// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2021 Broadcom. All Rights Reserved. The term * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. */ #include "efct_driver.h" #include "efct_hw.h" #include "efct_unsol.h" struct efct_hw_link_stat_cb_arg { void (*cb)(int status, u32 num_counters, struct efct_hw_link_stat_counts *counters, void *arg); void *arg; }; struct efct_hw_host_stat_cb_arg { void (*cb)(int status, u32 num_counters, struct efct_hw_host_stat_counts *counters, void *arg); void *arg; }; struct efct_hw_fw_wr_cb_arg { void (*cb)(int status, u32 bytes_written, u32 change_status, void *arg); void *arg; }; struct efct_mbox_rqst_ctx { int (*callback)(struct efc *efc, int status, u8 *mqe, void *arg); void *arg; }; static int efct_hw_link_event_init(struct efct_hw *hw) { hw->link.status = SLI4_LINK_STATUS_MAX; hw->link.topology = SLI4_LINK_TOPO_NONE; hw->link.medium = SLI4_LINK_MEDIUM_MAX; hw->link.speed = 0; hw->link.loop_map = NULL; hw->link.fc_id = U32_MAX; return 0; } static int efct_hw_read_max_dump_size(struct efct_hw *hw) { u8 buf[SLI4_BMBX_SIZE]; struct efct *efct = hw->os; int rc = 0; struct sli4_rsp_cmn_set_dump_location *rsp; /* attempt to detemine the dump size for function 0 only. */ if (PCI_FUNC(efct->pci->devfn) != 0) return rc; if (sli_cmd_common_set_dump_location(&hw->sli, buf, 1, 0, NULL, 0)) return -EIO; rsp = (struct sli4_rsp_cmn_set_dump_location *) (buf + offsetof(struct sli4_cmd_sli_config, payload.embed)); rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); if (rc != 0) { efc_log_debug(hw->os, "set dump location cmd failed\n"); return rc; } hw->dump_size = le32_to_cpu(rsp->buffer_length_dword) & SLI4_CMN_SET_DUMP_BUFFER_LEN; efc_log_debug(hw->os, "Dump size %x\n", hw->dump_size); return rc; } static int __efct_read_topology_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg) { struct sli4_cmd_read_topology *read_topo = (struct sli4_cmd_read_topology *)mqe; u8 speed; struct efc_domain_record drec = {0}; struct efct *efct = hw->os; if (status || le16_to_cpu(read_topo->hdr.status)) { efc_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status, le16_to_cpu(read_topo->hdr.status)); return -EIO; } switch (le32_to_cpu(read_topo->dw2_attentype) & SLI4_READTOPO_ATTEN_TYPE) { case SLI4_READ_TOPOLOGY_LINK_UP: hw->link.status = SLI4_LINK_STATUS_UP; break; case SLI4_READ_TOPOLOGY_LINK_DOWN: hw->link.status = SLI4_LINK_STATUS_DOWN; break; case SLI4_READ_TOPOLOGY_LINK_NO_ALPA: hw->link.status = SLI4_LINK_STATUS_NO_ALPA; break; default: hw->link.status = SLI4_LINK_STATUS_MAX; break; } switch (read_topo->topology) { case SLI4_READ_TOPO_NON_FC_AL: hw->link.topology = SLI4_LINK_TOPO_NON_FC_AL; break; case SLI4_READ_TOPO_FC_AL: hw->link.topology = SLI4_LINK_TOPO_FC_AL; if (hw->link.status == SLI4_LINK_STATUS_UP) hw->link.loop_map = hw->loop_map.virt; hw->link.fc_id = read_topo->acquired_al_pa; break; default: hw->link.topology = SLI4_LINK_TOPO_MAX; break; } hw->link.medium = SLI4_LINK_MEDIUM_FC; speed = (le32_to_cpu(read_topo->currlink_state) & SLI4_READTOPO_LINKSTATE_SPEED) >> 8; switch (speed) { case SLI4_READ_TOPOLOGY_SPEED_1G: hw->link.speed = 1 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_2G: hw->link.speed = 2 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_4G: hw->link.speed = 4 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_8G: hw->link.speed = 8 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_16G: hw->link.speed = 16 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_32G: hw->link.speed = 32 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_64G: hw->link.speed = 64 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_128G: hw->link.speed = 128 * 1000; break; } drec.speed = hw->link.speed; drec.fc_id = hw->link.fc_id; drec.is_nport = true; efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_FOUND, &drec); return 0; } static int efct_hw_cb_link(void *ctx, void *e) { struct efct_hw *hw = ctx; struct sli4_link_event *event = e; struct efc_domain *d = NULL; int rc = 0; struct efct *efct = hw->os; efct_hw_link_event_init(hw); switch (event->status) { case SLI4_LINK_STATUS_UP: hw->link = *event; efct->efcport->link_status = EFC_LINK_STATUS_UP; if (event->topology == SLI4_LINK_TOPO_NON_FC_AL) { struct efc_domain_record drec = {0}; efc_log_info(hw->os, "Link Up, NPORT, speed is %d\n", event->speed); drec.speed = event->speed; drec.fc_id = event->fc_id; drec.is_nport = true; efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_FOUND, &drec); } else if (event->topology == SLI4_LINK_TOPO_FC_AL) { u8 buf[SLI4_BMBX_SIZE]; efc_log_info(hw->os, "Link Up, LOOP, speed is %d\n", event->speed); if (!sli_cmd_read_topology(&hw->sli, buf, &hw->loop_map)) { rc = efct_hw_command(hw, buf, EFCT_CMD_NOWAIT, __efct_read_topology_cb, NULL); } if (rc) efc_log_debug(hw->os, "READ_TOPOLOGY failed\n"); } else { efc_log_info(hw->os, "%s(%#x), speed is %d\n", "Link Up, unsupported topology ", event->topology, event->speed); } break; case SLI4_LINK_STATUS_DOWN: efc_log_info(hw->os, "Link down\n"); hw->link.status = event->status; efct->efcport->link_status = EFC_LINK_STATUS_DOWN; d = efct->efcport->domain; if (d) efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_LOST, d); break; default: efc_log_debug(hw->os, "unhandled link status %#x\n", event->status); break; } return 0; } int efct_hw_setup(struct efct_hw *hw, void *os, struct pci_dev *pdev) { u32 i, max_sgl, cpus; if (hw->hw_setup_called) return 0; /* * efct_hw_init() relies on NULL pointers indicating that a structure * needs allocation. If a structure is non-NULL, efct_hw_init() won't * free/realloc that memory */ memset(hw, 0, sizeof(struct efct_hw)); hw->hw_setup_called = true; hw->os = os; mutex_init(&hw->bmbx_lock); spin_lock_init(&hw->cmd_lock); INIT_LIST_HEAD(&hw->cmd_head); INIT_LIST_HEAD(&hw->cmd_pending); hw->cmd_head_count = 0; /* Create mailbox command ctx pool */ hw->cmd_ctx_pool = mempool_create_kmalloc_pool(EFCT_CMD_CTX_POOL_SZ, sizeof(struct efct_command_ctx)); if (!hw->cmd_ctx_pool) { efc_log_err(hw->os, "failed to allocate mailbox buffer pool\n"); return -EIO; } /* Create mailbox request ctx pool for library callback */ hw->mbox_rqst_pool = mempool_create_kmalloc_pool(EFCT_CMD_CTX_POOL_SZ, sizeof(struct efct_mbox_rqst_ctx)); if (!hw->mbox_rqst_pool) { efc_log_err(hw->os, "failed to allocate mbox request pool\n"); return -EIO; } spin_lock_init(&hw->io_lock); INIT_LIST_HEAD(&hw->io_inuse); INIT_LIST_HEAD(&hw->io_free); INIT_LIST_HEAD(&hw->io_wait_free); atomic_set(&hw->io_alloc_failed_count, 0); hw->config.speed = SLI4_LINK_SPEED_AUTO_16_8_4; if (sli_setup(&hw->sli, hw->os, pdev, ((struct efct *)os)->reg)) { efc_log_err(hw->os, "SLI setup failed\n"); return -EIO; } efct_hw_link_event_init(hw); sli_callback(&hw->sli, SLI4_CB_LINK, efct_hw_cb_link, hw); /* * Set all the queue sizes to the maximum allowed. */ for (i = 0; i < ARRAY_SIZE(hw->num_qentries); i++) hw->num_qentries[i] = hw->sli.qinfo.max_qentries[i]; /* * Adjust the size of the WQs so that the CQ is twice as big as * the WQ to allow for 2 completions per IO. This allows us to * handle multi-phase as well as aborts. */ hw->num_qentries[SLI4_QTYPE_WQ] = hw->num_qentries[SLI4_QTYPE_CQ] / 2; /* * The RQ assignment for RQ pair mode. */ hw->config.rq_default_buffer_size = EFCT_HW_RQ_SIZE_PAYLOAD; hw->config.n_io = hw->sli.ext[SLI4_RSRC_XRI].size; cpus = num_possible_cpus(); hw->config.n_eq = cpus > EFCT_HW_MAX_NUM_EQ ? EFCT_HW_MAX_NUM_EQ : cpus; max_sgl = sli_get_max_sgl(&hw->sli) - SLI4_SGE_MAX_RESERVED; max_sgl = (max_sgl > EFCT_FC_MAX_SGL) ? EFCT_FC_MAX_SGL : max_sgl; hw->config.n_sgl = max_sgl; (void)efct_hw_read_max_dump_size(hw); return 0; } static void efct_logfcfi(struct efct_hw *hw, u32 j, u32 i, u32 id) { efc_log_info(hw->os, "REG_FCFI: filter[%d] %08X -> RQ[%d] id=%d\n", j, hw->config.filter_def[j], i, id); } static inline void efct_hw_init_free_io(struct efct_hw_io *io) { /* * Set io->done to NULL, to avoid any callbacks, should * a completion be received for one of these IOs */ io->done = NULL; io->abort_done = NULL; io->status_saved = false; io->abort_in_progress = false; io->type = 0xFFFF; io->wq = NULL; } static u8 efct_hw_iotype_is_originator(u16 io_type) { switch (io_type) { case EFCT_HW_FC_CT: case EFCT_HW_ELS_REQ: return 0; default: return -EIO; } } static void efct_hw_io_restore_sgl(struct efct_hw *hw, struct efct_hw_io *io) { /* Restore the default */ io->sgl = &io->def_sgl; io->sgl_count = io->def_sgl_count; } static void efct_hw_wq_process_io(void *arg, u8 *cqe, int status) { struct efct_hw_io *io = arg; struct efct_hw *hw = io->hw; struct sli4_fc_wcqe *wcqe = (void *)cqe; u32 len = 0; u32 ext = 0; /* clear xbusy flag if WCQE[XB] is clear */ if (io->xbusy && (wcqe->flags & SLI4_WCQE_XB) == 0) io->xbusy = false; /* get extended CQE status */ switch (io->type) { case EFCT_HW_BLS_ACC: case EFCT_HW_BLS_RJT: break; case EFCT_HW_ELS_REQ: sli_fc_els_did(&hw->sli, cqe, &ext); len = sli_fc_response_length(&hw->sli, cqe); break; case EFCT_HW_ELS_RSP: case EFCT_HW_FC_CT_RSP: break; case EFCT_HW_FC_CT: len = sli_fc_response_length(&hw->sli, cqe); break; case EFCT_HW_IO_TARGET_WRITE: len = sli_fc_io_length(&hw->sli, cqe); break; case EFCT_HW_IO_TARGET_READ: len = sli_fc_io_length(&hw->sli, cqe); break; case EFCT_HW_IO_TARGET_RSP: break; case EFCT_HW_IO_DNRX_REQUEUE: /* release the count for re-posting the buffer */ /* efct_hw_io_free(hw, io); */ break; default: efc_log_err(hw->os, "unhandled io type %#x for XRI 0x%x\n", io->type, io->indicator); break; } if (status) { ext = sli_fc_ext_status(&hw->sli, cqe); /* * If we're not an originator IO, and XB is set, then issue * abort for the IO from within the HW */ if ((!efct_hw_iotype_is_originator(io->type)) && wcqe->flags & SLI4_WCQE_XB) { int rc; efc_log_debug(hw->os, "aborting xri=%#x tag=%#x\n", io->indicator, io->reqtag); /* * Because targets may send a response when the IO * completes using the same XRI, we must wait for the * XRI_ABORTED CQE to issue the IO callback */ rc = efct_hw_io_abort(hw, io, false, NULL, NULL); if (rc == 0) { /* * latch status to return after abort is * complete */ io->status_saved = true; io->saved_status = status; io->saved_ext = ext; io->saved_len = len; goto exit_efct_hw_wq_process_io; } else if (rc == -EINPROGRESS) { /* * Already being aborted by someone else (ABTS * perhaps). Just return original * error. */ efc_log_debug(hw->os, "%s%#x tag=%#x\n", "abort in progress xri=", io->indicator, io->reqtag); } else { /* Failed to abort for some other reason, log * error */ efc_log_debug(hw->os, "%s%#x tag=%#x rc=%d\n", "Failed to abort xri=", io->indicator, io->reqtag, rc); } } } if (io->done) { efct_hw_done_t done = io->done; io->done = NULL; if (io->status_saved) { /* use latched status if exists */ status = io->saved_status; len = io->saved_len; ext = io->saved_ext; io->status_saved = false; } /* Restore default SGL */ efct_hw_io_restore_sgl(hw, io); done(io, len, status, ext, io->arg); } exit_efct_hw_wq_process_io: return; } static int efct_hw_setup_io(struct efct_hw *hw) { u32 i = 0; struct efct_hw_io *io = NULL; uintptr_t xfer_virt = 0; uintptr_t xfer_phys = 0; u32 index; bool new_alloc = true; struct efc_dma *dma; struct efct *efct = hw->os; if (!hw->io) { hw->io = kmalloc_array(hw->config.n_io, sizeof(io), GFP_KERNEL); if (!hw->io) return -ENOMEM; memset(hw->io, 0, hw->config.n_io * sizeof(io)); for (i = 0; i < hw->config.n_io; i++) { hw->io[i] = kzalloc(sizeof(*io), GFP_KERNEL); if (!hw->io[i]) goto error; } /* Create WQE buffs for IO */ hw->wqe_buffs = kzalloc((hw->config.n_io * hw->sli.wqe_size), GFP_KERNEL); if (!hw->wqe_buffs) { kfree(hw->io); return -ENOMEM; } } else { /* re-use existing IOs, including SGLs */ new_alloc = false; } if (new_alloc) { dma = &hw->xfer_rdy; dma->size = sizeof(struct fcp_txrdy) * hw->config.n_io; dma->virt = dma_alloc_coherent(&efct->pci->dev, dma->size, &dma->phys, GFP_DMA); if (!dma->virt) return -ENOMEM; } xfer_virt = (uintptr_t)hw->xfer_rdy.virt; xfer_phys = hw->xfer_rdy.phys; /* Initialize the pool of HW IO objects */ for (i = 0; i < hw->config.n_io; i++) { struct hw_wq_callback *wqcb; io = hw->io[i]; /* initialize IO fields */ io->hw = hw; /* Assign a WQE buff */ io->wqe.wqebuf = &hw->wqe_buffs[i * hw->sli.wqe_size]; /* Allocate the request tag for this IO */ wqcb = efct_hw_reqtag_alloc(hw, efct_hw_wq_process_io, io); if (!wqcb) { efc_log_err(hw->os, "can't allocate request tag\n"); return -ENOSPC; } io->reqtag = wqcb->instance_index; /* Now for the fields that are initialized on each free */ efct_hw_init_free_io(io); /* The XB flag isn't cleared on IO free, so init to zero */ io->xbusy = 0; if (sli_resource_alloc(&hw->sli, SLI4_RSRC_XRI, &io->indicator, &index)) { efc_log_err(hw->os, "sli_resource_alloc failed @ %d\n", i); return -ENOMEM; } if (new_alloc) { dma = &io->def_sgl; dma->size = hw->config.n_sgl * sizeof(struct sli4_sge); dma->virt = dma_alloc_coherent(&efct->pci->dev, dma->size, &dma->phys, GFP_DMA); if (!dma->virt) { efc_log_err(hw->os, "dma_alloc fail %d\n", i); memset(&io->def_sgl, 0, sizeof(struct efc_dma)); return -ENOMEM; } } io->def_sgl_count = hw->config.n_sgl; io->sgl = &io->def_sgl; io->sgl_count = io->def_sgl_count; if (hw->xfer_rdy.size) { io->xfer_rdy.virt = (void *)xfer_virt; io->xfer_rdy.phys = xfer_phys; io->xfer_rdy.size = sizeof(struct fcp_txrdy); xfer_virt += sizeof(struct fcp_txrdy); xfer_phys += sizeof(struct fcp_txrdy); } } return 0; error: for (i = 0; i < hw->config.n_io && hw->io[i]; i++) { kfree(hw->io[i]); hw->io[i] = NULL; } kfree(hw->io); hw->io = NULL; return -ENOMEM; } static int efct_hw_init_prereg_io(struct efct_hw *hw) { u32 i, idx = 0; struct efct_hw_io *io = NULL; u8 cmd[SLI4_BMBX_SIZE]; int rc = 0; u32 n_rem; u32 n = 0; u32 sgls_per_request = 256; struct efc_dma **sgls = NULL; struct efc_dma req; struct efct *efct = hw->os; sgls = kmalloc_array(sgls_per_request, sizeof(*sgls), GFP_KERNEL); if (!sgls) return -ENOMEM; memset(&req, 0, sizeof(struct efc_dma)); req.size = 32 + sgls_per_request * 16; req.virt = dma_alloc_coherent(&efct->pci->dev, req.size, &req.phys, GFP_DMA); if (!req.virt) { kfree(sgls); return -ENOMEM; } for (n_rem = hw->config.n_io; n_rem; n_rem -= n) { /* Copy address of SGL's into local sgls[] array, break * out if the xri is not contiguous. */ u32 min = (sgls_per_request < n_rem) ? sgls_per_request : n_rem; for (n = 0; n < min; n++) { /* Check that we have contiguous xri values */ if (n > 0) { if (hw->io[idx + n]->indicator != hw->io[idx + n - 1]->indicator + 1) break; } sgls[n] = hw->io[idx + n]->sgl; } if (sli_cmd_post_sgl_pages(&hw->sli, cmd, hw->io[idx]->indicator, n, sgls, NULL, &req)) { rc = -EIO; break; } rc = efct_hw_command(hw, cmd, EFCT_CMD_POLL, NULL, NULL); if (rc) { efc_log_err(hw->os, "SGL post failed, rc=%d\n", rc); break; } /* Add to tail if successful */ for (i = 0; i < n; i++, idx++) { io = hw->io[idx]; io->state = EFCT_HW_IO_STATE_FREE; INIT_LIST_HEAD(&io->list_entry); list_add_tail(&io->list_entry, &hw->io_free); } } dma_free_coherent(&efct->pci->dev, req.size, req.virt, req.phys); memset(&req, 0, sizeof(struct efc_dma)); kfree(sgls); return rc; } static int efct_hw_init_io(struct efct_hw *hw) { u32 i, idx = 0; bool prereg = false; struct efct_hw_io *io = NULL; int rc = 0; prereg = hw->sli.params.sgl_pre_registered; if (prereg) return efct_hw_init_prereg_io(hw); for (i = 0; i < hw->config.n_io; i++, idx++) { io = hw->io[idx]; io->state = EFCT_HW_IO_STATE_FREE; INIT_LIST_HEAD(&io->list_entry); list_add_tail(&io->list_entry, &hw->io_free); } return rc; } static int efct_hw_config_set_fdt_xfer_hint(struct efct_hw *hw, u32 fdt_xfer_hint) { int rc = 0; u8 buf[SLI4_BMBX_SIZE]; struct sli4_rqst_cmn_set_features_set_fdt_xfer_hint param; memset(¶m, 0, sizeof(param)); param.fdt_xfer_hint = cpu_to_le32(fdt_xfer_hint); /* build the set_features command */ sli_cmd_common_set_features(&hw->sli, buf, SLI4_SET_FEATURES_SET_FTD_XFER_HINT, sizeof(param), ¶m); rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); if (rc) efc_log_warn(hw->os, "set FDT hint %d failed: %d\n", fdt_xfer_hint, rc); else efc_log_info(hw->os, "Set FTD transfer hint to %d\n", le32_to_cpu(param.fdt_xfer_hint)); return rc; } static int efct_hw_config_rq(struct efct_hw *hw) { u32 min_rq_count, i, rc; struct sli4_cmd_rq_cfg rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG]; u8 buf[SLI4_BMBX_SIZE]; efc_log_info(hw->os, "using REG_FCFI standard\n"); /* * Set the filter match/mask values from hw's * filter_def values */ for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) { rq_cfg[i].rq_id = cpu_to_le16(0xffff); rq_cfg[i].r_ctl_mask = (u8)hw->config.filter_def[i]; rq_cfg[i].r_ctl_match = (u8)(hw->config.filter_def[i] >> 8); rq_cfg[i].type_mask = (u8)(hw->config.filter_def[i] >> 16); rq_cfg[i].type_match = (u8)(hw->config.filter_def[i] >> 24); } /* * Update the rq_id's of the FCF configuration * (don't update more than the number of rq_cfg * elements) */ min_rq_count = (hw->hw_rq_count < SLI4_CMD_REG_FCFI_NUM_RQ_CFG) ? hw->hw_rq_count : SLI4_CMD_REG_FCFI_NUM_RQ_CFG; for (i = 0; i < min_rq_count; i++) { struct hw_rq *rq = hw->hw_rq[i]; u32 j; for (j = 0; j < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; j++) { u32 mask = (rq->filter_mask != 0) ? rq->filter_mask : 1; if (!