctl, &wqe->gen_req.wge_ctl, FC_RCTL_ELS4_REQ); bf_set(wqe_type, &wqe->gen_req.wge_ctl, FC_TYPE_NVME); /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->gen_req.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->gen_req.wqe_com, genwqe->sli4_xritag); /* Word 7 */ bf_set(wqe_tmo, &wqe->gen_req.wqe_com, (vport->phba->fc_ratov-1)); bf_set(wqe_class, &wqe->gen_req.wqe_com, CLASS3); bf_set(wqe_cmnd, &wqe->gen_req.wqe_com, CMD_GEN_REQUEST64_WQE); bf_set(wqe_ct, &wqe->gen_req.wqe_com, SLI4_CT_RPI); /* Word 8 */ wqe->gen_req.wqe_com.abort_tag = genwqe->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->gen_req.wqe_com, genwqe->iotag); /* Word 10 */ bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); /* Word 11 */ bf_set(wqe_cqid, &wqe->gen_req.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_cmd_type, &wqe->gen_req.wqe_com, OTHER_COMMAND); /* Issue GEN REQ WQE for NPORT */ lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, "6050 Issue GEN REQ WQE to NPORT x%x " "Data: x%x x%x wq:%p lsreq:%p bmp:%p xmit:%d 1st:%d\n", ndlp->nlp_DID, genwqe->iotag, vport->port_state, genwqe, pnvme_lsreq, bmp, xmit_len, first_len); genwqe->wqe_cmpl = cmpl; genwqe->iocb_cmpl = NULL; genwqe->drvrTimeout = tmo + LPFC_DRVR_TIMEOUT; genwqe->vport = vport; genwqe->retry = retry; lpfc_nvmeio_data(phba, "NVME LS XMIT: xri x%x iotag x%x to x%06x\n", genwqe->sli4_xritag, genwqe->iotag, ndlp->nlp_DID); rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, genwqe); if (rc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, "6045 Issue GEN REQ WQE to NPORT x%x " "Data: x%x x%x\n", ndlp->nlp_DID, genwqe->iotag, vport->port_state); lpfc_sli_release_iocbq(phba, genwqe); return 1; } return 0; } /** * lpfc_nvme_ls_req - Issue an Link Service request * @lpfc_pnvme: Pointer to the driver's nvme instance data * @lpfc_nvme_lport: Pointer to the driver's local port data * @lpfc_nvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * * Driver registers this routine to handle any link service request * from the nvme_fc transport to a remote nvme-aware port. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static int lpfc_nvme_ls_req(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, struct nvmefc_ls_req *pnvme_lsreq) { int ret = 0; struct lpfc_nvme_lport *lport; struct lpfc_nvme_rport *rport; struct lpfc_vport *vport; struct lpfc_nodelist *ndlp; struct ulp_bde64 *bpl; struct lpfc_dmabuf *bmp; uint16_t ntype, nstate; /* there are two dma buf in the request, actually there is one and * the second one is just the start address + cmd size. * Before calling lpfc_nvme_gen_req these buffers need to be wrapped * in a lpfc_dmabuf struct. When freeing we just free the wrapper * because the nvem layer owns the data bufs. * We do not have to break these packets open, we don't care what is in * them. And we do not have to look at the resonse data, we only care * that we got a response. All of the caring is going to happen in the * nvme-fc layer. */ lport = (struct lpfc_nvme_lport *)pnvme_lport->private; rport = (struct lpfc_nvme_rport *)pnvme_rport->private; if (unlikely(!lport) || unlikely(!rport)) return -EINVAL; vport = lport->vport; if (vport->load_flag & FC_UNLOADING) return -ENODEV; /* Need the ndlp. It is stored in the driver's rport. */ ndlp = rport->ndlp; if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NODE | LOG_NVME_IOERR, "6051 Remoteport %p, rport has invalid ndlp. " "Failing LS Req\n", pnvme_rport); return -ENODEV; } /* The remote node has to be a mapped nvme target or an * unmapped nvme initiator or it's an error. */ ntype = ndlp->nlp_type; nstate = ndlp->nlp_state; if ((ntype & NLP_NVME_TARGET && nstate != NLP_STE_MAPPED_NODE) || (ntype & NLP_NVME_INITIATOR && nstate != NLP_STE_UNMAPPED_NODE)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NODE | LOG_NVME_IOERR, "6088 DID x%06x not ready for " "IO. State x%x, Type x%x\n", pnvme_rport->port_id, ndlp->nlp_state, ndlp->nlp_type); return -ENODEV; } bmp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!bmp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_DISC, "6044 Could not find node for DID %x\n", pnvme_rport->port_id); return 2; } INIT_LIST_HEAD(&bmp->list); bmp->virt = lpfc_mbuf_alloc(vport->phba, MEM_PRI, &(bmp->phys)); if (!bmp->virt) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_DISC, "6042 Could not find node for DID %x\n", pnvme_rport->port_id); kfree(bmp); return 3; } bpl = (struct ulp_bde64 *)bmp->virt; bpl->addrHigh = le32_to_cpu(putPaddrHigh(pnvme_lsreq->rqstdma)); bpl->addrLow = le32_to_cpu(putPaddrLow(pnvme_lsreq->rqstdma)); bpl->tus.f.bdeFlags = 0; bpl->tus.f.bdeSize = pnvme_lsreq->rqstlen; bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl++; bpl->addrHigh = le32_to_cpu(putPaddrHigh(pnvme_lsreq->rspdma)); bpl->addrLow = le32_to_cpu(putPaddrLow(pnvme_lsreq->rspdma)); bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.f.bdeSize = pnvme_lsreq->rsplen; bpl->tus.w = le32_to_cpu(bpl->tus.w); /* Expand print to include key fields. */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6149 Issue LS Req to DID 0x%06x lport %p, rport %p " "lsreq%p rqstlen:%d rsplen:%d %pad %pad\n", ndlp->nlp_DID, pnvme_lport, pnvme_rport, pnvme_lsreq, pnvme_lsreq->rqstlen, pnvme_lsreq->rsplen, &pnvme_lsreq->rqstdma, &pnvme_lsreq->rspdma); atomic_inc(&lport->fc4NvmeLsRequests); /* Hardcode the wait to 30 seconds. Connections are failing otherwise. * This code allows it all to work. */ ret = lpfc_nvme_gen_req(vport, bmp, pnvme_lsreq->rqstaddr, pnvme_lsreq, lpfc_nvme_cmpl_gen_req, ndlp, 2, 30, 0); if (ret != WQE_SUCCESS) { atomic_inc(&lport->xmt_ls_err); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_DISC, "6052 EXIT. issue ls wqe failed lport %p, " "rport %p lsreq%p Status %x DID %x\n", pnvme_lport, pnvme_rport, pnvme_lsreq, ret, ndlp->nlp_DID); lpfc_mbuf_free(vport->phba, bmp->virt, bmp->phys); kfree(bmp); return ret; } /* Stub in routine and return 0 for now. */ return ret; } /** * lpfc_nvme_ls_abort - Issue an Link Service request * @lpfc_pnvme: Pointer to the driver's nvme instance data * @lpfc_nvme_lport: Pointer to the driver's local port data * @lpfc_nvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * * Driver registers this routine to handle any link service request * from the nvme_fc transport to a remote nvme-aware port. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static void lpfc_nvme_ls_abort(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, struct nvmefc_ls_req *pnvme_lsreq) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; struct lpfc_hba *phba; struct lpfc_nodelist *ndlp; LIST_HEAD(abort_list); struct lpfc_sli_ring *pring; struct lpfc_iocbq *wqe, *next_wqe; lport = (struct lpfc_nvme_lport *)pnvme_lport->private; if (unlikely(!lport)) return; vport = lport->vport; phba = vport->phba; if (vport->load_flag & FC_UNLOADING) return; ndlp = lpfc_findnode_did(vport, pnvme_rport->port_id); if (!ndlp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6049 Could not find node for DID %x\n", pnvme_rport->port_id); return; } /* Expand print to include key fields. */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS, "6040 ENTER. lport %p, rport %p lsreq %p rqstlen:%d " "rsplen:%d %pad %pad\n", pnvme_lport, pnvme_rport, pnvme_lsreq, pnvme_lsreq->rqstlen, pnvme_lsreq->rsplen, &pnvme_lsreq->rqstdma, &pnvme_lsreq->rspdma); /* * Lock the ELS ring txcmplq and build a local list of all ELS IOs * that need an ABTS. The