/* FCrypt encryption algorithm * * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Based on code: * * Copyright (c) 1995 - 2000 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <asm/byteorder.h> #include <linux/bitops.h> #include <linux/init.h> #include <linux/module.h> #include <linux/crypto.h> #define ROUNDS 16 struct fcrypt_ctx { __be32 sched[ROUNDS]; }; /* Rotate right two 32 bit numbers as a 56 bit number */ #define ror56(hi, lo, n) \ do { \ u32 t = lo & ((1 << n) - 1); \ lo = (lo >> n) | ((hi & ((1 << n) - 1)) << (32 - n)); \ hi = (hi >> n) | (t << (24-n)); \ } while (0) /* Rotate right one 64 bit number as a 56 bit number */ #define ror56_64(k, n) (k = (k >> n) | ((k & ((1 << n) - 1)) << (56 - n))) /* * Sboxes for Feistel network derived from * /afs/transarc.com/public/afsps/afs.rel31b.export-src/rxkad/sboxes.h */ #undef Z #define Z(x) cpu_to_be32(x << 3) static const __be32 sbox0[256] = { Z(0xea), Z(0x7f), Z(0xb2), Z(0x64), Z(0x9d), Z(0xb0), Z(0xd9), Z(0x11), Z(0xcd), Z(0x86), Z(0x86), Z(0x91), Z(0x0a), Z(0xb2), Z(0x93), Z(0x06), Z(0x0e), Z(0x06), Z(0xd2), Z(0x65), Z(0x73), Z(0xc5), Z(0x28), Z(0x60), Z(0xf2), Z(0x20), Z(0xb5), Z(0x38), Z(0x7e), Z(0xda), Z(0x9f), Z(0xe3), Z(0xd2), Z(0xcf), Z(0xc4), Z(0x3c), Z(0x61), Z(0xff), Z(0x4a), Z(0x4a), Z(0x35), Z(0xac), Z(0xaa), Z(0x5f), Z(0x2b), Z(0xbb), Z(0xbc), Z(0x53), Z(0x4e), Z(0x9d), Z(0x78), Z(0xa3), Z(0xdc), Z(0x09), Z(0x32), Z(0x10), Z(0xc6), Z(0x6f), Z(0x66), Z(0xd6), Z(0xab), Z(0xa9), Z(0xaf), Z(0xfd), Z(0x3b), Z(0x95), Z(0xe8), Z(0x34), Z(0x9a), Z(0x81), Z(0x72), Z(0x80), Z(0x9c), Z(0xf3), Z(0xec), Z(0xda), Z(0x9f), Z(0x26), Z(0x76), Z(0x15), Z(0x3e), Z(0x55), Z(0x4d), Z(0xde), Z(0x84), Z(0xee), Z(0xad), Z(0xc7), Z(0xf1), Z(0x6b), Z(0x3d), Z(0xd3), Z(0x04), Z(0x49), Z(0xaa), Z(0x24), Z(0x0b), Z(0x8a), Z(0x83), Z(0xba), Z(0xfa), Z(0x85), Z(0xa0), Z(0xa8), Z(0xb1), Z(0xd4), Z(0x01), Z(0xd8), Z(0x70), Z(0x64), Z(0xf0), Z(0x51), Z(0xd2), Z(0xc3), Z(0xa7), Z(0x75), Z(0x8c), Z(0xa5), Z(0x64), Z(0xef), Z(0x10), Z(0x4e), Z(0xb7), Z(0xc6), Z(0x61), Z(0x03), Z(0xeb), Z(0x44), Z(0x3d), Z(0xe5), Z(0xb3), Z(0x5b), Z(0xae), Z(0xd5), Z(0xad), Z(0x1d), Z(0xfa), Z(0x5a), Z(0x1e), Z(0x33), Z(0xab), Z(0x93), Z(0xa2), Z(0xb7), Z(0xe7), Z(0xa8), Z(0x45), Z(0xa4), Z(0xcd), Z(0x29), Z(0x63), Z(0x44), Z(0xb6), Z(0x69), Z(0x7e), Z(0x2e), Z(0x62), Z(0x03), Z(0xc8), Z(0xe0), Z(0x17), Z(0xbb), Z(0xc7), Z(0xf3), Z(0x3f), Z(0x36), Z(0xba), Z(0x71), Z(0x8e), Z(0x97), Z(0x65), Z(0x60), Z(0x69), Z(0xb6), Z(0xf6), Z(0xe6), Z(0x6e), Z(0xe0), Z(0x81), Z(0x59), Z(0xe8), Z(0xaf), Z(0xdd), Z(0x95), Z(0x22), Z(0x99), Z(0xfd), Z(0x63), Z(0x19), Z(0x74), Z(0x61), Z(0xb1), Z(0xb6), Z(0x5b