(mask & (1U << j))) continue; rq_cfg[i].rq_id = cpu_to_le16(rq->hdr->id); efct_logfcfi(hw, j, i, rq->hdr->id); } } rc = -EIO; if (!sli_cmd_reg_fcfi(&hw->sli, buf, 0, rq_cfg)) rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); if (rc != 0) { efc_log_err(hw->os, "FCFI registration failed\n"); return rc; } hw->fcf_indicator = le16_to_cpu(((struct sli4_cmd_reg_fcfi *)buf)->fcfi); return rc; } static int efct_hw_config_mrq(struct efct_hw *hw, u8 mode, u16 fcf_index) { u8 buf[SLI4_BMBX_SIZE], mrq_bitmask = 0; struct hw_rq *rq; struct sli4_cmd_reg_fcfi_mrq *rsp = NULL; struct sli4_cmd_rq_cfg rq_filter[SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG]; u32 rc, i; if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) goto issue_cmd; /* Set the filter match/mask values from hw's filter_def values */ for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) { rq_filter[i].rq_id = cpu_to_le16(0xffff); rq_filter[i].type_mask = (u8)hw->config.filter_def[i]; rq_filter[i].type_match = (u8)(hw->config.filter_def[i] >> 8); rq_filter[i].r_ctl_mask = (u8)(hw->config.filter_def[i] >> 16); rq_filter[i].r_ctl_match = (u8)(hw->config.filter_def[i] >> 24); } rq = hw->hw_rq[0]; rq_filter[0].rq_id = cpu_to_le16(rq->hdr->id); rq_filter[1].rq_id = cpu_to_le16(rq->hdr->id); mrq_bitmask = 0x2; issue_cmd: efc_log_debug(hw->os, "Issue reg_fcfi_mrq count:%d policy:%d mode:%d\n", hw->hw_rq_count, hw->config.rq_selection_policy, mode); /* Invoke REG_FCFI_MRQ */ rc = sli_cmd_reg_fcfi_mrq(&hw->sli, buf, mode, fcf_index, hw->config.rq_selection_policy, mrq_bitmask, hw->hw_mrq_count, rq_filter); if (rc) { efc_log_err(hw->os, "sli_cmd_reg_fcfi_mrq() failed\n"); return -EIO; } rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); rsp = (struct sli4_cmd_reg_fcfi_mrq *)buf; if ((rc) || (le16_to_cpu(rsp->hdr.status))) { efc_log_err(hw->os, "FCFI MRQ reg failed. cmd=%x status=%x\n", rsp->hdr.command, le16_to_cpu(rsp->hdr.status)); return -EIO; } if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) hw->fcf_indicator = le16_to_cpu(rsp->fcfi); return 0; } static void efct_hw_queue_hash_add(struct efct_queue_hash *hash, u16 id, u16 index) { u32 hash_index = id & (EFCT_HW_Q_HASH_SIZE - 1); /* * Since the hash is always bigger than the number of queues, then we * never have to worry about an infinite loop. */ while (hash[hash_index].in_use) hash_index = (hash_index + 1) & (EFCT_HW_Q_HASH_SIZE - 1); /* not used, claim the entry */ hash[hash_index].id = id; hash[hash_index].in_use = true; hash[hash_index].index = index; } static int efct_hw_config_sli_port_health_check(struct efct_hw *hw, u8 query, u8 enable) { int rc = 0; u8 buf[SLI4_BMBX_SIZE]; struct sli4_rqst_cmn_set_features_health_check param; u32 health_check_flag = 0; memset(¶m, 0, sizeof(param)); if (enable) health_check_flag |= SLI4_RQ_HEALTH_CHECK_ENABLE; if (query) health_check_flag |= SLI4_RQ_HEALTH_CHECK_QUERY; param.health_check_dword = cpu_to_le32(health_check_flag); /* build the set_features command */ sli_cmd_common_set_features(&hw->sli, buf, SLI4_SET_FEATURES_SLI_PORT_HEALTH_CHECK, sizeof(param), ¶m); rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL); if (rc) efc_log_err(hw->os, "efct_hw_command returns %d\n", rc); else efc_log_debug(hw->os, "SLI Port Health Check is enabled\n"); return rc; } int efct_hw_init(struct efct_hw *hw) { int rc; u32 i = 0; int rem_count; unsigned long flags = 0; struct efct_hw_io *temp; struct efc_dma *dma; /* * Make sure the command lists are empty. If this is start-of-day, * they'll be empty since they were just initialized in efct_hw_setup. * If we've just gone through a reset, the command and command pending * lists should have been cleaned up as part of the reset * (efct_hw_reset()). */ spin_lock_irqsave(&hw->cmd_lock, flags); if (!list_empty(&hw->cmd_head)) { spin_unlock_irqrestore(&hw->cmd_lock, flags); efc_log_err(hw->os, "command found on cmd list\n"); return -EIO; } if (!list_empty(&hw->cmd_pending)) { spin_unlock_irqrestore(&hw->cmd_lock, flags); efc_log_err(hw->os, "command found on pending list\n"); return -EIO; } spin_unlock_irqrestore(&hw->cmd_lock, flags); /* Free RQ buffers if prevously allocated */ efct_hw_rx_free(hw); /* * The IO queues must be initialized here for the reset case. The * efct_hw_init_io() function will re-add the IOs to the free list. * The cmd_head list should be OK since we free all entries in * efct_hw_command_cancel() that is called in the efct_hw_reset(). */ /* If we are in this function due to a reset, there may be stale items * on lists that need to be removed. Clean them up. */ rem_count = 0; while ((!list_empty(&hw->io_wait_free))) { rem_count++; temp = list_first_entry(&hw->io_wait_free, struct efct_hw_io, list_entry); list_del_init(&temp->list_entry); } if (rem_count > 0) efc_log_debug(hw->os, "rmvd %d items from io_wait_free list\n", rem_count); rem_count = 0; while ((!list_empty(&hw->io_inuse))) { rem_count++; temp = list_first_entry(&hw->io_inuse, struct efct_hw_io, list_entry); list_del_init(&temp->list_entry); } if (rem_count > 0) efc_log_debug(hw->os, "rmvd %d items from io_inuse list\n", rem_count); rem_count = 0; while ((!list_empty(&hw->io_free))) { rem_count++; temp = list_first_entry(&hw->io_free, struct efct_hw_io, list_entry); list_del_init(&temp->list_entry); } if (rem_count > 0) efc_log_debug(hw->os, "rmvd %d items from io_free list\n", rem_count); /* If MRQ not required, Make sure we dont request feature. */ if (hw->config.n_rq == 1) hw->sli.features &= (~SLI4_REQFEAT_MRQP); if (sli_init(&hw->sli)) { efc_log_err(hw->os, "SLI failed to initialize\n"); return -EIO; } if (hw->sliport_healthcheck) { rc = efct_hw_config_sli_port_health_check(hw, 0, 1); if (rc != 0) { efc_log_err(hw->os, "Enable port Health check fail\n"); return rc; } } /* * Set FDT transfer hint, only works on Lancer */ if (hw->sli.if_type == SLI4_INTF_IF_TYPE_2) { /* * Non-fatal error. In particular, we can disregard failure to * set EFCT_HW_FDT_XFER_HINT on devices with legacy firmware * that do not support EFCT_HW_FDT_XFER_HINT feature. */ efct_hw_config_set_fdt_xfer_hint(hw, EFCT_HW_FDT_XFER_HINT); } /* zero the hashes */ memset(hw->cq_hash, 0, sizeof(hw->cq_hash)); efc_log_debug(hw->os, "Max CQs %d, hash size = %d\n", EFCT_HW_MAX_NUM_CQ, EFCT_HW_Q_HASH_SIZE); memset(hw->rq_hash, 0, sizeof(hw->rq_hash)); efc_log_debug(hw->os, "Max RQs %d, hash size = %d\n", EFCT_HW_MAX_NUM_RQ, EFCT_HW_Q_HASH_SIZE); memset(hw->wq_hash, 0, sizeof(hw->wq_hash)); efc_log_debug(hw->os, "Max WQs %d, hash size = %d\n", EFCT_HW_MAX_NUM_WQ, EFCT_HW_Q_HASH_SIZE); rc = efct_hw_init_queues(hw); if (rc) return rc; rc = efct_hw_map_wq_cpu(hw); if (rc) return rc; /* Allocate and p_st RQ buffers */ rc = efct_hw_rx_allocate(hw); if (rc) { efc_log_err(hw->os, "rx_allocate failed\n"); return rc; } rc = efct_hw_rx_post(hw); if (rc) { efc_log_err(hw->os, "WARNING - error posting RQ buffers\n"); return rc; } if (hw->config.n_eq == 1) { rc = efct_hw_config_rq(hw); if (rc) { efc_log_err(hw->os, "config rq failed %d\n", rc); return rc; } } else { rc = efct_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_FCFI_MODE, 0); if (rc != 0) { efc_log_err(hw->os, "REG_FCFI_MRQ FCFI reg failed\n"); return rc; } rc = efct_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_MRQ_MODE, 0); if (rc != 0) { efc_log_err(hw->os, "REG_FCFI_MRQ MRQ reg failed\n"); return rc; } } /* * Allocate the WQ request tag pool, if not previously allocated * (the request tag value is 16 bits, thus the pool allocation size * of 64k) */ hw->wq_reqtag_pool = efct_hw_reqtag_pool_alloc(hw); if (!hw->wq_reqtag_pool) { efc_log_err(hw->os, "efct_hw_reqtag_pool_alloc failed\n"); return -ENOMEM; } rc = efct_hw_setup_io(hw); if (rc) { efc_log_err(hw->os, "IO allocation failure\n"); return rc; } rc = efct_hw_init_io(hw); if (rc) { efc_log_err(hw->os, "IO initialization failure\n"); return rc; } dma = &hw->loop_map; dma->size = SLI4_MIN_LOOP_MAP_BYTES; dma->virt = dma_alloc_coherent(&hw->os->pci->dev, dma->size, &dma->phys, GFP_DMA); if (!dma->virt) return -EIO; /* * Arming