IOs need to stay on the txcmplq so that * the abort operation completes them successfully. */ pring = phba->sli4_hba.nvmels_wq->pring; spin_lock_irq(&phba->hbalock); spin_lock(&pring->ring_lock); list_for_each_entry_safe(wqe, next_wqe, &pring->txcmplq, list) { /* Add to abort_list on on NDLP match. */ if (lpfc_check_sli_ndlp(phba, pring, wqe, ndlp)) { wqe->iocb_flag |= LPFC_DRIVER_ABORTED; list_add_tail(&wqe->dlist, &abort_list); } } spin_unlock(&pring->ring_lock); spin_unlock_irq(&phba->hbalock); /* Abort the targeted IOs and remove them from the abort list. */ list_for_each_entry_safe(wqe, next_wqe, &abort_list, dlist) { atomic_inc(&lport->xmt_ls_abort); spin_lock_irq(&phba->hbalock); list_del_init(&wqe->dlist); lpfc_sli_issue_abort_iotag(phba, pring, wqe); spin_unlock_irq(&phba->hbalock); } } /* Fix up the existing sgls for NVME IO. */ static inline void lpfc_nvme_adj_fcp_sgls(struct lpfc_vport *vport, struct lpfc_nvme_buf *lpfc_ncmd, struct nvmefc_fcp_req *nCmd) { struct lpfc_hba *phba = vport->phba; struct sli4_sge *sgl; union lpfc_wqe128 *wqe; uint32_t *wptr, *dptr; /* * Get a local pointer to the built-in wqe and correct * the cmd size to match NVME's 96 bytes and fix * the dma address. */ wqe = &lpfc_ncmd->cur_iocbq.wqe; /* * Adjust the FCP_CMD and FCP_RSP DMA data and sge_len to * match NVME. NVME sends 96 bytes. Also, use the * nvme commands command and response dma addresses * rather than the virtual memory to ease the restore * operation. */ sgl = lpfc_ncmd->dma_sgl; sgl->sge_len = cpu_to_le32(nCmd->cmdlen); if (phba->cfg_nvme_embed_cmd) { sgl->addr_hi = 0; sgl->addr_lo = 0; /* Word 0-2 - NVME CMND IU (embedded payload) */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_IMMED; wqe->generic.bde.tus.f.bdeSize = 56; wqe->generic.bde.addrHigh = 0; wqe->generic.bde.addrLow = 64; /* Word 16 */ /* Word 10 - dbde is 0, wqes is 1 in template */ /* * Embed the payload in the last half of the WQE * WQE words 16-30 get the NVME CMD IU payload * * WQE words 16-19 get payload Words 1-4 * WQE words 20-21 get payload Words 6-7 * WQE words 22-29 get payload Words 16-23 */ wptr = &wqe->words[16]; /* WQE ptr */ dptr = (uint32_t *)nCmd->cmdaddr; /* payload ptr */ dptr++; /* Skip Word 0 in payload */ *wptr++ = *dptr++; /* Word 1 */ *wptr++ = *dptr++; /* Word 2 */ *wptr++ = *dptr++; /* Word 3 */ *wptr++ = *dptr++; /* Word 4 */ dptr++; /* Skip Word 5 in payload */ *wptr++ = *dptr++; /* Word 6 */ *wptr++ = *dptr++; /* Word 7 */ dptr += 8; /* Skip Words 8-15 in payload */ *wptr++ = *dptr++; /* Word 16 */ *wptr++ = *dptr++; /* Word 17 */ *wptr++ = *dptr++; /* Word 18 */ *wptr++ = *dptr++; /* Word 19 */ *wptr++ = *dptr++; /* Word 20 */ *wptr++ = *dptr++; /* Word 21 */ *wptr++ = *dptr++; /* Word 22 */ *wptr = *dptr; /* Word 23 */ } else { sgl->addr_hi = cpu_to_le32(putPaddrHigh(nCmd->cmddma)); sgl->addr_lo = cpu_to_le32(putPaddrLow(nCmd->cmddma)); /* Word 0-2 - NVME CMND IU Inline BDE */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->generic.bde.tus.f.bdeSize = nCmd->cmdlen; wqe->generic.bde.addrHigh = sgl->addr_hi; wqe->generic.bde.addrLow = sgl->addr_lo; /* Word 10 */ bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); } sgl++; /* Setup the physical region for the FCP RSP */ sgl->addr_hi = cpu_to_le32(putPaddrHigh(nCmd->rspdma)); sgl->addr_lo = cpu_to_le32(putPaddrLow(nCmd->rspdma)); sgl->word2 = le32_to_cpu(sgl->word2); if (nCmd->sg_cnt) bf_set(lpfc_sli4_sge_last, sgl, 0); else bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(nCmd->rsplen); } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS static void lpfc_nvme_ktime(struct lpfc_hba *phba, struct lpfc_nvme_buf *lpfc_ncmd) { uint64_t seg1, seg2, seg3, seg4; uint64_t segsum; if (!lpfc_ncmd->ts_last_cmd || !lpfc_ncmd->ts_cmd_start || !lpfc_ncmd->ts_cmd_wqput || !lpfc_ncmd->ts_isr_cmpl || !lpfc_ncmd->ts_data_nvme) return; if (lpfc_ncmd->ts_data_nvme < lpfc_ncmd->ts_cmd_start) return; if (lpfc_ncmd->ts_cmd_start < lpfc_ncmd->ts_last_cmd) return; if (lpfc_ncmd->ts_cmd_wqput < lpfc_ncmd->ts_cmd_start) return; if (lpfc_ncmd->ts_isr_cmpl < lpfc_ncmd->ts_cmd_wqput) return; if (lpfc_ncmd->ts_data_nvme < lpfc_ncmd->ts_isr_cmpl) return; /* * Segment 1 - Time from Last FCP command cmpl is handed * off to NVME Layer to start of next command. * Segment 2 - Time from Driver receives a IO cmd start * from NVME Layer to WQ put is done on IO cmd. * Segment 3 - Time from Driver WQ put is done on IO cmd * to MSI-X ISR for IO cmpl. * Segment 4 - Time from MSI-X ISR for IO cmpl to when * cmpl is handled off to the NVME Layer. */ seg1 = lpfc_ncmd->ts_cmd_start - lpfc_ncmd->ts_last_cmd; if (seg1 > 5000000) /* 5 ms - for sequential IOs only */ seg1 = 0; /* Calculate times relative to start of IO */ seg2 = (lpfc_ncmd->ts_cmd_wqput - lpfc_ncmd->ts_cmd_start); segsum = seg2; seg3 = lpfc_ncmd->ts_isr_cmpl - lpfc_ncmd->ts_cmd_start; if (segsum > seg3) return; seg3 -= segsum; segsum += seg3; seg4 = lpfc_ncmd->ts_data_nvme - lpfc_ncmd->ts_cmd_start; if (segsum > seg4) return; seg4 -= segsum; phba->ktime_data_samples++; phba->ktime_seg1_total += seg1; if (seg1 < phba->ktime_seg1_min) phba->ktime_seg1_min = seg1; else if (seg1 > phba->ktime_seg1_max) phba->ktime_seg1_max = seg1; phba->ktime_seg2_total += seg2; if (seg2 < phba->ktime_seg2_min) phba->ktime_seg2_min = seg2; else if (seg2 > phba->ktime_seg2_max) phba->ktime_seg2_max = seg2; phba->ktime_seg3_total += seg3; if (seg3 < phba->ktime_seg3_min) phba->ktime_seg3_min = seg3; else if (seg3 > phba->ktime_seg3_max) phba->ktime_seg3_max = seg3; phba->ktime_seg4_total += seg4; if (seg4 < phba->ktime_seg4_min) phba->ktime_seg4_min = seg4; else if (seg4 > phba->ktime_seg4_max) phba->ktime_seg4_max = seg4; lpfc_ncmd->ts_last_cmd = 0; lpfc_ncmd->ts_cmd_start = 0; lpfc_ncmd->ts_cmd_wqput = 0; lpfc_ncmd->ts_isr_cmpl = 0; lpfc_ncmd->ts_data_nvme = 0; } #endif /** * lpfc_nvme_io_cmd_wqe_cmpl - Complete an NVME-over-FCP IO * @lpfc_pnvme: Pointer to the driver's nvme instance data * @lpfc_nvme_lport: Pointer to the driver's local port data * @lpfc_nvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static void lpfc_nvme_io_cmd_wqe_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeIn, struct lpfc_wcqe_complete *wcqe) { struct lpfc_nvme_buf *lpfc_ncmd = (struct lpfc_nvme_buf *)pwqeIn->context1; struct lpfc_vport *vport = pwqeIn->vport; struct nvmefc_fcp_req *nCmd; struct nvme_fc_ersp_iu *ep; struct nvme_fc_cmd_iu *cp; struct lpfc_nodelist *ndlp; struct lpfc_nvme_fcpreq_priv *freqpriv; struct lpfc_nvme_lport *lport; struct lpfc_nvme_ctrl_stat *cstat; uint32_t code, status, idx; uint16_t cid, sqhd, data; uint32_t *ptr; /* Sanity check on return of outstanding command */ if (!lpfc_ncmd || !lpfc_ncmd->nvmeCmd) { if (!lpfc_ncmd) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NODE | LOG_NVME_IOERR, "6071 Null lpfc_ncmd pointer. No " "release, skip completion\n"); return; } lpfc_printf_vlog(vport, KERN_ERR, LOG_NODE | LOG_NVME_IOERR, "6066 Missing cmpl ptrs: lpfc_ncmd %p, " "nvmeCmd %p\n", lpfc_ncmd, lpfc_ncmd->nvmeCmd); /* Release the lpfc_ncmd regardless of the missing elements. */ lpfc_release_nvme_buf(phba, lpfc_ncmd); return; } nCmd = lpfc_ncmd->nvmeCmd; status = bf_get(lpfc_wcqe_c_status, wcqe); if (vport->localport) { lport = (struct lpfc_nvme_lport *)vport->localport->private; if (lport) { idx = lpfc_ncmd->cur_iocbq.hba_wqidx; cstat = &lport->cstat[idx]; atomic_inc(&cstat->fc4NvmeIoCmpls); if (status) { if (bf_get(lpfc_wcqe_c_xb, wcqe)) atomic_inc(&lport->cmpl_fcp_xb); atomic_inc(&lport->cmpl_fcp_err); } } } lpfc_nvmeio_data(phba, "NVME FCP CMPL: xri x%x stat x%x parm x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, status, wcqe->parameter); /* * Catch race where our node has transitioned, but the * transport is still transitioning. */ ndlp = lpfc_ncmd->ndlp; if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_IOERR, "6062 Ignoring NVME cmpl. No ndlp\n"); goto out_err; } code = bf_get(lpfc_wcqe_c_code, wcqe); if (code == CQE_CODE_NVME_ERSP) { /* For this type of CQE, we need to rebuild the rsp */ ep = (struct nvme_fc_ersp_iu *)nCmd->rspaddr; /* * Get Command Id from cmd to plug into response. This * code is not needed in the next NVME Transport drop. */ cp = (struct nvme_fc_cmd_iu *)nCmd->cmdaddr; cid = cp->sqe.common.command_id; /* * RSN is in CQE word 2 * SQHD is in CQE Word 3 bits 15:0 * Cmd Specific info is in CQE Word 1 * and in CQE Word 0 bits 15:0 */ sqhd = bf_get(lpfc_wcqe_c_sqhead, wcqe); /* Now lets build the NVME ERSP IU */ ep->iu_len = cpu_to_be16(8); ep->rsn = wcqe->parameter; ep->xfrd_len = cpu_to_be32(nCmd->payload_length); ep->rsvd12 = 0; ptr = (uint32_t *)&ep->cqe.result.u64; *ptr++ = wcqe->total_data_placed; data = bf_get(lpfc_wcqe_c_ersp0, wcqe); *ptr = (uint32_t)data; ep->cqe.sq_head = sqhd; ep->cqe.sq_id = nCmd->sqid; ep->cqe.command_id = cid; ep->cqe.status = 0; lpfc_ncmd->status = IOSTAT_SUCCESS; lpfc_ncmd->result = 0; nCmd->rcv_rsplen = LPFC_NVME_ERSP_LEN; nCmd->transferred_length = nCmd->payload_length; } else { lpfc_ncmd->status = (status & LPFC_IOCB_STATUS_MASK); lpfc_ncmd->result = (wcqe->parameter & IOERR_PARAM_MASK); /* For NVME, the only failure path that results in an * IO error is when the adapter rejects it. All other * conditions are a success case and resolved by the * transport. * IOSTAT_FCP_RSP_ERROR means: * 1. Length of data received doesn't match total * transfer length in WQE * 2. If the RSP payload does NOT match these cases: * a. RSP length 12/24 bytes and all zeros * b. NVME ERSP */ switch (lpfc_ncmd->status) { case IOSTAT_SUCCESS: nCmd->transferred_length = wcqe->total_data_placed; nCmd->rcv_rsplen = 0; nCmd->status = 0; break; case IOSTAT_FCP_RSP_ERROR: nCmd->transferred_length = wcqe->total_data_placed; nCmd->rcv_rsplen = wcqe->parameter; nCmd->status = 0; /* Sanity check */ if (nCmd->rcv_rsplen == LPFC_NVME_ERSP_LEN) break; lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_IOERR, "6081 NVME Completion Protocol Error: " "xri %x status x%x result x%x " "placed x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_ncmd->status, lpfc_ncmd->result, wcqe->total_data_placed); break; case IOSTAT_LOCAL_REJECT: /* Let fall through to set command final state. */ if (lpfc_ncmd->result == IOERR_ABORT_REQUESTED) lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6032 Delay Aborted cmd %p " "nvme cmd %p, xri x%x, " "xb %d\n", lpfc_ncmd, nCmd, lpfc_ncmd->cur_iocbq.sli4_xritag, bf_get(lpfc_wcqe_c_xb, wcqe)); default: out_err: lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6072 NVME Completion Error: xri %x " "status x%x result x%x placed x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_ncmd->status, lpfc_ncmd->result, wcqe->total_data_placed); nCmd->transferred_length = 0; nCmd->rcv_rsplen = 0; nCmd->status = NVME_SC_INTERNAL; } } /* pick up SLI4 exhange busy condition */ if (bf_get(lpfc_wcqe_c_xb, wcqe)) lpfc_ncmd->flags |= LPFC_SBUF_XBUSY; else lpfc_ncmd->flags &= ~LPFC_SBUF_XBUSY; /* Update stats and complete the IO. There is * no need for dma unprep because the nvme_transport * owns the dma address. */ #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_ncmd->ts_cmd_start) { lpfc_ncmd->ts_isr_cmpl = pwqeIn->isr_timestamp; lpfc_ncmd->ts_data_nvme = ktime_get_ns(); phba->ktime_last_cmd = lpfc_ncmd->ts_data_nvme; lpfc_nvme_ktime(phba, lpfc_ncmd); } if (phba->cpucheck_on & LPFC_CHECK_NVME_IO) { if (lpfc_ncmd->cpu != smp_processor_id()) lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_IOERR, "6701 CPU Check cmpl: " "cpu %d expect %d\n", smp_processor_id(), lpfc_ncmd->cpu); if (lpfc_ncmd->cpu < LPFC_CHECK_CPU_CNT) phba->cpucheck_cmpl_io[lpfc_ncmd->cpu]++; } #endif /* NVME targets need completion held off until the abort exchange * completes unless the NVME Rport is getting unregistered. */ if (!(lpfc_ncmd->flags & LPFC_SBUF_XBUSY)) { freqpriv = nCmd->private; freqpriv->nvme_buf = NULL; nCmd->done(nCmd); lpfc_ncmd->nvmeCmd = NULL; } /* Call release with XB=1 to queue the IO into the abort list. */ lpfc_release_nvme_buf(phba, lpfc_ncmd); } /** * lpfc_nvme_prep_io_cmd - Issue an NVME-over-FCP IO * @lpfc_pnvme: Pointer to the driver's nvme instance data * @lpfc_nvme_lport: Pointer to the driver's local port data * @lpfc_nvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * @lpfc_nvme_fcreq: IO request from nvme fc to driver. * @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static int lpfc_nvme_prep_io_cmd(struct lpfc_vport *vport, struct lpfc_nvme_buf *lpfc_ncmd, struct lpfc_nodelist *pnode, struct lpfc_nvme_ctrl_stat *cstat) { struct lpfc_hba *phba = vport->phba; struct nvmefc_fcp_req *nCmd = lpfc_ncmd->nvmeCmd; struct lpfc_iocbq *pwqeq = &(lpfc_ncmd->cur_iocbq); union lpfc_wqe128 *wqe = &pwqeq->wqe; uint32_t req_len; if (!NLP_CHK_NODE_ACT(pnode)) return -EINVAL; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. */ if (nCmd->sg_cnt) { if (nCmd->io_dir == NVMEFC_FCP_WRITE) { /* From the iwrite template, initialize words 7 - 11 */ memcpy(&wqe->words[7], &lpfc_iwrite_cmd_template.words[7], sizeof(uint32_t) * 5); /* Word 4 */ wqe->fcp_iwrite.total_xfer_len = nCmd->payload_length; /* Word 5 */ if ((phba->cfg_nvme_enable_fb) && (pnode->nlp_flag & NLP_FIRSTBURST)) { req_len = lpfc_ncmd->nvmeCmd->payload_length; if (req_len < pnode->nvme_fb_size) wqe->fcp_iwrite.initial_xfer_len = req_len; else wqe->fcp_iwrite.initial_xfer_len = pnode->nvme_fb_size; } else { wqe->fcp_iwrite.initial_xfer_len = 0; } atomic_inc(&cstat->fc4NvmeOutputRequests); } else { /* From the iread template, initialize words 7 - 11 */ memcpy(&wqe->words[7], &lpfc_iread_cmd_template.words[7], sizeof(uint32_t) * 5); /* Word 4 */ wqe->fcp_iread.total_xfer_len = nCmd->payload_length; /* Word 5 */ wqe->fcp_iread.rsrvd5 = 0; atomic_inc(&cstat->fc4NvmeInputRequests); } } else { /* From the icmnd template, initialize words 4 - 11 */ memcpy(&wqe->words[4], &lpfc_icmnd_cmd_template.words[4], sizeof(uint32_t) * 8); atomic_inc(&cstat->fc4NvmeControlRequests); } /* * Finish initializing those WQE fields that are independent * of the nvme_cmnd request_buffer */ /* Word 3 */ bf_set(payload_offset_len, &wqe->fcp_icmd, (nCmd->rsplen + nCmd->cmdlen)); /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->generic.wqe_com, phba->sli4_hba.rpi_ids[pnode->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->generic.wqe_com, pwqeq->sli4_xritag); /* Word 8 */ wqe->generic.wqe_com.abort_tag = pwqeq->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->generic.wqe_com, pwqeq->iotag); /* Words 13 14 15 are for PBDE support */ pwqeq->vport = vport; return 0; } /** * lpfc_nvme_prep_io_dma - Issue an NVME-over-FCP IO * @lpfc_pnvme: Pointer to the driver's nvme instance data * @lpfc_nvme_lport: Pointer to the driver's local port data * @lpfc_nvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * @lpfc_nvme_fcreq: IO request from nvme fc to driver. * @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static