), Z(0xae), Z(0x54), Z(0xb3), Z(0x70), Z(0xff), Z(0xc6), Z(0x3b), Z(0x3e), Z(0xc1), Z(0xd7), Z(0xe1), Z(0x0e), Z(0x76), Z(0xe5), Z(0x36), Z(0x4f), Z(0x59), Z(0xc7), Z(0x08), Z(0x6e), Z(0x82), Z(0xa6), Z(0x93), Z(0xc4), Z(0xaa), Z(0x26), Z(0x49), Z(0xe0), Z(0x21), Z(0x64), Z(0x07), Z(0x9f), Z(0x64), Z(0x81), Z(0x9c), Z(0xbf), Z(0xf9), Z(0xd1), Z(0x43), Z(0xf8), Z(0xb6), Z(0xb9), Z(0xf1), Z(0x24), Z(0x75), Z(0x03), Z(0xe4), Z(0xb0), Z(0x99), Z(0x46), Z(0x3d), Z(0xf5), Z(0xd1), Z(0x39), Z(0x72), Z(0x12), Z(0xf6), Z(0xba), Z(0x0c), Z(0x0d), Z(0x42), Z(0x2e) }; #undef Z #define Z(x) cpu_to_be32(((x & 0x1f) << 27) | (x >> 5)) static const __be32 sbox1[256] = { Z(0x77), Z(0x14), Z(0xa6), Z(0xfe), Z(0xb2), Z(0x5e), Z(0x8c), Z(0x3e), Z(0x67), Z(0x6c), Z(0xa1), Z(0x0d), Z(0xc2), Z(0xa2), Z(0xc1), Z(0x85), Z(0x6c), Z(0x7b), Z(0x67), Z(0xc6), Z(0x23), Z(0xe3), Z(0xf2), Z(0x89), Z(0x50), Z(0x9c), Z(0x03), Z(0xb7), Z(0x73), Z(0xe6), Z(0xe1), Z(0x39), Z(0x31), Z(0x2c), Z(0x27), Z(0x9f), Z(0xa5), Z(0x69), Z(0x44), Z(0xd6), Z(0x23), Z(0x83), Z(0x98), Z(0x7d), Z(0x3c), Z(0xb4), Z(0x2d), Z(0x99), Z(0x1c), Z(0x1f), Z(0x8c), Z(0x20), Z(0x03), Z(0x7c), Z(0x5f), Z(0xad), Z(0xf4), Z(0xfa), Z(0x95), Z(0xca), Z(0x76), Z(0x44), Z(0xcd), Z(0xb6), Z(0xb8), Z(0xa1), Z(0xa1), Z(0xbe), Z(0x9e), Z(0x54), Z(0x8f), Z(0x0b), Z(0x16), Z(0x74), Z(0x31), Z(0x8a), Z(0x23), Z(0x17), Z(0x04), Z(0xfa), Z(0x79), Z(0x84), Z(0xb1), Z(0xf5), Z(0x13), Z(0xab), Z(0xb5), Z(0x2e), Z(0xaa), Z(0x0c), Z(0x60), Z(0x6b), Z(0x5b), Z(0xc4), Z(0x4b), Z(0xbc), Z(0xe2), Z(0xaf), Z(0x45), Z(0x73), Z(0xfa), Z(0xc9), Z(0x49), Z(0xcd), Z(0x00), Z(0x92), Z(0x7d), Z(0x97), Z(0x7a), Z(0x18), Z(0x60), Z(0x3d), Z(0xcf), Z(0x5b), Z(0xde), Z(0xc6), Z(0xe2), Z(0xe6), Z(0xbb), Z(0x8b), Z(0x06), Z(0xda), Z(0x08), Z(0x15), Z(0x1b), Z(0x88), Z(0x6a), Z(0x17), Z(0x89), Z(0xd0), Z(0xa9), Z(0xc1), Z(0xc9), Z(0x70), Z(0x6b), Z(0xe5), Z(0x43), Z(0xf4), Z(0x68), Z(0xc8), Z(0xd3), Z(0x84), Z(0x28), Z(0x0a), Z(0x52), Z(0x66), Z(0xa3), Z(0xca), Z(0xf2), Z(0xe3), Z(0x7f), Z(0x7a), Z(0x31), Z(0xf7), Z(0x88), Z(0x94), Z(0x5e), Z(0x9c), Z(0x63), Z(0xd5), Z(0x24), Z(0x66), Z(0xfc), Z(0xb3), Z(0x57), Z(0x25), Z(0xbe), Z(0x89), Z(0x44), Z(0xc4), Z(0xe0), Z(0x8f), Z(0x23), Z(0x3c), Z(0x12), Z(0x52), Z(0xf5), Z(0x1e), Z(0xf4), Z(0xcb), Z(0x18), Z(0x33), Z(0x1f), Z(0xf8), Z(0x69), Z(0x10), Z(0x9d), Z(0xd3), Z(0xf7), Z(0x28), Z(0xf8), Z(0x30), Z(0x05), Z(0x5e), Z(0x32), Z(0xc0), Z(0xd5), Z(0x19), Z(0xbd), Z(0x45), Z(0x8b), Z(0x5b), Z(0xfd), Z(0xbc), Z(0xe2), Z(0x5c), Z(0xa9), Z(0x96), Z(0xef), Z(0x70), Z(0xcf), Z(0xc2), Z(0x2a), Z(0xb3), Z(0x61), Z(0xad), Z(0x80), Z(0x48), Z(0x81), Z(0xb7), Z(0x1d), Z(0x43), Z(0xd9), Z(0xd7), Z(0x45), Z(0xf0), Z(0xd8), Z(0x8a), Z(0x59), Z(0x7c), Z(0x57), Z(0xc1), Z(0x79), Z(0xc7), Z(0x34), Z(0xd6), Z(0x43), Z(0xdf), Z(0xe4), Z(0x78), Z(0x16), Z(0x06), Z(0xda), Z(0x92), Z(0x76), Z(0x51), Z(0xe1), Z(0xd4), Z(0x70), Z(0x03), Z(0xe0), Z(0x2f), Z(0x96), Z(0x91), Z(0x82), Z(0x80) }; #undef