/* * ALSA SoC TLV320AIC3X codec driver * * Author: Vladimir Barinov, * Copyright: (C) 2007 MontaVista Software, Inc., * * Based on sound/soc/codecs/wm8753.c by Liam Girdwood * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Notes: * The AIC3X is a driver for a low power stereo audio * codecs aic31, aic32, aic33. * * It supports full aic33 codec functionality. * The compatibility with aic32, aic31 is as follows: * aic32 | aic31 * --------------------------------------- * MONO_LOUT -> N/A | MONO_LOUT -> N/A * | IN1L -> LINE1L * | IN1R -> LINE1R * | IN2L -> LINE2L * | IN2R -> LINE2R * | MIC3L/R -> N/A * truncated internal functionality in * accordance with documentation * --------------------------------------- * * Hence the machine layer should disable unsupported inputs/outputs by * snd_soc_dapm_set_endpoint(codec, "MONO_LOUT", 0), etc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tlv320aic3x.h" #define AUDIO_NAME "aic3x" #define AIC3X_VERSION "0.2" /* codec private data */ struct aic3x_priv { unsigned int sysclk; int master; }; /* * AIC3X register cache * We can't read the AIC3X register space when we are * using 2 wire for device control, so we cache them instead. * There is no point in caching the reset register */ static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = { 0x00, 0x00, 0x00, 0x10, /* 0 */ 0x04, 0x00, 0x00, 0x00, /* 4 */ 0x00, 0x00, 0x00, 0x01, /* 8 */ 0x00, 0x00, 0x00, 0x80, /* 12 */ 0x80, 0xff, 0xff, 0x78, /* 16 */ 0x78, 0x78, 0x78, 0x78, /* 20 */ 0x78, 0x00, 0x00, 0xfe, /* 24 */ 0x00, 0x00, 0xfe, 0x00, /* 28 */ 0x18, 0x18, 0x00, 0x00, /* 32 */ 0x00, 0x00, 0x00, 0x00, /* 36 */ 0x00, 0x00, 0x00, 0x80, /* 40 */ 0x80, 0x00, 0x00, 0x00, /* 44 */ 0x00, 0x00, 0x00, 0x04, /* 48 */ 0x00, 0x00, 0x00, 0x00, /* 52 */ 0x00, 0x00, 0x04, 0x00, /* 56 */ 0x00, 0x00, 0x00, 0x00, /* 60 */ 0x00, 0x04, 0x00, 0x00, /* 64 */ 0x00, 0x00, 0x00, 0x00, /* 68 */ 0x04, 0x00, 0x00, 0x00, /* 72 */ 0x00, 0x00, 0x00, 0x00, /* 76 */ 0x00, 0x00, 0x00, 0x00, /* 80 */ 0x00, 0x00, 0x00, 0x00, /* 84 */ 0x00, 0x00, 0x00, 0x00, /* 88 */ 0x00, 0x00, 0x00, 0x00, /* 92 */ 0x00, 0x00, 0x00, 0x00, /* 96 */ 0x00, 0x00, 0x02, /* 100 */ }; /* * read aic3x register cache */ static inline unsigned int aic3x_read_reg_cache(struct snd_soc_codec *codec, unsigned int reg) { u8 *cache = codec->reg_cache; if (reg >= AIC3X_CACHEREGNUM) return -1; return cache[reg]; } /* * write aic3x register cache */ static inline void aic3x_write_reg_cache(struct snd_soc_codec *codec, u8 reg, u8 value) { u8 *cache = codec->reg_cache; if (reg >= AIC3X_CACHEREGNUM) return; cache[reg] = value; } /* * write to the aic3x register space */ static int aic3x_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u8 data[2]; /* data is * D15..D8 aic3x register offset * D7...D0 register data */ data[0] = reg & 0xff; data[1] = value & 0xff; aic3x_write_reg_cache(codec, data[0], data[1]); if (codec->hw_write(codec->control_data, data, 2) == 2) return 0; else return -EIO; } /* * read from the aic3x register space */ static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg, u8 *value) { *value = reg & 0xff; if (codec->hw_read(codec->control_data, value, 1) != 1) return -EIO; aic3x_write_reg_cache(codec, reg, *value); return 0; } #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_volsw, \ .get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \ .private_value = SOC_SINGLE_VALUE(reg, shift, mask, invert) } /* * All input lines are connected when !0xf and disconnected with 0xf bit field, * so we have to use specific dapm_put call for input mixer */ static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0x01; unsigned short val, val_mask; int ret; struct snd_soc_dapm_path *path; int found = 0; val = (ucontrol->value.integer.value[0] & mask); mask = 0xf; if (val) val = mask; if (invert) val = mask - val; val_mask = mask << shift; val = val << shift; mutex_lock(&widget->codec->mutex); if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) { /* find dapm widget path assoc with kcontrol */ list_for_each_entry(path, &widget->codec->dapm_paths, list) { if (path->kcontrol != kcontrol) continue; /* found, now check type */ found = 1; if (val) /* new connection */ path->connect = invert ? 0 : 1; else /* old connection must be powered down */ path->connect = invert ? 