int lpfc_nvme_prep_io_dma(struct lpfc_vport *vport, struct lpfc_nvme_buf *lpfc_ncmd) { struct lpfc_hba *phba = vport->phba; struct nvmefc_fcp_req *nCmd = lpfc_ncmd->nvmeCmd; union lpfc_wqe128 *wqe = &lpfc_ncmd->cur_iocbq.wqe; struct sli4_sge *sgl = lpfc_ncmd->dma_sgl; struct scatterlist *data_sg; struct sli4_sge *first_data_sgl; struct ulp_bde64 *bde; dma_addr_t physaddr; uint32_t num_bde = 0; uint32_t dma_len; uint32_t dma_offset = 0; int nseg, i; /* Fix up the command and response DMA stuff. */ lpfc_nvme_adj_fcp_sgls(vport, lpfc_ncmd, nCmd); /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. */ if (nCmd->sg_cnt) { /* * Jump over the cmd and rsp SGEs. The fix routine * has already adjusted for this. */ sgl += 2; first_data_sgl = sgl; lpfc_ncmd->seg_cnt = nCmd->sg_cnt; if (lpfc_ncmd->seg_cnt > lpfc_nvme_template.max_sgl_segments) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6058 Too many sg segments from " "NVME Transport. Max %d, " "nvmeIO sg_cnt %d\n", phba->cfg_nvme_seg_cnt + 1, lpfc_ncmd->seg_cnt); lpfc_ncmd->seg_cnt = 0; return 1; } /* * The driver established a maximum scatter-gather segment count * during probe that limits the number of sg elements in any * single nvme command. Just run through the seg_cnt and format * the sge's. */ nseg = nCmd->sg_cnt; data_sg = nCmd->first_sgl; for (i = 0; i < nseg; i++) { if (data_sg == NULL) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6059 dptr err %d, nseg %d\n", i, nseg); lpfc_ncmd->seg_cnt = 0; return 1; } physaddr = data_sg->dma_address; dma_len = data_sg->length; sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); sgl->word2 = le32_to_cpu(sgl->word2); if ((num_bde + 1) == nseg) bf_set(lpfc_sli4_sge_last, sgl, 1); else bf_set(lpfc_sli4_sge_last, sgl, 0); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; data_sg = sg_next(data_sg); sgl++; } if (phba->cfg_enable_pbde) { /* Use PBDE support for first SGL only, offset == 0 */ /* Words 13-15 */ bde = (struct ulp_bde64 *) &wqe->words[13]; bde->addrLow = first_data_sgl->addr_lo; bde->addrHigh = first_data_sgl->addr_hi; bde->tus.f.bdeSize = le32_to_cpu(first_data_sgl->sge_len); bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bde->tus.w = cpu_to_le32(bde->tus.w); /* wqe_pbde is 1 in template */ } else { memset(&wqe->words[13], 0, (sizeof(uint32_t) * 3)); bf_set(wqe_pbde, &wqe->generic.wqe_com, 0); } } else { lpfc_ncmd->seg_cnt = 0; /* For this clause to be valid, the payload_length * and sg_cnt must zero. */ if (nCmd->payload_length != 0) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6063 NVME DMA Prep Err: sg_cnt %d " "payload_length x%x\n", nCmd->sg_cnt, nCmd->payload_length); return 1; } } return 0; } /** * lpfc_nvme_fcp_io_submit - Issue an NVME-over-FCP IO * @lpfc_pnvme: Pointer to the driver's nvme instance data * @lpfc_nvme_lport: Pointer to the driver's local port data * @lpfc_nvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * @lpfc_nvme_fcreq: IO request from nvme fc to driver. * @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static int lpfc_nvme_fcp_io_submit(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, void *hw_queue_handle, struct nvmefc_fcp_req *pnvme_fcreq) { int ret = 0; int expedite = 0; int idx; struct lpfc_nvme_lport *lport; struct lpfc_nvme_ctrl_stat *cstat; struct lpfc_vport *vport; struct lpfc_hba *phba; struct lpfc_nodelist *ndlp; struct lpfc_nvme_buf *lpfc_ncmd; struct lpfc_nvme_rport *rport; struct lpfc_nvme_qhandle *lpfc_queue_info; struct lpfc_nvme_fcpreq_priv *freqpriv; struct nvme_common_command *sqe; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS uint64_t start = 0; #endif /* Validate pointers. LLDD fault handling with transport does * have timing races. */ lport = (struct lpfc_nvme_lport *)pnvme_lport->private; if (unlikely(!lport)) { ret = -EINVAL; goto out_fail; } vport = lport->vport; if (unlikely(!hw_queue_handle)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6117 Fail IO, NULL hw_queue_handle\n"); atomic_inc(&lport->xmt_fcp_err); ret = -EBUSY; goto out_fail; } phba = vport->phba; if (vport->load_flag & FC_UNLOADING) { ret = -ENODEV; goto out_fail; } if (vport->load_flag & FC_UNLOADING) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6124 Fail IO, Driver unload\n"); atomic_inc(&lport->xmt_fcp_err); ret = -ENODEV; goto out_fail; } freqpriv = pnvme_fcreq->private; if (unlikely(!freqpriv)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6158 Fail IO, NULL request data\n"); atomic_inc(&lport->xmt_fcp_err); ret = -EINVAL; goto out_fail; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (phba->ktime_on) start = ktime_get_ns(); #endif rport = (struct lpfc_nvme_rport *)pnvme_rport->private; lpfc_queue_info = (struct lpfc_nvme_qhandle *)hw_queue_handle; /* * Catch race where our node has transitioned, but the * transport is still transitioning. */ ndlp = rport->ndlp; if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_NVME_IOERR, "6053 Fail IO, ndlp not ready: rport %p " "ndlp %p, DID x%06x\n", rport, ndlp, pnvme_rport->port_id); atomic_inc(&lport->xmt_fcp_err); ret = -EBUSY; goto out_fail; } /* The remote node has to be a mapped target or it's an error. */ if ((ndlp->nlp_type & NLP_NVME_TARGET) && (ndlp->nlp_state != NLP_STE_MAPPED_NODE)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_NVME_IOERR, "6036 Fail IO, DID x%06x not ready for " "IO. State x%x, Type x%x Flg x%x\n", pnvme_rport->port_id, ndlp->nlp_state, ndlp->nlp_type, ndlp->upcall_flags); atomic_inc(&lport->xmt_fcp_bad_ndlp); ret = -EBUSY; goto out_fail; } /* Currently only NVME Keep alive commands should be expedited * if the driver runs out of a resource. These should only be * issued on the admin queue, qidx 0 */ if (!lpfc_queue_info->qidx && !pnvme_fcreq->sg_cnt) { sqe = &((struct nvme_fc_cmd_iu *) pnvme_fcreq->cmdaddr)->sqe.common; if (sqe->opcode == nvme_admin_keep_alive) expedite = 1; } /* The node is shared with FCP IO, make sure the IO pending count does * not exceed the programmed depth. */ if (lpfc_ndlp_check_qdepth(phba, ndlp)) { if ((atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) && !expedite) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6174 Fail IO, ndlp qdepth exceeded: " "idx %d DID %x pend %d qdepth %d\n", lpfc_queue_info->index, ndlp->nlp_DID, atomic_read(&ndlp->cmd_pending), ndlp->cmd_qdepth); atomic_inc(&lport->xmt_fcp_qdepth); ret = -EBUSY; goto out_fail; } } lpfc_ncmd = lpfc_get_nvme_buf(phba, ndlp, lpfc_queue_info->index, expedite); if (lpfc_ncmd == NULL) { atomic_inc(&lport->xmt_fcp_noxri); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6065 Fail IO, driver buffer pool is empty: " "idx %d DID %x\n", lpfc_queue_info->index, ndlp->nlp_DID); ret = -EBUSY; goto out_fail; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (start) { lpfc_ncmd->ts_cmd_start = start; lpfc_ncmd->ts_last_cmd = phba->ktime_last_cmd; } else { lpfc_ncmd->ts_cmd_start = 0; } #endif /* * Store the data needed by the driver to issue, abort, and complete * an IO. * Do not let the IO hang out forever. There is no midlayer issuing * an abort so inform the FW of the maximum IO pending time. */ freqpriv->nvme_buf = lpfc_ncmd; lpfc_ncmd->nvmeCmd = pnvme_fcreq; lpfc_ncmd->ndlp = ndlp; lpfc_ncmd->qidx = lpfc_queue_info->qidx; /* * Issue the IO on the WQ indicated by index in the hw_queue_handle. * This identfier was create in our hardware queue create callback * routine. The driver now is dependent on the IO queue