Z #define Z(x) cpu_to_be32(x << 11) static const __be32 sbox2[256] = { Z(0xf0), Z(0x37), Z(0x24), Z(0x53), Z(0x2a), Z(0x03), Z(0x83), Z(0x86), Z(0xd1), Z(0xec), Z(0x50), Z(0xf0), Z(0x42), Z(0x78), Z(0x2f), Z(0x6d), Z(0xbf), Z(0x80), Z(0x87), Z(0x27), Z(0x95), Z(0xe2), Z(0xc5), Z(0x5d), Z(0xf9), Z(0x6f), Z(0xdb), Z(0xb4), Z(0x65), Z(0x6e), Z(0xe7), Z(0x24), Z(0xc8), Z(0x1a), Z(0xbb), Z(0x49), Z(0xb5), Z(0x0a), Z(0x7d), Z(0xb9), Z(0xe8), Z(0xdc), Z(0xb7), Z(0xd9), Z(0x45), Z(0x20), Z(0x1b), Z(0xce), Z(0x59), Z(0x9d), Z(0x6b), Z(0xbd), Z(0x0e), Z(0x8f), Z(0xa3), Z(0xa9), Z(0xbc), Z(0x74), Z(0xa6), Z(0xf6), Z(0x7f), Z(0x5f), Z(0xb1), Z(0x68), Z(0x84), Z(0xbc), Z(0xa9), Z(0xfd), Z(0x55), Z(0x50), Z(0xe9), Z(0xb6), Z(0x13), Z(0x5e), Z(0x07), Z(0xb8), Z(0x95), Z(0x02), Z(0xc0), Z(0xd0), Z(0x6a), Z(0x1a), Z(0x85), Z(0xbd), Z(0xb6), Z(0xfd), Z(0xfe), Z(0x17), Z(0x3f), Z(0x09), Z(0xa3), Z(0x8d), Z(0xfb), Z(0xed), Z(0xda), Z(0x1d), Z(0x6d), Z(0x1c), Z(0x6c), Z(0x01), Z(0x5a), Z(0xe5), Z(0x71), Z(0x3e), Z(0x8b), Z(0x6b), Z(0xbe), Z(0x29), Z(0xeb), Z(0x12), Z(0x19), Z(0x34), Z(0xcd), Z(0xb3), Z(0xbd), Z(0x35), Z(0xea), Z(0x4b), Z(0xd5), Z(0xae), Z(0x2a), Z(0x79), Z(0x5a), Z(0xa5), Z(0x32), Z(0x12), Z(0x7b), Z(0xdc), Z(0x2c), Z(0xd0), Z(0x22), Z(0x4b), Z(0xb1), Z(0x85), Z(0x59), Z(0x80), Z(0xc0), Z(0x30), Z(0x9f), Z(0x73), Z(0xd3), Z(0x14), Z(0x48), Z(0x40), Z(0x07), Z(0x2d), Z(0x8f), Z(0x80), Z(0x0f), Z(0xce), Z(0x0b), Z(0x5e), Z(0xb7), Z(0x5e), Z(0xac), Z(0x24), Z(0x94), Z(0x4a), Z(0x18), Z(0x15), Z(0x05), Z(0xe8), Z(0x02), Z(0x77), Z(0xa9), Z(0xc7), Z(0x40), Z(0x45), Z(0x89), Z(0xd1), Z(0xea), Z(0xde), Z(0x0c), Z(0x79), Z(0x2a), Z(0x99), Z(0x6c), Z(0x3e), Z(0x95), Z(0xdd), Z(0x8c), Z(0x7d), Z(0xad), Z(0x6f), Z(0xdc), Z(0xff), Z(0xfd), Z(0x62), Z(0x47), Z(0xb3), Z(0x21), Z(0x8a), Z(0xec), Z(0x8e), Z(0x19), Z(0x18), Z(0xb4), Z(0x6e), Z(0x3d), Z(0xfd), Z(0x74), Z(0x54), Z(0x1e), Z(0x04), Z(0x85), Z(0xd8), Z(0xbc), Z(0x1f), Z(0x56), Z(0xe7), Z(0x3a), Z(0x56), Z(0x67), Z(0xd6), Z(0xc8), Z(0xa5), Z(0xf3), Z(0x8e), Z(0xde), Z(0xae), Z(0x37), Z(0x49), Z(0xb7), Z(0xfa), Z(0xc8), Z(0xf4), Z(0x1f), Z(0xe0), Z(0x2a), Z(0x9b), Z(0x15), Z(0xd1), Z(0x34), Z(0x0e), Z(0xb5), Z(0xe0), Z(0x44), Z(0x78), Z(0x84), Z(0x59), Z(0x56), Z(0x68), Z(0x77), Z(0xa5), Z(0x14), Z(0x06), Z(0xf5), Z(0x2f), Z(0x8c), Z(0x8a), Z(0x73), Z(0x80), Z(0x76), Z(0xb4), Z(0x10), Z(0x86) }; #undef