1 : 0; break; } if (found) snd_soc_dapm_sync_endpoints(widget->codec); } ret = snd_soc_update_bits(widget->codec, reg, val_mask, val); mutex_unlock(&widget->codec->mutex); return ret; } static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" }; static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" }; static const char *aic3x_left_hpcom_mux[] = { "differential of HPLOUT", "constant VCM", "single-ended" }; static const char *aic3x_right_hpcom_mux[] = { "differential of HPROUT", "constant VCM", "single-ended", "differential of HPLCOM", "external feedback" }; static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" }; static const char *aic3x_adc_hpf[] = { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" }; #define LDAC_ENUM 0 #define RDAC_ENUM 1 #define LHPCOM_ENUM 2 #define RHPCOM_ENUM 3 #define LINE1L_ENUM 4 #define LINE1R_ENUM 5 #define LINE2L_ENUM 6 #define LINE2R_ENUM 7 #define ADC_HPF_ENUM 8 static const struct soc_enum aic3x_enum[] = { SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux), SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux), SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux), SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux), SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux), SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux), SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux), SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux), SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf), }; static const struct snd_kcontrol_new aic3x_snd_controls[] = { /* Output */ SOC_DOUBLE_R("PCM Playback Volume", LDAC_VOL, RDAC_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("Line DAC Playback Volume", DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("Line DAC Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3, 0x01, 0), SOC_DOUBLE_R("Line PGA Bypass Playback Volume", PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("Line Line2 Bypass Playback Volume", LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("Mono DAC Playback Volume", DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL, 0, 0x7f, 1), SOC_SINGLE("Mono DAC Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0), SOC_DOUBLE_R("Mono PGA Bypass Playback Volume", PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("Mono Line2 Bypass Playback Volume", LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("HP DAC Playback Volume", DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("HP DAC Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3, 0x01, 0), SOC_DOUBLE_R("HP PGA Bypass Playback Volume", PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("HP Line2 Bypass Playback Volume", LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("HPCOM DAC Playback Volume", DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("HPCOM DAC Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3, 0x01, 0), SOC_DOUBLE_R("HPCOM PGA Bypass Playback Volume", PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL, 0, 0x7f, 1), SOC_DOUBLE_R("HPCOM Line2 Bypass Playback Volume", LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL, 0, 0x7f, 1), /* * Note: enable Automatic input Gain Controller with care. It can * adjust PGA to max value when ADC is on and will never go back. */ SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0), /* Input */ SOC_DOUBLE_R("PGA Capture Volume", LADC_VOL, RADC_VOL, 0, 0x7f, 0), SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1), SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]), }; /* add non dapm controls */ static int aic3x_add_controls(struct snd_soc_codec *codec) { int err, i; for (i = 0; i < ARRAY_SIZE(aic3x_snd_controls); i++) { err = snd_ctl_add(codec->card, snd_soc_cnew(&aic3x_snd_controls[i], codec, NULL)); if (err < 0) return err; } return 0; } /* Left DAC Mux */ static const struct snd_kcontrol_new aic3x_left_dac_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]); /* Right DAC Mux */ static const struct snd_kcontrol_new aic3x_right_dac_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]); /* Left HPCOM Mux */ static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]); /* Right HPCOM Mux */ static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]); /* Left DAC_L1 Mixer */ static const struct snd_kcontrol_new aic3x_left_dac_mixer_controls[] = { SOC_DAPM_SINGLE("Line Switch", DACL1_2_LLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Mono Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HP Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HPCOM Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0), }; /* Right DAC_R1 Mixer */ static const struct snd_kcontrol_new aic3x_right_dac_mixer_controls[] = { SOC_DAPM_SINGLE("Line Switch", DACR1_2_RLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Mono Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HP Switch", DACR1_2_HPROUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HPCOM Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0), }; /* Left PGA Mixer */ static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = { SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1), }; /* Right PGA Mixer */ static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = { SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1), }; /* Left Line1 Mux */ static const struct snd_kcontrol_new aic3x_left_line1_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_ENUM]); /* Right Line1 Mux */ static const struct snd_kcontrol_new aic3x_right_line1_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_ENUM]); /* Left