steering from * the transport. We are trusting the upper NVME layers know which * index to use and that they have affinitized a CPU to this hardware * queue. A hardware queue maps to a driver MSI-X vector/EQ/CQ/WQ. */ idx = lpfc_queue_info->index; lpfc_ncmd->cur_iocbq.hba_wqidx = idx; cstat = &lport->cstat[idx]; lpfc_nvme_prep_io_cmd(vport, lpfc_ncmd, ndlp, cstat); ret = lpfc_nvme_prep_io_dma(vport, lpfc_ncmd); if (ret) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6175 Fail IO, Prep DMA: " "idx %d DID %x\n", lpfc_queue_info->index, ndlp->nlp_DID); atomic_inc(&lport->xmt_fcp_err); ret = -ENOMEM; goto out_free_nvme_buf; } lpfc_nvmeio_data(phba, "NVME FCP XMIT: xri x%x idx %d to %06x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_queue_info->index, ndlp->nlp_DID); ret = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, &lpfc_ncmd->cur_iocbq); if (ret) { atomic_inc(&lport->xmt_fcp_wqerr); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6113 Fail IO, Could not issue WQE err %x " "sid: x%x did: x%x oxid: x%x\n", ret, vport->fc_myDID, ndlp->nlp_DID, lpfc_ncmd->cur_iocbq.sli4_xritag); goto out_free_nvme_buf; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_ncmd->ts_cmd_start) lpfc_ncmd->ts_cmd_wqput = ktime_get_ns(); if (phba->cpucheck_on & LPFC_CHECK_NVME_IO) { lpfc_ncmd->cpu = smp_processor_id(); if (lpfc_ncmd->cpu != lpfc_queue_info->index) { /* Check for admin queue */ if (lpfc_queue_info->qidx) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_IOERR, "6702 CPU Check cmd: " "cpu %d wq %d\n", lpfc_ncmd->cpu, lpfc_queue_info->index); } lpfc_ncmd->cpu = lpfc_queue_info->index; } if (lpfc_ncmd->cpu < LPFC_CHECK_CPU_CNT) phba->cpucheck_xmt_io[lpfc_ncmd->cpu]++; } #endif return 0; out_free_nvme_buf: if (lpfc_ncmd->nvmeCmd->sg_cnt) { if (lpfc_ncmd->nvmeCmd->io_dir == NVMEFC_FCP_WRITE) atomic_dec(&cstat->fc4NvmeOutputRequests); else atomic_dec(&cstat->fc4NvmeInputRequests); } else atomic_dec(&cstat->fc4NvmeControlRequests); lpfc_release_nvme_buf(phba, lpfc_ncmd); out_fail: return ret; } /** * lpfc_nvme_abort_fcreq_cmpl - Complete an NVME FCP abort request. * @phba: Pointer to HBA context object * @cmdiocb: Pointer to command iocb object. * @rspiocb: Pointer to response iocb object. * * This is the callback function for any NVME FCP IO that was aborted. * * Return value: * None **/ void lpfc_nvme_abort_fcreq_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_wcqe_complete *abts_cmpl) { lpfc_printf_log(phba, KERN_INFO, LOG_NVME, "6145 ABORT_XRI_CN completing on rpi x%x " "original iotag x%x, abort cmd iotag x%x " "req_tag x%x, status x%x, hwstatus x%x\n", cmdiocb->iocb.un.acxri.abortContextTag, cmdiocb->iocb.un.acxri.abortIoTag, cmdiocb->iotag, bf_get(lpfc_wcqe_c_request_tag, abts_cmpl), bf_get(lpfc_wcqe_c_status, abts_cmpl), bf_get(lpfc_wcqe_c_hw_status, abts_cmpl)); lpfc_sli_release_iocbq(phba, cmdiocb); } /** * lpfc_nvme_fcp_abort - Issue an NVME-over-FCP ABTS * @lpfc_pnvme: Pointer to the driver's nvme instance data * @lpfc_nvme_lport: Pointer to the driver's local port data * @lpfc_nvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * @lpfc_nvme_fcreq: IO request from nvme fc to driver. * @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue * * Driver registers this routine as its nvme request io abort handler. This * routine issues an fcp Abort WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. This routine * is executed asynchronously - one the target is validated as "MAPPED" and * ready for IO, the driver issues the abort request and returns. * * Return value: * None **/ static void lpfc_nvme_fcp_abort(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, void *hw_queue_handle, struct nvmefc_fcp_req *pnvme_fcreq) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; struct lpfc_hba *phba; struct lpfc_nvme_buf *lpfc_nbuf; struct lpfc_iocbq *abts_buf; struct lpfc_iocbq *nvmereq_wqe; struct lpfc_nvme_fcpreq_priv *freqpriv; union lpfc_wqe128 *abts_wqe; unsigned long flags; int ret_val; /* Validate pointers. LLDD fault handling with transport does * have timing races. */ lport = (struct lpfc_nvme_lport *)pnvme_lport->private; if (unlikely(!lport)) return; vport = lport->vport; if (unlikely(!hw_queue_handle)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS, "6129 Fail Abort, HW Queue Handle NULL.\n"); return; } phba = vport->phba; freqpriv = pnvme_fcreq->private; if (unlikely(!freqpriv)) return; if (vport->load_flag & FC_UNLOADING) return; /* Announce entry to new IO submit field. */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS, "6002 Abort Request to rport DID x%06x " "for nvme_fc_req %p\n", pnvme_rport->port_id, pnvme_fcreq); /* If the hba is getting reset, this flag is set. It is * cleared when the reset is complete and rings reestablished. */ spin_lock_irqsave(&phba->hbalock, flags); /* driver queued commands are in process of being flushed */ if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) { spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6139 Driver in reset cleanup - flushing " "NVME Req now. hba_flag x%x\n", phba->hba_flag); return; } lpfc_nbuf = freqpriv->nvme_buf; if (!lpfc_nbuf) { spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6140 NVME IO req has no matching lpfc nvme " "io buffer. Skipping abort req.\n"); return; } else if (!lpfc_nbuf->nvmeCmd) { spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6141 lpfc NVME IO req has no nvme_fcreq " "io buffer. Skipping abort req.\n"); return; } nvmereq_wqe = &lpfc_nbuf->cur_iocbq; /* * The lpfc_nbuf and the mapped nvme_fcreq in the driver's * state must match the nvme_fcreq passed by the nvme * transport. If they don't match, it is likely the driver * has already completed the NVME IO and the nvme transport * has not seen it yet. */ if (lpfc_nbuf->nvmeCmd != pnvme_fcreq) { spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6143 NVME req mismatch: " "lpfc_nbuf %p nvmeCmd %p, " "pnvme_fcreq %p. Skipping Abort xri x%x\n", lpfc_nbuf, lpfc_nbuf->nvmeCmd, pnvme_fcreq, nvmereq_wqe->sli4_xritag); return; } /* Don't abort IOs no longer on the pending queue. */ if (!(nvmereq_wqe->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6142 NVME IO req %p not queued - skipping " "abort req xri x%x\n", pnvme_fcreq, nvmereq_wqe->sli4_xritag); return; } atomic_inc(&lport->xmt_fcp_abort); lpfc_nvmeio_data(phba, "NVME FCP ABORT: xri x%x idx %d to %06x\n", nvmereq_wqe->sli4_xritag, nvmereq_wqe->hba_wqidx, pnvme_rport->port_id); /* Outstanding abort is in progress */ if (nvmereq_wqe->iocb_flag & LPFC_DRIVER_ABORTED) { spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6144 Outstanding NVME I/O Abort Request " "still pending on nvme_fcreq %p, " "lpfc_ncmd %p xri x%x\n", pnvme_fcreq, lpfc_nbuf, nvmereq_wqe->sli4_xritag); return; } abts_buf = __lpfc_sli_get_iocbq(phba); if (!abts_buf) { spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6136 No available abort wqes. Skipping " "Abts req for nvme_fcreq %p xri x%x\n", pnvme_fcreq, nvmereq_wqe->sli4_xritag); return; } /* Ready - mark outstanding as aborted by driver. */ nvmereq_wqe->iocb_flag |= LPFC_DRIVER_ABORTED; /* Complete prepping the abort wqe and issue to the FW. */ abts_wqe = &abts_buf->wqe; /* WQEs are reused. Clear stale data and set key fields to * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. */ memset(abts_wqe, 0, sizeof(union lpfc_wqe)); bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); /* word 7 */ bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, nvmereq_wqe->iocb.ulpClass); /* word 8 - tell the FW to abort the IO associated with this * outstanding exchange ID. */ abts_wqe->abort_cmd.wqe_com.abort_tag = nvmereq_wqe->sli4_xritag; /* word 9 - this is the iotag for the abts_wqe completion. */ bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, abts_buf->iotag); /* word 10 */ bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); /* word 11 */ bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); /* ABTS WQE must go to the same WQ as the WQE to be aborted */ abts_buf->iocb_flag |= LPFC_IO_NVME; abts_buf->hba_wqidx = nvmereq_wqe->hba_wqidx; abts_buf->vport = vport; abts_buf->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; ret_val = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_buf); spin_unlock_irqrestore(&phba->hbalock, flags); if (ret_val) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_ABTS, "6137 Failed abts issue_wqe with status x%x " "for nvme_fcreq %p.