Z #define Z(x) cpu_to_be32(x << 19) static const __be32 sbox3[256] = { Z(0xa9), Z(0x2a), Z(0x48), Z(0x51), Z(0x84), Z(0x7e), Z(0x49), Z(0xe2), Z(0xb5), Z(0xb7), Z(0x42), Z(0x33), Z(0x7d), Z(0x5d), Z(0xa6), Z(0x12), Z(0x44), Z(0x48), Z(0x6d), Z(0x28), Z(0xaa), Z(0x20), Z(0x6d), Z(0x57), Z(0xd6), Z(0x6b), Z(0x5d), Z(0x72), Z(0xf0), Z(0x92), Z(0x5a), Z(0x1b), Z(0x53), Z(0x80), Z(0x24), Z(0x70), Z(0x9a), Z(0xcc), Z(0xa7), Z(0x66), Z(0xa1), Z(0x01), Z(0xa5), Z(0x41), Z(0x97), Z(0x41), Z(0x31), Z(0x82), Z(0xf1), Z(0x14), Z(0xcf), Z(0x53), Z(0x0d), Z(0xa0), Z(0x10), Z(0xcc), Z(0x2a), Z(0x7d), Z(0xd2), Z(0xbf), Z(0x4b), Z(0x1a), Z(0xdb), Z(0x16), Z(0x47), Z(0xf6), Z(0x51), Z(0x36), Z(0xed), Z(0xf3), Z(0xb9), Z(0x1a), Z(0xa7), Z(0xdf), Z(0x29), Z(0x43), Z(0x01), Z(0x54), Z(0x70), Z(0xa4), Z(0xbf), Z(0xd4), Z(0x0b), Z(0x53), Z(0x44), Z(0x60), Z(0x9e), Z(0x23), Z(0xa1), Z(0x18), Z(0x68), Z(0x4f), Z(0xf0), Z(0x2f), Z(0x82), Z(0xc2), Z(0x2a), Z(0x41), Z(0xb2), Z(0x42), Z(0x0c), Z(0xed), Z(0x0c), Z(0x1d), Z(0x13), Z(0x3a), Z(0x3c), Z(0x6e), Z(0x35), Z(0xdc), Z(0x60), Z(0x65), Z(0x85), Z(0xe9), Z(0x64), Z(0x02), Z(0x9a), Z(0x3f), Z(0x9f), Z(0x87), Z(0x96), Z(0xdf), Z(0xbe), Z(0xf2), Z(0xcb), Z(0xe5), Z(0x6c), Z(0xd4), Z(0x5a), Z(0x83), Z(0xbf), Z(0x92), Z(0x1b), Z(0x94), Z(0x00), Z(0x42), Z(0xcf), Z(0x4b), Z(0x00), Z(0x75), Z(0xba), Z(0x8f), Z(0x76), Z(0x5f), Z(0x5d), Z(0x3a), Z(0x4d), Z(0x09), Z(0x12), Z(0x08), Z(0x38), Z(0x95), Z(0x17), Z(0xe4), Z(0x01), Z(0x1d), Z(0x4c), Z(0xa9), Z(0xcc), Z(0x85), Z(0x82), Z(0x4c), Z(0x9d), Z(0x2f), Z(0x3b), Z(0x66), Z(0xa1), Z(0x34), Z(0x10), Z(0xcd), Z(0x59), Z(0x89), Z(0xa5), Z(0x31), Z(0xcf), Z(0x05), Z(0xc8), Z(0x84), Z(0xfa), Z(0xc7), Z(0xba), Z(0x4e), Z(0x8b), Z(0x1a), Z(0x19), Z(0xf1), Z(0xa1), Z(0x3b), Z(0x18), Z(0x12), Z(0x17), Z(0xb0), Z(0x98), Z(0x8d), Z(0x0b), Z(0x23), Z(0xc3), Z(0x3a), Z(0x2d), Z(0x20), Z(0xdf), Z(0x13), Z(0xa0), Z(0xa8), Z(0x4c), Z(0x0d), Z(0x6c), Z(0x2f), Z(0x47), Z(0x13), Z(0x13), Z(0x52), Z(0x1f), Z(0x2d), Z(0xf5), Z(0x79), Z(0x3d), Z(0xa2), Z(0x54), Z(0xbd), Z(0x69), Z(0xc8), Z(0x6b), Z(0xf3), Z(0x05), Z(0x28), Z(0xf1), Z(0x16), Z(0x46), Z(0x40), Z(0xb0), Z(0x11), Z(0xd3), Z(0xb7), Z(0x95), Z(0x49), Z(0xcf), Z(0xc3), Z(0x1d), Z(0x8f), Z(0xd8), Z(0xe1), Z(0x73), Z(0xdb), Z(0xad), Z(0xc8), Z(0xc9), Z(0xa9), Z(0xa1), Z(0xc2), Z(0xc5), Z(0xe3), Z(0xba), Z(0xfc), Z(0x0e), Z(0x25) }; /* * This is a 16 round Feistel network with permutation F_ENCRYPT */ #define F_ENCRYPT(R, L, sched) \ do { \ union lc4 { __be32 l; u8 c[4]; } u; \ u.l = sched ^ R; \ L ^= sbox0[u.c[0]] ^ sbox1[u.c[1]] ^ sbox2[u.c[2]] ^ sbox3[u.c[3]]; \ } while (0) /* * encryptor */ static void fcrypt_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { const struct fcrypt_ctx *ctx = crypto_tfm_ctx(tfm); struct { __be32 l, r; } X; memcpy(&X, src, sizeof(X)); F_ENCRYPT(X.r, X.l, ctx->sched[0x0]); F_ENCRYPT(X.l, X.r, ctx->sched[0x1]); F_ENCRYPT(X.r, X.l, ctx->sched[0x2]); F_ENCRYPT(X.l, X.r, ctx->sched[0x3]); F_ENCRYPT(X.r, X.l, ctx->sched[0x4]); F_ENCRYPT(X.l, X.r, ctx->sched[0x5]); F_ENCRYPT(X.r, X.l, ctx->sched[0x6]); F_ENCRYPT(X.l, X.r, ctx->sched[0x7]); F_ENCRYPT(X.r, X.l, ctx->sched[0x8]); F_ENCRYPT(X.l, X.r, ctx->sched[0x9]); F_ENCRYPT(X.r, X.l, ctx->sched[0xa]); F_ENCRYPT(X.l, X.r, ctx->sched[0xb]); F_ENCRYPT(X.r, X.l, ctx->sched[0xc]); F_ENCRYPT(X.l, X.r, ctx->sched[0xd]); F_ENCRYPT(X.r, X.l, ctx->sched[0xe]); F_ENCRYPT(X.l, X.r, ctx->sched[0xf]); memcpy(dst, &X, sizeof(X)); } /* * decryptor */ static void fcrypt_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { const struct fcrypt_ctx *ctx = crypto_tfm_ctx(tfm); struct { __be32 l, r; } X; memcpy(&X, src, sizeof(X)); F_ENCRYPT(X.l, X.r, ctx->sched[0xf]); F_ENCRYPT(X.r, X.l, ctx->sched[0xe]); F_ENCRYPT(X.l, X.r, ctx->sched[0xd]); F_ENCRYPT(X.r, X.l, ctx->sched[0xc]); F_ENCRYPT(X.l, X.r, ctx->sched[0xb]); F_ENCRYPT(X.r, X.l, ctx->sched[0xa]); F_ENCRYPT(X.l, X.r, ctx->sched[0x9]); F_ENCRYPT(X.r, X.l, ctx->sched[0x8]); F_ENCRYPT(X.l, X.r, ctx->sched[0x7]); F_ENCRYPT(X.r, X.l, ctx->sched[0x6]); F_ENCRYPT(X.l, X.r, ctx->sched[0x5]); F_ENCRYPT(X.r, X.l, ctx->sched[0x4]); F_ENCRYPT(X.l, X.r, ctx->sched[0x3]); F_ENCRYPT(X.r, X.l, ctx->sched[0x2]); F_ENCRYPT(X.l, X.r, ctx->sched[0x1]); F_ENCRYPT(X.r, X.l, ctx->sched[0x0]); memcpy(dst, &X, sizeof(X)); } /* * Generate a key schedule from key, the least significant bit in each key byte * is parity and shall be ignored. This leaves 56 significant bits in the key * to scatter over the 16 key schedules. For each schedule extract the low * order 32 bits and use as schedule, then rotate right by 11 bits. */ static int fcrypt_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct fcrypt_ctx *ctx = crypto_tfm_ctx(tfm); #if BITS_PER_LONG == 64 /* the 64-bit version can also be used for 32-bit * kernels - it seems to be faster but the code is * larger */ u64 k; /* k holds all 56 non-parity bits */ /* discard the parity bits */ k = (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key) >> 1; /* Use lower 32 bits for schedule, rotate by 11 each round (16 times) */ ctx->sched[0x0] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x1] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x2] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x3] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x4] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x5] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x6] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x7] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x8] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0x9] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0xa] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0xb] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0xc] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0xd] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0xe] = cpu_to_be32(k); ror56_64(k, 11); ctx->sched[0xf] = cpu_to_be32(k); return 0; #else u32 hi, lo; /* hi is upper 24 bits and lo lower 32, total 56 */ /* discard the parity bits */ lo = (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; hi = lo >> 4; lo &= 0xf; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key) >> 1; /* Use lower 32 bits for schedule, rotate by 11 each round (16 times) */ ctx->sched[0x0] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x1] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x2] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x3] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x4] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x5] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x6] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x7] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x8] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0x9] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0xa] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0xb] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0xc] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0xd] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0xe] = cpu_to_be32(lo); ror56(hi, lo, 11); ctx->sched[0xf] = cpu_to_be32(lo); return 0; #endif } static struct crypto_alg fcrypt_alg = { .cra_name = "fcrypt", .cra_driver_name = "fcrypt-generic", .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = 8, .cra_ctxsize = sizeof(struct fcrypt_ctx), .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = 8, .cia_max_keysize = 8, .cia_setkey = fcrypt_setkey, .cia_encrypt = fcrypt_encrypt, .cia_decrypt = fcrypt_decrypt } } }; static int __init fcrypt_mod_init(void) { return crypto_register_alg(&fcrypt_alg); } static void __exit fcrypt_mod_fini(void) { crypto_unregister_alg(&fcrypt_alg); } subsys_initcall(fcrypt_mod_init); module_exit(fcrypt_mod_fini); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("FCrypt Cipher Algorithm"); MODULE_AUTHOR("David Howells <dhowells@redhat.com>"); MODULE_ALIAS_CRYPTO("fcrypt");