Line2 Mux */ static const struct snd_kcontrol_new aic3x_left_line2_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]); /* Right Line2 Mux */ static const struct snd_kcontrol_new aic3x_right_line2_mux_controls = SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]); /* Left PGA Bypass Mixer */ static const struct snd_kcontrol_new aic3x_left_pga_bp_mixer_controls[] = { SOC_DAPM_SINGLE("Line Switch", PGAL_2_LLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Mono Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HP Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HPCOM Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0), }; /* Right PGA Bypass Mixer */ static const struct snd_kcontrol_new aic3x_right_pga_bp_mixer_controls[] = { SOC_DAPM_SINGLE("Line Switch", PGAR_2_RLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Mono Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HP Switch", PGAR_2_HPROUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HPCOM Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0), }; /* Left Line2 Bypass Mixer */ static const struct snd_kcontrol_new aic3x_left_line2_bp_mixer_controls[] = { SOC_DAPM_SINGLE("Line Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Mono Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HP Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HPCOM Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0), }; /* Right Line2 Bypass Mixer */ static const struct snd_kcontrol_new aic3x_right_line2_bp_mixer_controls[] = { SOC_DAPM_SINGLE("Line Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Mono Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HP Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("HPCOM Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0), }; static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = { /* Left DAC to Left Outputs */ SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0), SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_dac_mux_controls), SND_SOC_DAPM_MIXER("Left DAC_L1 Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_dac_mixer_controls[0], ARRAY_SIZE(aic3x_left_dac_mixer_controls)), SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_hpcom_mux_controls), SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0), /* Right DAC to Right Outputs */ SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0), SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_dac_mux_controls), SND_SOC_DAPM_MIXER("Right DAC_R1 Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_dac_mixer_controls[0], ARRAY_SIZE(aic3x_right_dac_mixer_controls)), SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_hpcom_mux_controls), SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0), /* Mono Output */ SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0), /* Left Inputs to Left ADC */ SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0), SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_pga_mixer_controls[0], ARRAY_SIZE(aic3x_left_pga_mixer_controls)), SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_line1_mux_controls), SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_line2_mux_controls), /* Right Inputs to Right ADC */ SND_SOC_DAPM_ADC("Right ADC", "Right Capture", LINE1R_2_RADC_CTRL, 2, 0), SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_pga_mixer_controls[0], ARRAY_SIZE(aic3x_right_pga_mixer_controls)), SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_line1_mux_controls), SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_line2_mux_controls), /* * Not a real mic bias widget but similar function. This is for dynamic * control of GPIO1 digital mic modulator clock output function when * using digital mic. */ SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk", AIC3X_GPIO1_REG, 4, 0xf, AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK, AIC3X_GPIO1_FUNC_DISABLED), /* * Also similar function like mic bias. Selects digital mic with * configurable oversampling rate instead of ADC converter. */ SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128", AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0), SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64", AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0), SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32", AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0), /* Mic Bias */ SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V", MICBIAS_CTRL, 6, 3, 1, 0), SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V", MICBIAS_CTRL, 6, 3, 2, 0), SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD", MICBIAS_CTRL, 6, 3, 3, 0), /* Left PGA to Left Output bypass */ SND_SOC_DAPM_MIXER("Left PGA Bypass Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_pga_bp_mixer_controls[0], ARRAY_SIZE(aic3x_left_pga_bp_mixer_controls)), /* Right PGA to Right Output bypass */ SND_SOC_DAPM_MIXER("Right PGA