\n", ret_val, pnvme_fcreq); lpfc_sli_release_iocbq(phba, abts_buf); return; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS, "6138 Transport Abort NVME Request Issued for " "ox_id x%x on reqtag x%x\n", nvmereq_wqe->sli4_xritag, abts_buf->iotag); } /* Declare and initialization an instance of the FC NVME template. */ static struct nvme_fc_port_template lpfc_nvme_template = { /* initiator-based functions */ .localport_delete = lpfc_nvme_localport_delete, .remoteport_delete = lpfc_nvme_remoteport_delete, .create_queue = lpfc_nvme_create_queue, .delete_queue = lpfc_nvme_delete_queue, .ls_req = lpfc_nvme_ls_req, .fcp_io = lpfc_nvme_fcp_io_submit, .ls_abort = lpfc_nvme_ls_abort, .fcp_abort = lpfc_nvme_fcp_abort, .max_hw_queues = 1, .max_sgl_segments = LPFC_NVME_DEFAULT_SEGS, .max_dif_sgl_segments = LPFC_NVME_DEFAULT_SEGS, .dma_boundary = 0xFFFFFFFF, /* Sizes of additional private data for data structures. * No use for the last two sizes at this time. */ .local_priv_sz = sizeof(struct lpfc_nvme_lport), .remote_priv_sz = sizeof(struct lpfc_nvme_rport), .lsrqst_priv_sz = 0, .fcprqst_priv_sz = sizeof(struct lpfc_nvme_fcpreq_priv), }; static inline struct lpfc_nvme_buf * lpfc_nvme_buf(struct lpfc_hba *phba, int idx) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_nvme_buf *lpfc_ncmd, *lpfc_ncmd_next; qp = &phba->sli4_hba.hdwq[idx]; list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &qp->lpfc_io_buf_list_get, list) { list_del_init(&lpfc_ncmd->list); qp->get_io_bufs--; return lpfc_ncmd; } return NULL; } /** * lpfc_get_nvme_buf - Get a nvme buffer from io_buf_list of the HBA * @phba: The HBA for which this call is being executed. * * This routine removes a nvme buffer from head of @hdwq io_buf_list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_nvme_buf - Success **/ static struct lpfc_nvme_buf * lpfc_get_nvme_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx, int expedite) { struct lpfc_nvme_buf *lpfc_ncmd = NULL; struct lpfc_sli4_hdw_queue *qp; struct sli4_sge *sgl; struct lpfc_iocbq *pwqeq; union lpfc_wqe128 *wqe; unsigned long iflag = 0; qp = &phba->sli4_hba.hdwq[idx]; spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag); if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) lpfc_ncmd = lpfc_nvme_buf(phba, idx); if (!lpfc_ncmd) { spin_lock(&qp->io_buf_list_put_lock); list_splice(&qp->lpfc_io_buf_list_put, &qp->lpfc_io_buf_list_get); qp->get_io_bufs += qp->put_io_bufs; INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); qp->put_io_bufs = 0; spin_unlock(&qp->io_buf_list_put_lock); if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) lpfc_ncmd = lpfc_nvme_buf(phba, idx); } spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); if (lpfc_ncmd) { pwqeq = &(lpfc_ncmd->cur_iocbq); wqe = &pwqeq->wqe; /* Setup key fields in buffer that may have been changed * if other protocols used this buffer. */ pwqeq->iocb_flag = LPFC_IO_NVME; pwqeq->wqe_cmpl = lpfc_nvme_io_cmd_wqe_cmpl; lpfc_ncmd->start_time = jiffies; lpfc_ncmd->flags = 0; lpfc_ncmd->hdwq = idx; /* Rsp SGE will be filled in when we rcv an IO * from the NVME Layer to be sent. * The cmd is going to be embedded so we need a SKIP SGE. */ sgl = lpfc_ncmd->dma_sgl; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); /* Fill in word 3 / sgl_len during cmd submission */ /* Initialize WQE */ memset(wqe, 0, sizeof(union lpfc_wqe)); if (lpfc_ndlp_check_qdepth(phba, ndlp)) { atomic_inc(&ndlp->cmd_pending); lpfc_ncmd->flags |= LPFC_BUMP_QDEPTH; } } else qp->empty_io_bufs++; return lpfc_ncmd; } /** * lpfc_release_nvme_buf: Return a nvme buffer back to hba nvme buf list. * @phba: The Hba for which this call is being executed. * @lpfc_ncmd: The nvme buffer which is being released. * * This routine releases @lpfc_ncmd nvme buffer by adding it to tail of @phba * lpfc_io_buf_list list. For SLI4 XRI's are tied to the nvme buffer * and cannot be reused for at least RA_TOV amount of time if it was * aborted. **/ static void lpfc_release_nvme_buf(struct lpfc_hba *phba, struct lpfc_nvme_buf *lpfc_ncmd) { struct lpfc_sli4_hdw_queue *qp; unsigned long iflag = 0; if ((lpfc_ncmd->flags & LPFC_BUMP_QDEPTH) && lpfc_ncmd->ndlp) atomic_dec(&lpfc_ncmd->ndlp->cmd_pending); lpfc_ncmd->ndlp = NULL; lpfc_ncmd->flags &= ~LPFC_BUMP_QDEPTH; qp = &phba->sli4_hba.hdwq[lpfc_ncmd->hdwq]; if (lpfc_ncmd->flags & LPFC_SBUF_XBUSY) { lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6310 XB release deferred for " "ox_id x%x on reqtag x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_ncmd->cur_iocbq.iotag); spin_lock_irqsave(&qp->abts_nvme_buf_list_lock, iflag); list_add_tail(&lpfc_ncmd->list, &qp->lpfc_abts_nvme_buf_list); qp->abts_nvme_io_bufs++; spin_unlock_irqrestore(&qp->abts_nvme_buf_list_lock, iflag); } else { /* MUST zero fields if buffer is reused by another protocol */ lpfc_ncmd->nvmeCmd = NULL; lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); list_add_tail(&lpfc_ncmd->list, &qp->lpfc_io_buf_list_put); qp->put_io_bufs++; spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); } } /** * lpfc_nvme_create_localport - Create/Bind an nvme localport instance. * @pvport - the lpfc_vport instance requesting a localport. * * This routine is invoked to create an nvme localport instance to bind * to the nvme_fc_transport. It is called once during driver load * like lpfc_create_shost after all other services are initialized. * It requires a vport, vpi, and wwns at call time. Other localport * parameters are modified as the driver's FCID and the Fabric WWN * are established. * * Return codes * 0 - successful * -ENOMEM - no heap memory available * other values - from nvme registration upcall **/ int lpfc_nvme_create_localport(struct lpfc_vport *vport) { int ret = 0; struct lpfc_hba *phba = vport->phba; struct nvme_fc_port_info nfcp_info; struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; struct lpfc_nvme_ctrl_stat *cstat; int i; /* Initialize this localport instance. The vport wwn usage ensures * that NPIV is accounted for. */ memset(&nfcp_info, 0, sizeof(struct nvme_fc_port_info)); nfcp_info.port_role = FC_PORT_ROLE_NVME_INITIATOR; nfcp_info.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); nfcp_info.port_name = wwn_to_u64(vport->fc_portname.u.wwn); /* We need to tell the transport layer + 1 because it takes page * alignment into account. When space for the SGL is allocated we * allocate + 3, one for cmd, one for rsp and one for this alignment */ lpfc_nvme_template.