Bypass Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_pga_bp_mixer_controls[0], ARRAY_SIZE(aic3x_right_pga_bp_mixer_controls)), /* Left Line2 to Left Output bypass */ SND_SOC_DAPM_MIXER("Left Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_line2_bp_mixer_controls[0], ARRAY_SIZE(aic3x_left_line2_bp_mixer_controls)), /* Right Line2 to Right Output bypass */ SND_SOC_DAPM_MIXER("Right Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_line2_bp_mixer_controls[0], ARRAY_SIZE(aic3x_right_line2_bp_mixer_controls)), SND_SOC_DAPM_OUTPUT("LLOUT"), SND_SOC_DAPM_OUTPUT("RLOUT"), SND_SOC_DAPM_OUTPUT("MONO_LOUT"), SND_SOC_DAPM_OUTPUT("HPLOUT"), SND_SOC_DAPM_OUTPUT("HPROUT"), SND_SOC_DAPM_OUTPUT("HPLCOM"), SND_SOC_DAPM_OUTPUT("HPRCOM"), SND_SOC_DAPM_INPUT("MIC3L"), SND_SOC_DAPM_INPUT("MIC3R"), SND_SOC_DAPM_INPUT("LINE1L"), SND_SOC_DAPM_INPUT("LINE1R"), SND_SOC_DAPM_INPUT("LINE2L"), SND_SOC_DAPM_INPUT("LINE2R"), }; static const struct snd_soc_dapm_route intercon[] = { /* Left Output */ {"Left DAC Mux", "DAC_L1", "Left DAC"}, {"Left DAC Mux", "DAC_L2", "Left DAC"}, {"Left DAC Mux", "DAC_L3", "Left DAC"}, {"Left DAC_L1 Mixer", "Line Switch", "Left DAC Mux"}, {"Left DAC_L1 Mixer", "Mono Switch", "Left DAC Mux"}, {"Left DAC_L1 Mixer", "HP Switch", "Left DAC Mux"}, {"Left DAC_L1 Mixer", "HPCOM Switch", "Left DAC Mux"}, {"Left Line Out", NULL, "Left DAC Mux"}, {"Left HP Out", NULL, "Left DAC Mux"}, {"Left HPCOM Mux", "differential of HPLOUT", "Left DAC_L1 Mixer"}, {"Left HPCOM Mux", "constant VCM", "Left DAC_L1 Mixer"}, {"Left HPCOM Mux", "single-ended", "Left DAC_L1 Mixer"}, {"Left Line Out", NULL, "Left DAC_L1 Mixer"}, {"Mono Out", NULL, "Left DAC_L1 Mixer"}, {"Left HP Out", NULL, "Left DAC_L1 Mixer"}, {"Left HP Com", NULL, "Left HPCOM Mux"}, {"LLOUT", NULL, "Left Line Out"}, {"LLOUT", NULL, "Left Line Out"}, {"HPLOUT", NULL, "Left HP Out"}, {"HPLCOM", NULL, "Left HP Com"}, /* Right Output */ {"Right DAC Mux", "DAC_R1", "Right DAC"}, {"Right DAC Mux", "DAC_R2", "Right DAC"}, {"Right DAC Mux", "DAC_R3", "Right DAC"}, {"Right DAC_R1 Mixer", "Line Switch", "Right DAC Mux"}, {"Right DAC_R1 Mixer", "Mono Switch", "Right DAC Mux"}, {"Right DAC_R1 Mixer", "HP Switch", "Right DAC Mux"}, {"Right DAC_R1 Mixer", "HPCOM Switch", "Right DAC Mux"}, {"Right Line Out", NULL, "Right DAC Mux"}, {"Right HP Out", NULL, "Right DAC Mux"}, {"Right HPCOM Mux", "differential of HPROUT", "Right DAC_R1 Mixer"}, {"Right HPCOM Mux", "constant VCM", "Right DAC_R1 Mixer"}, {"Right HPCOM Mux", "single-ended", "Right DAC_R1 Mixer"}, {"Right HPCOM Mux", "differential of HPLCOM", "Right DAC_R1 Mixer"}, {"Right HPCOM Mux", "external feedback", "Right DAC_R1 Mixer"}, {"Right Line Out", NULL, "Right DAC_R1 Mixer"}, {"Mono Out", NULL, "Right DAC_R1 Mixer"}, {"Right HP Out", NULL, "Right DAC_R1 Mixer"}, {"Right HP Com", NULL, "Right HPCOM Mux"}, {"RLOUT", NULL, "Right Line Out"}, {"RLOUT", NULL, "Right Line Out"}, {"HPROUT", NULL, "Right HP Out"}, {"HPRCOM", NULL, "Right HP Com"}, /* Mono Output */ {"MONO_LOUT", NULL, "Mono Out"}, {"MONO_LOUT", NULL, "Mono Out"}, /* Left Input */ {"Left Line1L Mux", "single-ended", "LINE1L"}, {"Left Line1L Mux", "differential", "LINE1L"}, {"Left Line2L Mux", "single-ended", "LINE2L"}, {"Left Line2L Mux", "differential", "LINE2L"}, {"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"}, {"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"}, {"Left PGA Mixer", "Mic3L Switch", "MIC3L"}, {"Left ADC", NULL, "Left PGA Mixer"}, {"Left ADC", NULL, "GPIO1 dmic modclk"}, /* Right Input */ {"Right Line1R Mux", "single-ended", "LINE1R"}, {"Right Line1R Mux", "differential", "LINE1R"}, {"Right Line2R Mux", "single-ended", "LINE2R"}, {"Right Line2R Mux", "differential", "LINE2R"}, {"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"}, {"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"}, {"Right PGA Mixer", "Mic3R Switch", "MIC3R"}, {"Right ADC", NULL, "Right PGA Mixer"}, {"Right ADC", NULL, "GPIO1 dmic modclk"}, /* Left PGA Bypass */ {"Left PGA Bypass Mixer", "Line Switch", "Left PGA Mixer"}, {"Left PGA Bypass Mixer", "Mono Switch", "Left PGA Mixer"}, {"Left PGA Bypass Mixer", "HP Switch", "Left PGA Mixer"}, {"Left PGA Bypass Mixer", "HPCOM Switch", "Left PGA Mixer"}, {"Left HPCOM Mux", "differential of HPLOUT", "Left PGA Bypass Mixer"}, {"Left HPCOM Mux", "constant VCM", "Left PGA Bypass Mixer"}, {"Left HPCOM Mux", "single-ended", "Left PGA Bypass Mixer"}, {"Left Line Out", NULL, "Left PGA Bypass Mixer"}, {"Mono Out", NULL, "Left PGA Bypass Mixer"}, {"Left HP Out", NULL, "Left PGA Bypass Mixer"}, /* Right PGA Bypass */ {"Right PGA Bypass Mixer", "Line Switch", "Right PGA Mixer"}, {"Right PGA Bypass Mixer", "Mono Switch", "Right PGA Mixer"}, {"Right PGA Bypass Mixer", "HP Switch", "Right PGA Mixer"}, {"Right PGA Bypass Mixer", "HPCOM Switch", "Right PGA Mixer"}, {"Right HPCOM Mux", "differential of HPROUT", "Right PGA Bypass Mixer"}, {"Right HPCOM Mux", "constant VCM", "Right PGA Bypass Mixer"}, {"Right HPCOM Mux", "single-ended", "Right PGA Bypass Mixer"}, {"Right HPCOM Mux", "differential of HPLCOM", "Right PGA Bypass Mixer"}, {"Right HPCOM Mux", "external feedback", "Right PGA Bypass Mixer"}, {"Right Line Out", NULL, "Right PGA Bypass Mixer"}, {"Mono Out", NULL, "Right PGA Bypass Mixer"}, {"Right HP Out", NULL, "Right PGA Bypass Mixer"}, /* Left Line2 Bypass */ {"Left Line2 Bypass Mixer", "Line Switch", "Left Line2L Mux"}, {"Left Line2 Bypass Mixer", "Mono Switch", "Left Line2L Mux"}, {"Left Line2 Bypass Mixer", "HP Switch", "Left Line2L Mux"}, {"Left Line2 Bypass Mixer", "HPCOM Switch", "Left Line2L Mux"}, {"Left HPCOM Mux", "differential of HPLOUT", "Left Line2 Bypass Mixer"}, {"Left HPCOM Mux", "constant VCM", "Left Line2 Bypass Mixer"}, {"Left HPCOM Mux", "single-ended", "Left Line2 Bypass Mixer"}, {"Left Line Out", NULL, "Left Line2 Bypass Mixer"}, {"Mono Out", NULL, "Left Line2 Bypass Mixer"}, {"Left HP Out", NULL, "Left Line2 Bypass Mixer"}, /* Right Line2 Bypass */ {"Right Line2 Bypass Mixer", "Line Switch", "Right Line2R Mux"}, {"Right Line2 Bypass Mixer", "Mono Switch", "Right Line2R Mux"}, {"Right Line2 Bypass Mixer", "HP Switch", "Right Line2R Mux"}, {"Right Line2 Bypass Mixer", "HPCOM Switch", "Right Line2R Mux"}, {"Right HPCOM Mux", "differential of HPROUT", "Right Line2 Bypass Mixer"}, {"Right HPCOM Mux", "constant VCM", "Right Line2 Bypass Mixer"}, {"Right HPCOM Mux", "single-ended", "Right Line2 Bypass Mixer"}, {"Right HPCOM Mux", "differential of HPLCOM", "Right Line2 Bypass Mixer"}, {"Right HPCOM Mux", "external feedback", "Right Line2 Bypass Mixer"}, {"Right Line Out", NULL, "Right Line2 Bypass Mixer"}, {"Mono Out", NULL, "Right Line2 Bypass Mixer"}, {"Right HP Out", NULL, "Right Line2 Bypass Mixer"}, /* * Logical path between digital mic enable and GPIO1 modulator clock * output function */ {"GPIO1 dmic modclk", NULL, "DMic Rate 128"}, {"GPIO1 dmic modclk", NULL, "DMic Rate 64"}, {"GPIO1 dmic modclk", NULL, "DMic Rate 32"}, }; static int aic3x_add_widgets(struct snd_soc_codec *codec) { snd_soc_dapm_new_controls(codec, aic3x_dapm_widgets, ARRAY_SIZE(aic3x_dapm_widgets)); /* set up audio path interconnects */ snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon)); snd_soc_dapm_new_widgets(codec); return 0; } static int aic3x_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_device *socdev = rtd->socdev; struct snd_soc_codec *codec = socdev->codec; struct aic3x_priv *aic3x = codec->private_data; int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0; u8 data, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1; u16 pll_d = 1; /* select data word length */ data = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4)); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: break; case SNDRV_PCM_FORMAT_S20_3LE: data |= (0x01 << 4); break; case SNDRV_PCM_FORMAT_S24_LE: data |= (0x02 << 4); break; case SNDRV_PCM_FORMAT_S32_LE: data |= (0x03 << 4); break; } aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, data); /* Fsref can be 44100 or 48000 */ fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000; /* Try to find a value for Q which allows us to bypass the PLL and * generate CODEC_CLK directly. */ for (pll_q = 2; pll_q < 18; pll_q++) if (aic3x->sysclk / (128 * pll_q) == fsref) { bypass_pll = 1; break; } if (bypass_pll) { pll_q &= 0xf; aic3x_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT); aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV); } else aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV); /* Route Left DAC to left channel input and * right DAC to right channel input */ data = (LDAC2LCH | RDAC2RCH); data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000; if (params_rate(params) >= 64000) data |= DUAL_RATE_MODE; aic3x_write(codec, AIC3X_CODEC_DATAPATH_REG, data); /* codec sample rate select */ data = (fsref * 20) / params_rate(params); if (params_rate(params) < 64000) data /= 2; data /= 5; data -= 2; data |= (data << 4); aic3x_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data); if (bypass_pll) return 0; /* Use PLL * find an apropriate setup for j, d, r and p by iterating over * p and r - j and d are calculated for each fraction. * Up to 128 values are probed, the closest one wins the game. * The sysclk is divided by 1000 to prevent integer overflows. */ codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000); for (r = 1; r <= 16; r++) for (p = 1; p <= 8; p++) { int clk, tmp = (codec_clk * pll_r * 10) / pll_p; u8 j = tmp / 10000; u16 d = tmp % 10000; if (j > 63) continue; if (d != 0 && aic3x->sysclk < 10000000) continue; /* This is actually 1000 * ((j + (d/10000)) * r) / p * The term had to be converted to get rid of the * division by 10000 */ clk = ((10000 * j * r) + (d * r)) / (10 * p); /* check whether this values get closer than the best * ones we had before */ if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) { pll_j = j; pll_d = d; pll_r = r; pll_p = p; last_clk = clk; } /* Early exit for exact matches */ if (clk == codec_clk) break; } if (last_clk == 0) { printk(KERN_ERR "%s(): unable to setup PLL\n", __func__); return -EINVAL; } data = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG); aic3x_write(codec, AIC3X_PLL_PROGA_REG, data | (pll_p << PLLP_SHIFT)); aic3x_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG, pll_r << PLLR_SHIFT); aic3x_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT); aic3x_write(codec, AIC3X_PLL_PROGC_REG, (pll_d >> 6) << PLLD_MSB_SHIFT); aic3x_write(codec, AIC3X_PLL_PROGD_REG, (pll_d & 0x3F) << PLLD_LSB_SHIFT); return 0; } static int aic3x_mute(struct snd_soc_codec_dai *dai, int mute) { struct snd_soc_codec *codec = dai->codec; u8 ldac_reg = aic3x_read_reg_cache(codec, LDAC_VOL) & ~MUTE_ON; u8 rdac_reg = aic3x_read_reg_cache(codec, RDAC_VOL) & ~MUTE_ON; if (mute) { aic3x_write(codec, LDAC_VOL, ldac_reg | MUTE_ON); aic3x_write(codec, RDAC_VOL, rdac_reg | MUTE_ON); } else { aic3x_write(codec, LDAC_VOL, ldac_reg); aic3x_write(codec, RDAC_VOL, rdac_reg); } return 0; } static int aic3x_set_dai_sysclk(struct snd_soc_codec_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_codec *codec = codec_dai->codec; struct aic3x_priv *aic3x = codec->private_data; aic3x->sysclk = freq; return 0; } static int aic3x_set_dai_fmt(struct snd_soc_codec_dai *codec_dai, unsigned int fmt) { struct snd_soc_codec *codec = codec_dai->codec; struct aic3x_priv *aic3x = codec->private_data; u8 iface_areg, iface_breg; iface_areg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f; iface_breg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f; /* set master/slave audio interface */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: aic3x->master = 1; iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER; break; case SND_SOC_DAIFMT_CBS_CFS: aic3x->master = 0; break; default: return -EINVAL; } /* interface format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: break; case SND_SOC_DAIFMT_DSP_A: iface_breg |= (0x01 << 6); break; case SND_SOC_DAIFMT_RIGHT_J: iface_breg |= (0x02 << 6); break; case SND_SOC_DAIFMT_LEFT_J: iface_breg |= (0x03 << 6); break; default: return -EINVAL; } /* set iface */ aic3x_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg); aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg); return 0; } static int aic3x_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { struct aic3x_priv *aic3x = codec->private_data; u8 reg; switch (level) { case SND_SOC_BIAS_ON: /* all power is driven by DAPM system */ if (aic3x->master) { /* enable pll */ reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG); aic3x_write(codec, AIC3X_PLL_PROGA_REG, reg | PLL_ENABLE); } break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: /* * all power is driven by DAPM system, * so output power is safe if bypass was set */ if (aic3x->master) { /* disable pll */ reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG); aic3x_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE); } break; case SND_SOC_BIAS_OFF: /* force all power off */ reg = aic3x_read_reg_cache(codec, LINE1L_2_LADC_CTRL); aic3x_write(codec, LINE1L_2_LADC_CTRL, reg & ~LADC_PWR_ON); reg = aic3x_read_reg_cache(codec, LINE1R_2_RADC_CTRL); aic3x_write(codec, LINE1R_2_RADC_CTRL, reg & ~RADC_PWR_ON); reg = aic3x_read_reg_cache(codec, DAC_PWR); aic3x_write(codec, DAC_PWR, reg & ~(LDAC_PWR_ON | RDAC_PWR_ON)); reg = aic3x_read_reg_cache(codec, HPLOUT_CTRL); aic3x_write(codec, HPLOUT_CTRL, reg & ~HPLOUT_PWR_ON); reg = aic3x_read_reg_cache(codec, HPROUT_CTRL); aic3x_write(codec, HPROUT_CTRL, reg & ~HPROUT_PWR_ON); reg = aic3x_read_reg_cache(codec, HPLCOM_CTRL); aic3x_write(codec, HPLCOM_CTRL, reg & ~HPLCOM_PWR_ON); reg = aic3x_read_reg_cache(codec, HPRCOM_CTRL); aic3x_write(codec, HPRCOM_CTRL, reg & ~HPRCOM_PWR_ON); reg = aic3x_read_reg_cache(codec, MONOLOPM_CTRL); aic3x_write(codec, MONOLOPM_CTRL, reg & ~MONOLOPM_PWR_ON); reg = aic3x_read_reg_cache(codec, LLOPM_CTRL); aic3x_write(codec, LLOPM_CTRL, reg & ~LLOPM_PWR_ON); reg = aic3x_read_reg_cache(codec, RLOPM_CTRL); aic3x_write(codec, RLOPM_CTRL, reg & ~RLOPM_PWR_ON); if (aic3x->master) { /* disable pll */ reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG); aic3x_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE); } break; } codec->bias_level = level; return 0; } void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state) { u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG; u8 bit = gpio ? 3: 0; u8 val = aic3x_read_reg_cache(codec, reg) & ~(1 << bit); aic3x_write(codec, reg, val | (!!state << bit)); } EXPORT_SYMBOL_GPL(aic3x_set_gpio); int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio) { u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG; u8 val, bit = gpio ? 