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; lpfc_nvme_template.max_hw_queues = phba->cfg_hdw_queue; cstat = kmalloc((sizeof(struct lpfc_nvme_ctrl_stat) * phba->cfg_hdw_queue), GFP_KERNEL); if (!cstat) return -ENOMEM; /* localport is allocated from the stack, but the registration * call allocates heap memory as well as the private area. */ #if (IS_ENABLED(CONFIG_NVME_FC)) ret = nvme_fc_register_localport(&nfcp_info, &lpfc_nvme_template, &vport->phba->pcidev->dev, &localport); #else ret = -ENOMEM; #endif if (!ret) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME | LOG_NVME_DISC, "6005 Successfully registered local " "NVME port num %d, localP %p, private %p, " "sg_seg %d\n", localport->port_num, localport, localport->private, lpfc_nvme_template.max_sgl_segments); /* Private is our lport size declared in the template. */ lport = (struct lpfc_nvme_lport *)localport->private; vport->localport = localport; lport->vport = vport; lport->cstat = cstat; vport->nvmei_support = 1; atomic_set(&lport->xmt_fcp_noxri, 0); atomic_set(&lport->xmt_fcp_bad_ndlp, 0); atomic_set(&lport->xmt_fcp_qdepth, 0); atomic_set(&lport->xmt_fcp_err, 0); atomic_set(&lport->xmt_fcp_wqerr, 0); atomic_set(&lport->xmt_fcp_abort, 0); atomic_set(&lport->xmt_ls_abort, 0); atomic_set(&lport->xmt_ls_err, 0); atomic_set(&lport->cmpl_fcp_xb, 0); atomic_set(&lport->cmpl_fcp_err, 0); atomic_set(&lport->cmpl_ls_xb, 0); atomic_set(&lport->cmpl_ls_err, 0); atomic_set(&lport->fc4NvmeLsRequests, 0); atomic_set(&lport->fc4NvmeLsCmpls, 0); for (i = 0; i < phba->cfg_hdw_queue; i++) { cstat = &lport->cstat[i]; atomic_set(&cstat->fc4NvmeInputRequests, 0); atomic_set(&cstat->fc4NvmeOutputRequests, 0); atomic_set(&cstat->fc4NvmeControlRequests, 0); atomic_set(&cstat->fc4NvmeIoCmpls, 0); } } else kfree(cstat); return ret; } /* lpfc_nvme_lport_unreg_wait - Wait for the host to complete an lport unreg. * * The driver has to wait for the host nvme transport to callback * indicating the localport has successfully unregistered all * resources. Since this is an uninterruptible wait, loop every ten * seconds and print a message indicating no progress. * * An uninterruptible wait is used because of the risk of transport-to- * driver state mismatch. */ void lpfc_nvme_lport_unreg_wait(struct lpfc_vport *vport, struct lpfc_nvme_lport *lport) { #if (IS_ENABLED(CONFIG_NVME_FC)) u32 wait_tmo; int ret; /* Host transport has to clean up and confirm requiring an indefinite * wait. Print a message if a 10 second wait expires and renew the * wait. This is unexpected. */ wait_tmo = msecs_to_jiffies(LPFC_NVME_WAIT_TMO * 1000); while (true) { ret = wait_for_completion_timeout(&lport->lport_unreg_done, wait_tmo); if (unlikely(!ret)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_IOERR, "6176 Lport %p Localport %p wait " "timed out. Renewing.\n", lport, vport->localport); continue; } break; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6177 Lport %p Localport %p Complete Success\n", lport, vport->localport); #endif } /** * lpfc_nvme_destroy_localport - Destroy lpfc_nvme bound to nvme transport. * @pnvme: pointer to lpfc nvme data structure. * * This routine is invoked to destroy all lports bound to the phba. * The lport memory was allocated by the nvme fc transport and is * released there. This routine ensures all rports bound to the * lport have been disconnected. * **/ void lpfc_nvme_destroy_localport(struct lpfc_vport *vport) { #if (IS_ENABLED(CONFIG_NVME_FC)) struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; struct lpfc_nvme_ctrl_stat *cstat; int ret; if (vport->nvmei_support == 0) return; localport = vport->localport; vport->localport = NULL; lport = (struct lpfc_nvme_lport *)localport->private; cstat = lport->cstat; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6011 Destroying NVME localport %p\n", localport); /* lport's rport list is clear. Unregister * lport and release resources. */ init_completion(&lport->lport_unreg_done); ret = nvme_fc_unregister_localport(localport); /* Wait for completion. This either blocks * indefinitely or succeeds */ lpfc_nvme_lport_unreg_wait(vport, lport); kfree(cstat); /* Regardless of the unregister upcall response, clear * nvmei_support. All rports are unregistered and the * driver will clean up. */ vport->nvmei_support = 0; if (ret == 0) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6009 Unregistered lport Success\n"); } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6010 Unregistered lport " "Failed, status x%x\n", ret); } #endif } void lpfc_nvme_update_localport(struct lpfc_vport *vport) { #if (IS_ENABLED(CONFIG_NVME_FC)) struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; localport = vport->localport; if (!localport) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME, "6710 Update NVME fail. No localport\n"); return; } lport = (struct lpfc_nvme_lport *)localport->private; if (!lport) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME, "6171 Update NVME fail. localP %p, No lport\n", localport); return; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6012 Update NVME lport %p did x%x\n", localport, vport->fc_myDID); localport->port_id = vport->fc_myDID; if (localport->port_id == 0) localport->port_role = FC_PORT_ROLE_NVME_DISCOVERY; else localport->port_role = FC_PORT_ROLE_NVME_INITIATOR; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6030 bound lport %p to DID x%06x\n", lport, localport->port_id); #endif } int lpfc_nvme_register_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { #if (IS_ENABLED(CONFIG_NVME_FC)) int ret = 0; struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; struct lpfc_nvme_rport *rport; struct lpfc_nvme_rport *oldrport; struct nvme_fc_remote_port *remote_port; struct nvme_fc_port_info rpinfo; struct lpfc_nodelist *prev_ndlp = NULL; lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NVME_DISC, "6006 Register NVME PORT. DID x%06x nlptype x%x\n", ndlp->nlp_DID, ndlp->nlp_type); localport = vport->localport; if (!localport) return 0; lport = (struct lpfc_nvme_lport *)localport->private; /* NVME rports are not preserved across devloss. * Just register this instance. Note, rpinfo->dev_loss_tmo * is left 0 to indicate accept transport defaults. The * driver communicates port role capabilities consistent * with the PRLI response data. */ memset(&rpinfo, 0, sizeof(struct nvme_fc_port_info)); rpinfo.port_id = ndlp->nlp_DID; if (ndlp->nlp_type & NLP_NVME_TARGET) rpinfo.port_role |= FC_PORT_ROLE_NVME_TARGET; if (ndlp->nlp_type & NLP_NVME_INITIATOR) rpinfo.port_role |= FC_PORT_ROLE_NVME_INITIATOR; if (ndlp->nlp_type & NLP_NVME_DISCOVERY) rpinfo.port_role |= FC_PORT_ROLE_NVME_DISCOVERY; rpinfo.port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn); rpinfo.node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn); spin_lock_irq(&vport->phba->hbalock); oldrport = lpfc_ndlp_get_nrport(ndlp); spin_unlock_irq(&vport->phba->hbalock); if (!oldrport) lpfc_nlp_get(ndlp); ret = nvme_fc_register_remoteport(localport, &rpinfo, &remote_port); if (!ret) { /* If the ndlp already has an nrport, this is just * a resume of the existing rport. Else this is a * new rport. */ /* Guard against an unregister/reregister * race that leaves the WAIT flag set. */ spin_lock_irq(&vport->phba->hbalock); ndlp->upcall_flags &= ~NLP_WAIT_FOR_UNREG; spin_unlock_irq(&vport->phba->hbalock); rport = remote_port->private; if (oldrport) { /* New remoteport record does not