2: 1; aic3x_read(codec, reg, &val); return (val >> bit) & 1; } EXPORT_SYMBOL_GPL(aic3x_get_gpio); int aic3x_headset_detected(struct snd_soc_codec *codec) { u8 val; aic3x_read(codec, AIC3X_RT_IRQ_FLAGS_REG, &val); return (val >> 2) & 1; } EXPORT_SYMBOL_GPL(aic3x_headset_detected); #define AIC3X_RATES SNDRV_PCM_RATE_8000_96000 #define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) struct snd_soc_codec_dai aic3x_dai = { .name = "aic3x", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = AIC3X_RATES, .formats = AIC3X_FORMATS,}, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = AIC3X_RATES, .formats = AIC3X_FORMATS,}, .ops = { .hw_params = aic3x_hw_params, }, .dai_ops = { .digital_mute = aic3x_mute, .set_sysclk = aic3x_set_dai_sysclk, .set_fmt = aic3x_set_dai_fmt, } }; EXPORT_SYMBOL_GPL(aic3x_dai); static int aic3x_suspend(struct platform_device *pdev, pm_message_t state) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct snd_soc_codec *codec = socdev->codec; aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static int aic3x_resume(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct snd_soc_codec *codec = socdev->codec; int i; u8 data[2]; u8 *cache = codec->reg_cache; /* Sync reg_cache with the hardware */ for (i = 0; i < ARRAY_SIZE(aic3x_reg); i++) { data[0] = i; data[1] = cache[i]; codec->hw_write(codec->control_data, data, 2); } aic3x_set_bias_level(codec, codec->suspend_bias_level); return 0; } /* * initialise the AIC3X driver * register the mixer and dsp interfaces with the kernel */ static int aic3x_init(struct snd_soc_device *socdev) { struct snd_soc_codec *codec = socdev->codec; struct aic3x_setup_data *setup = socdev->codec_data; int reg, ret = 0; codec->name = "aic3x"; codec->owner = THIS_MODULE; codec->read = aic3x_read_reg_cache; codec->write = aic3x_write; codec->set_bias_level = aic3x_set_bias_level; codec->dai = &aic3x_dai; codec->num_dai = 1; codec->reg_cache_size = ARRAY_SIZE(aic3x_reg); codec->reg_cache = kmemdup(aic3x_reg, sizeof(aic3x_reg), GFP_KERNEL); if (codec->reg_cache == NULL) return -ENOMEM; aic3x_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT); aic3x_write(codec, AIC3X_RESET, SOFT_RESET); /* register pcms */ ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1); if (ret < 0) { printk(KERN_ERR "aic3x: failed to create pcms\n"); goto pcm_err; } /* DAC default volume and mute */ aic3x_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON); aic3x_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON); /* DAC to HP default volume and route to Output mixer */ aic3x_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON); aic3x_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON); aic3x_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON); aic3x_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON); /* DAC to Line Out default volume and route to Output mixer */ aic3x_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON); aic3x_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON); /* DAC to Mono Line Out default volume and route to Output mixer */ aic3x_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON); aic3x_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON); /* unmute all outputs */ reg = aic3x_read_reg_cache(codec, LLOPM_CTRL); aic3x_write(codec, LLOPM_CTRL, reg | UNMUTE); reg = aic3x_read_reg_cache(codec, RLOPM_CTRL); aic3x_write(codec, RLOPM_CTRL, reg | UNMUTE); reg = aic3x_read_reg_cache(codec, MONOLOPM_CTRL); aic3x_write(codec, MONOLOPM_CTRL, reg | UNMUTE); reg = aic3x_read_reg_cache(codec, HPLOUT_CTRL); aic3x_write(codec, HPLOUT_CTRL, reg | UNMUTE); reg = aic3x_read_reg_cache(codec, HPROUT_CTRL); aic3x_write(codec, HPROUT_CTRL, reg | UNMUTE); reg = aic3x_read_reg_cache(codec, HPLCOM_CTRL); aic3x_write(codec, HPLCOM_CTRL, reg | UNMUTE); reg = aic3x_read_reg_cache(codec, HPRCOM_CTRL); aic3x_write(codec, HPRCOM_CTRL, reg | UNMUTE); /* ADC default volume and unmute */ aic3x_write(codec, LADC_VOL, DEFAULT_GAIN); aic3x_write(codec, RADC_VOL, DEFAULT_GAIN); /* By default route Line1 to ADC PGA mixer */ aic3x_write(codec, LINE1L_2_LADC_CTRL, 0x0); aic3x_write(codec, LINE1R_2_RADC_CTRL, 0x0); /* PGA to HP Bypass default volume, disconnect from Output Mixer */ aic3x_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL); aic3x_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL); aic3x_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL); aic3x_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL); /* PGA to Line Out default volume, disconnect from Output Mixer */ aic3x_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL); aic3x_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL); /* PGA to Mono Line Out default volume, disconnect from Output Mixer */ aic3x_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL); aic3x_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL); /* Line2 to HP Bypass default volume, disconnect from Output Mixer */ aic3x_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL); aic3x_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL); aic3x_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL); aic3x_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL); /* Line2 Line Out default volume, disconnect from Output Mixer */ aic3x_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL); aic3x_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL); /* Line2 to Mono Out default volume, disconnect from Output Mixer */ aic3x_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL); aic3x_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL); /* off, with power on */ aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY); /* setup GPIO functions */ aic3x_write(codec, AIC3X_GPIO1_REG, (setup->gpio_func[0] & 0xf) << 4); aic3x_write(codec, AIC3X_GPIO2_REG, (setup->gpio_func[1] & 0xf) << 4); aic3x_add_controls(codec); aic3x_add_widgets(codec); ret = snd_soc_register_card(socdev); if (ret < 0) { printk(KERN_ERR "aic3x: failed to register card\n"); goto card_err; } return ret; card_err: snd_soc_free_pcms(socdev); snd_soc_dapm_free(socdev); pcm_err: kfree(codec->reg_cache); return ret; } static struct snd_soc_device *aic3x_socdev; #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE) /* * AIC3X 2 wire address can be up to 4 devices with device addresses * 0x18, 0x19, 0x1A, 0x1B */ static unsigned short normal_i2c[] = { 0, I2C_CLIENT_END }; /* Magic definition of all other variables and things */ I2C_CLIENT_INSMOD; static struct i2c_driver aic3x_i2c_driver; static struct i2c_client client_template; /* * If the i2c layer weren't so broken, we could pass this kind of data * around */ static int aic3x_codec_probe(struct i2c_adapter *adap, int addr, int kind) { struct snd_soc_device *socdev = aic3x_socdev; struct aic3x_setup_data *setup = socdev->codec_data; struct snd_soc_codec *codec = socdev->codec; struct i2c_client *i2c; int ret; if (addr != setup->i2c_address) return -ENODEV; client_template.adapter = adap; client_template.addr = addr; i2c = kmemdup(&client_template, sizeof(client_template), GFP_KERNEL); if (i2c == NULL) { kfree(codec); return -ENOMEM; } i2c_set_clientdata(i2c, codec); codec->control_data = i2c; ret = i2c_attach_client(i2c); if (ret < 0) { printk(KERN_ERR "aic3x: failed to attach codec at addr %x\n", addr); goto err; } ret = aic3x_init(socdev); if (ret < 0) { printk(KERN_ERR "aic3x: failed to initialise AIC3X\n"); goto err; } return ret; err: kfree(codec); kfree(i2c); return ret; } static int aic3x_i2c_detach(struct i2c_client *client) { struct snd_soc_codec *codec = i2c_get_clientdata(client); i2c_detach_client(client); kfree(codec->reg_cache); kfree(client); return 0; } static int aic3x_i2c_attach(struct i2c_adapter *adap) { return i2c_probe(adap, &addr_data, aic3x_codec_probe); } /* machine i2c codec control layer */ static struct i2c_driver aic3x_i2c_driver = { .driver = { .name = "aic3x I2C Codec", .owner = THIS_MODULE, }, .attach_adapter = aic3x_i2c_attach, .detach_client = aic3x_i2c_detach, }; static struct i2c_client client_template = { .name = "AIC3X", .driver = &aic3x_i2c_driver, }; static int aic3x_i2c_read(struct i2c_client *client, u8 *value, int len) { value[0] = i2c_smbus_read_byte_data(client, value[0]); return (len == 1); } #endif static int aic3x_probe(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct aic3x_setup_data *setup; struct snd_soc_codec *codec; struct aic3x_priv *aic3x; int ret = 0; printk(KERN_INFO "AIC3X Audio Codec %s\n", AIC3X_VERSION); setup = socdev->codec_data; codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL); if (codec == NULL) return -ENOMEM; aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL); if (aic3x == NULL) { kfree(codec); return -ENOMEM; } codec->private_data = aic3x; socdev->codec = codec; mutex_init(&codec->mutex); INIT_LIST_HEAD(&codec->dapm_widgets); INIT_LIST_HEAD(&codec->dapm_paths); aic3x_socdev = socdev; #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE) if (setup->i2c_address) { normal_i2c[0] = setup->i2c_address; codec->hw_write = (hw_write_t) i2c_master_send; codec->hw_read = (hw_read_t) aic3x_i2c_read; ret = i2c_add_driver(&aic3x_i2c_driver); if (ret != 0) printk(KERN_ERR "can't add i2c driver"); } #else /* Add other interfaces here */ #endif return ret; } static int aic3x_remove(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct snd_soc_codec *codec = socdev->codec; /* power down chip */ if (codec->control_data) aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF); snd_soc_free_pcms(socdev); snd_soc_dapm_free(socdev); #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE) i2c_del_driver(&aic3x_i2c_driver); #endif kfree(codec->private_data); kfree(codec); return 0; } struct snd_soc_codec_device soc_codec_dev_aic3x = { .probe = aic3x_probe, .remove = aic3x_remove, .suspend = aic3x_suspend, .resume = aic3x_resume, }; EXPORT_SYMBOL_GPL(soc_codec_dev_aic3x); MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver"); MODULE_AUTHOR("Vladimir Barinov"); MODULE_LICENSE("GPL");