guarantee valid * host private memory area. */ prev_ndlp = oldrport->ndlp; if (oldrport == remote_port->private) { /* Same remoteport - ndlp should match. * Just reuse. */ lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NVME_DISC, "6014 Rebinding lport to " "remoteport %p wwpn 0x%llx, " "Data: x%x x%x %p %p x%x x%06x\n", remote_port, remote_port->port_name, remote_port->port_id, remote_port->port_role, prev_ndlp, ndlp, ndlp->nlp_type, ndlp->nlp_DID); return 0; } /* Sever the ndlp<->rport association * before dropping the ndlp ref from * register. */ spin_lock_irq(&vport->phba->hbalock); ndlp->nrport = NULL; ndlp->upcall_flags &= ~NLP_WAIT_FOR_UNREG; spin_unlock_irq(&vport->phba->hbalock); rport->ndlp = NULL; rport->remoteport = NULL; /* Reference only removed if previous NDLP is no longer * active. It might be just a swap and removing the * reference would cause a premature cleanup. */ if (prev_ndlp && prev_ndlp != ndlp) { if ((!NLP_CHK_NODE_ACT(prev_ndlp)) || (!prev_ndlp->nrport)) lpfc_nlp_put(prev_ndlp); } } /* Clean bind the rport to the ndlp. */ rport->remoteport = remote_port; rport->lport = lport; rport->ndlp = ndlp; spin_lock_irq(&vport->phba->hbalock); ndlp->nrport = rport; spin_unlock_irq(&vport->phba->hbalock); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_NODE, "6022 Binding new rport to " "lport %p Remoteport %p rport %p WWNN 0x%llx, " "Rport WWPN 0x%llx DID " "x%06x Role x%x, ndlp %p prev_ndlp %p\n", lport, remote_port, rport, rpinfo.node_name, rpinfo.port_name, rpinfo.port_id, rpinfo.port_role, ndlp, prev_ndlp); } else { lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_DISC | LOG_NODE, "6031 RemotePort Registration failed " "err: %d, DID x%06x\n", ret, ndlp->nlp_DID); } return ret; #else return 0; #endif } /* lpfc_nvme_unregister_port - unbind the DID and port_role from this rport. * * There is no notion of Devloss or rport recovery from the current * nvme_transport perspective. Loss of an rport just means IO cannot * be sent and recovery is completely up to the initator. * For now, the driver just unbinds the DID and port_role so that * no further IO can be issued. Changes are planned for later. * * Notes - the ndlp reference count is not decremented here since * since there is no nvme_transport api for devloss. Node ref count * is only adjusted in driver unload. */ void lpfc_nvme_unregister_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { #if (IS_ENABLED(CONFIG_NVME_FC)) int ret; struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; struct lpfc_nvme_rport *rport; struct nvme_fc_remote_port *remoteport = NULL; localport = vport->localport; /* This is fundamental error. The localport is always * available until driver unload. Just exit. */ if (!localport) return; lport = (struct lpfc_nvme_lport *)localport->private; if (!lport) goto input_err; spin_lock_irq(&vport->phba->hbalock); rport = lpfc_ndlp_get_nrport(ndlp); if (rport) remoteport = rport->remoteport; spin_unlock_irq(&vport->phba->hbalock); if (!remoteport) goto input_err; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6033 Unreg nvme remoteport %p, portname x%llx, " "port_id x%06x, portstate x%x port type x%x\n", remoteport, remoteport->port_name, remoteport->port_id, remoteport->port_state, ndlp->nlp_type); /* Sanity check ndlp type. Only call for NVME ports. Don't * clear any rport state until the transport calls back. */ if (ndlp->nlp_type & NLP_NVME_TARGET) { /* No concern about the role change on the nvme remoteport. * The transport will update it. */ ndlp->upcall_flags |= NLP_WAIT_FOR_UNREG; /* Don't let the host nvme transport keep sending keep-alives * on this remoteport. Vport is unloading, no recovery. The * return values is ignored. The upcall is a courtesy to the * transport. */ if (vport->load_flag & FC_UNLOADING) (void)nvme_fc_set_remoteport_devloss(remoteport, 0); ret = nvme_fc_unregister_remoteport(remoteport); if (ret != 0) { lpfc_nlp_put(ndlp); lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_DISC, "6167 NVME unregister failed %d " "port_state x%x\n", ret, remoteport->port_state); } } return; input_err: #endif lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME_DISC, "6168 State error: lport %p, rport%p FCID x%06x\n", vport->localport, ndlp->rport, ndlp->nlp_DID); } /** * lpfc_sli4_nvme_xri_aborted - Fast-path process of NVME xri abort * @phba: pointer to lpfc hba data structure. * @axri: pointer to the fcp xri abort wcqe structure. * * This routine is invoked by the worker thread to process a SLI4 fast-path * NVME aborted xri. Aborted NVME IO commands are completed to the transport * here. **/ void lpfc_sli4_nvme_xri_aborted(struct lpfc_hba *phba, struct sli4_wcqe_xri_aborted *axri, int idx) { uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); struct lpfc_nvme_buf *lpfc_ncmd, *next_lpfc_ncmd; struct nvmefc_fcp_req *nvme_cmd = NULL; struct lpfc_nodelist *ndlp; struct lpfc_sli4_hdw_queue *qp; unsigned long iflag = 0; if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) return; qp = &phba->sli4_hba.hdwq[idx]; spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&qp->abts_nvme_buf_list_lock); list_for_each_entry_safe(lpfc_ncmd, next_lpfc_ncmd, &qp->lpfc_abts_nvme_buf_list, list) { if (lpfc_ncmd->cur_iocbq.sli4_xritag == xri) { list_del_init(&lpfc_ncmd->list); qp->abts_nvme_io_bufs--; lpfc_ncmd->flags &= ~LPFC_SBUF_XBUSY; lpfc_ncmd->status = IOSTAT_SUCCESS; spin_unlock(&qp->abts_nvme_buf_list_lock); spin_unlock_irqrestore(&phba->hbalock, iflag); ndlp = lpfc_ncmd->ndlp; if (ndlp) lpfc_sli4_abts_err_handler(phba, ndlp, axri); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6311 nvme_cmd %p xri x%x tag x%x " "abort complete and xri released\n", lpfc_ncmd->nvmeCmd, xri, lpfc_ncmd->cur_iocbq.iotag); /* Aborted NVME commands are required to not complete * before the abort exchange command fully completes. * Once completed, it is available via the put list. */ if (lpfc_ncmd->nvmeCmd) { nvme_cmd = lpfc_ncmd->nvmeCmd; nvme_cmd->done(nvme_cmd); lpfc_ncmd->nvmeCmd = NULL; } lpfc_release_nvme_buf(phba, lpfc_ncmd); return; } } spin_unlock(&qp->abts_nvme_buf_list_lock); spin_unlock_irqrestore(&phba->hbalock, iflag); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6312 XRI Aborted xri x%x not found\n", xri); } /** * lpfc_nvme_wait_for_io_drain - Wait for all NVME wqes to complete * @phba: Pointer to HBA context object. * * This function flushes all wqes in the nvme rings and frees all resources * in the txcmplq. This function does not issue abort wqes for the IO * commands in txcmplq, they will just be returned with * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI * slot has been permanently disabled. **/ void lpfc_nvme_wait_for_io_drain(struct lpfc_hba *phba) { struct lpfc_sli_ring *pring; u32 i, wait_cnt = 0; if (phba->sli_rev < LPFC_SLI_REV4 || !phba->sli4_hba.hdwq) return; /* Cycle through all NVME rings and make sure all outstanding * WQEs have been removed from the txcmplqs. */ for (i = 0; i < phba->cfg_hdw_queue; i++) { pring = phba->sli4_hba.hdwq[i].nvme_wq->pring; if (!pring) continue; /* Retrieve everything on the txcmplq */ while (!list_empty(&pring->txcmplq)) { msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); wait_cnt++; /* The sleep is 10mS. Every ten seconds, * dump a message. Something is wrong. */ if ((wait_cnt % 1000) == 0) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, "6178 NVME IO not empty, " "cnt %d\n", wait_cnt); } } } }