the EQ allows (e.g.) interrupts when CQ completions write EQ * entries */ for (i = 0; i < hw->eq_count; i++) sli_queue_arm(&hw->sli, &hw->eq[i], true); /* * Initialize RQ hash */ for (i = 0; i < hw->rq_count; i++) efct_hw_queue_hash_add(hw->rq_hash, hw->rq[i].id, i); /* * Initialize WQ hash */ for (i = 0; i < hw->wq_count; i++) efct_hw_queue_hash_add(hw->wq_hash, hw->wq[i].id, i); /* * Arming the CQ allows (e.g.) MQ completions to write CQ entries */ for (i = 0; i < hw->cq_count; i++) { efct_hw_queue_hash_add(hw->cq_hash, hw->cq[i].id, i); sli_queue_arm(&hw->sli, &hw->cq[i], true); } /* Set RQ process limit*/ for (i = 0; i < hw->hw_rq_count; i++) { struct hw_rq *rq = hw->hw_rq[i]; hw->cq[rq->cq->instance].proc_limit = hw->config.n_io / 2; } /* record the fact that the queues are functional */ hw->state = EFCT_HW_STATE_ACTIVE; /* * Allocate a HW IOs for send frame. */ hw->hw_wq[0]->send_frame_io = efct_hw_io_alloc(hw); if (!hw->hw_wq[0]->send_frame_io) efc_log_err(hw->os, "alloc for send_frame_io failed\n"); /* Initialize send frame sequence id */ atomic_set(&hw->send_frame_seq_id, 0); return 0; } int efct_hw_parse_filter(struct efct_hw *hw, void *value) { int rc = 0; char *p = NULL; char *token; u32 idx = 0; for (idx = 0; idx < ARRAY_SIZE(hw->config.filter_def); idx++) hw->config.filter_def[idx] = 0; p = kstrdup(value, GFP_KERNEL); if (!p || !*p) { efc_log_err(hw->os, "p is NULL\n"); return -ENOMEM; } idx = 0; while ((token = strsep(&p, ",")) && *token) { if (kstrtou32(token, 0, &hw->config.filter_def[idx++])) efc_log_err(hw->os, "kstrtoint failed\n"); if (!p || !*p) break; if (idx == ARRAY_SIZE(hw->config.filter_def)) break; } kfree(p); return rc; } u64 efct_get_wwnn(struct efct_hw *hw) { struct sli4 *sli = &hw->sli; u8 p[8]; memcpy(p, sli->wwnn, sizeof(p)); return get_unaligned_be64(p); } u64 efct_get_wwpn(struct efct_hw *hw) { struct sli4 *sli = &hw->sli; u8 p[8]; memcpy(p, sli->wwpn, sizeof(p)); return get_unaligned_be64(p); } static struct efc_hw_rq_buffer * efct_hw_rx_buffer_alloc(struct efct_hw *hw, u32 rqindex, u32 count, u32 size) { struct efct *efct = hw->os; struct efc_hw_rq_buffer *rq_buf = NULL; struct efc_hw_rq_buffer *prq; u32 i; if (!count) return NULL; rq_buf = kmalloc_array(count, sizeof(*rq_buf), GFP_KERNEL); if (!rq_buf) return NULL; memset(rq_buf, 0, sizeof(*rq_buf) * count); for (i = 0, prq = rq_buf; i < count; i ++, prq++) { prq->rqindex = rqindex; prq->dma.size = size; prq->dma.virt = dma_alloc_coherent(&efct->pci->dev, prq->dma.size, &prq->dma.phys, GFP_DMA); if (!prq->dma.virt) { efc_log_err(hw->os, "DMA allocation failed\n"); kfree(rq_buf); return NULL; } } return rq_buf; } static void efct_hw_rx_buffer_free(struct efct_hw *hw, struct efc_hw_rq_buffer *rq_buf, u32 count) { struct efct *efct = hw->os; u32 i; struct efc_hw_rq_buffer *prq; if (rq_buf) { for (i = 0, prq = rq_buf; i < count; i++, prq++) { dma_free_coherent(&efct->pci->dev, prq->dma.size, prq->dma.virt, prq->dma.phys); memset(&prq->dma, 0, sizeof(struct efc_dma)); } kfree(rq_buf); } } int efct_hw_rx_allocate(struct efct_hw *hw) { struct efct *efct = hw->os; u32 i; int rc = 0; u32 rqindex = 0; u32 hdr_size = EFCT_HW_RQ_SIZE_HDR; u32 payload_size = hw->config.rq_default_buffer_size; rqindex = 0; for (i = 0; i < hw->hw_rq_count; i++) { struct hw_rq *rq = hw->hw_rq[i]; /* Allocate header buffers */ rq->hdr_buf = efct_hw_rx_buffer_alloc(hw, rqindex, rq->entry_count, hdr_size); if (!rq->hdr_buf) { efc_log_err(efct, "rx_buffer_alloc hdr_buf failed\n"); rc = -EIO; break; } efc_log_debug(hw->os, "rq[%2d] rq_id %02d header %4d by %4d bytes\n", i, rq->hdr->id, rq->entry_count, hdr_size); rqindex++; /* Allocate payload buffers */ rq->payload_buf = efct_hw_rx_buffer_alloc(hw, rqindex, rq->entry_count, payload_size); if (!rq->payload_buf) { efc_log_err(efct, "rx_buffer_alloc fb_buf failed\n"); rc = -EIO; break; } efc_log_debug(hw->os, "rq[%2d] rq_id %02d default %4d by %4d bytes\n", i, rq->data->id, rq->entry_count, payload_size); rqindex++; } return rc ? -EIO : 0; } int efct_hw_rx_post(struct efct_hw *hw) { u32 i; u32 idx; u32 rq_idx; int rc = 0; if (!hw->seq_pool) { u32 count = 0; for (i = 0; i < hw->hw_rq_count; i++) count += hw->hw_rq[i]->entry_count; hw->seq_pool = kmalloc_array(count, sizeof(struct efc_hw_sequence), GFP_KERNEL); if (!hw->seq_pool) return -ENOMEM; } /* * In RQ pair mode, we MUST post the header and payload buffer at the * same time. */ for (rq_idx = 0, idx = 0; rq_idx < hw->hw_rq_count; rq_idx++) { struct hw_rq *rq = hw->hw_rq[rq_idx]; for (i = 0; i < rq->entry_count - 1; i++) { struct efc_hw_sequence *seq; seq = hw->seq_pool + idx; idx++; seq->header = &rq->hdr_buf[i]; seq->payload = &rq->payload_buf[i]; rc = efct_hw_sequence_free(hw, seq); if (rc) break; } if (rc) break; } if (rc && hw->seq_pool) kfree(hw->seq_pool); return rc; } void efct_hw_rx_free(struct efct_hw *hw) { u32 i; /* Free hw_rq buffers */ for (i = 0; i < hw->hw_rq_count; i++) { struct hw_rq *rq = hw->hw_rq[i]; if (rq) { efct_hw_rx_buffer_free(hw, rq->hdr_buf, rq->entry_count); rq->hdr_buf = NULL; efct_hw_rx_buffer_free(hw, rq->payload_buf, rq->entry_count); rq->payload_buf = NULL; } } } static int efct_hw_cmd_submit_pending(struct efct_hw *hw) { int rc = 0; /* Assumes lock held */ /* Only submit MQE if there's room */ while (hw->cmd_head_count < (EFCT_HW_MQ_DEPTH - 1) && !list_empty(&hw->cmd_pending)) { struct efct_command_ctx *ctx; ctx = list_first_entry(&hw->cmd_pending, struct efct_command_ctx, list_entry); if (!ctx) break; list_del_init(&ctx->list_entry); list_add_tail(&ctx->list_entry, &hw->cmd_head); hw->cmd_head_count++; if (sli_mq_write(&hw->sli, hw->mq, ctx->buf) < 0) { efc_log_debug(hw->os, "sli_queue_write failed: %d\n", rc); rc = -EIO; break; } } return rc; } int efct_hw_command(struct efct_hw *hw, u8 *cmd, u32 opts, void *cb, void *arg) { int rc = -EIO; unsigned long flags = 0; void *bmbx = NULL; /* * If the chip is in an error state (UE'd) then reject this mailbox * command. */ if (sli_fw_error_status(&hw->sli) > 0) { efc_log_crit(hw->os, "Chip in an error state - reset needed\n"); efc_log_crit(hw->os, "status=%#x error1=%#x error2=%#x\n", sli_reg_read_status(&hw->sli), sli_reg_read_err1(&hw->sli), sli_reg_read_err2(&hw->sli)); return -EIO; } /* * Send a mailbox command to the hardware, and either wait for * a completion (EFCT_CMD_POLL) or get an optional asynchronous * completion (EFCT_CMD_NOWAIT). */ if (opts == EFCT_CMD_POLL) { mutex_lock(&hw->bmbx_lock); bmbx = hw->sli.bmbx.virt; memset(bmbx, 0, SLI4_BMBX_SIZE); memcpy(bmbx, cmd, SLI4_BMBX_SIZE); if (sli_bmbx_command(&hw->sli) == 0) { rc = 0; memcpy(cmd, bmbx, SLI4_BMBX_SIZE); } mutex_unlock(&hw->bmbx_lock); } else if (opts == EFCT_CMD_NOWAIT) { struct efct_command_ctx *ctx = NULL; if (hw->state != EFCT_HW_STATE_ACTIVE) { efc_log_err(hw->os, "Can't send command, HW state=%d\n", hw->state); return -EIO; } ctx = mempool_alloc(hw->cmd_ctx_pool, GFP_ATOMIC); if (!ctx) return -ENOSPC; memset(ctx, 0, sizeof(struct efct_command_ctx)); if (cb) { ctx->cb = cb; ctx->arg = arg; } memcpy(ctx->buf, cmd, SLI4_BMBX_SIZE); ctx->ctx = hw; spin_lock_irqsave(&hw->cmd_lock, flags); /* Add to pending list */ INIT_LIST_HEAD(&ctx->list_entry); list_add_tail(&ctx->list_entry, &hw->cmd_pending); /* Submit as much of the pending list as we can */ rc = efct_hw_cmd_submit_pending(hw); spin_unlock_irqrestore(&hw->cmd_lock, flags); } return rc; } static int efct_hw_command_process(struct efct_hw *hw, int status, u8 *mqe, size_t size) { struct efct_command_ctx *ctx = NULL; unsigned long flags = 0; spin_lock_irqsave(&hw->cmd_lock, flags); if (!list_empty(&hw->cmd_head)) { ctx = list_first_entry(&hw->cmd_head, struct efct_command_ctx, list_entry); list_del_init(&ctx->list_entry); } if (!ctx) { efc_log_err(hw->os, "no command context\n"); spin_unlock_irqrestore(&hw->cmd_lock, flags); return -EIO; } hw->cmd_head_count--; /* Post any pending requests */ efct_hw_cmd_submit_pending(hw); spin_unlock_irqrestore(&hw->cmd_lock, flags); if (ctx->cb) { memcpy(ctx->buf, mqe, size); ctx->cb(hw, status, ctx->buf, ctx->arg); } mempool_free(ctx, hw->cmd_ctx_pool); return 0; } static int efct_hw_mq_process(struct efct_hw *hw, int status, struct sli4_queue *mq) { u8 mqe[SLI4_BMBX_SIZE]; int rc; rc = sli_mq_read(&hw->sli, mq, mqe); if (!rc) rc = efct_hw_command_process(hw, status, mqe, mq->size); return rc; } static int efct_hw_command_cancel(struct efct_hw *hw) { unsigned long flags = 0; int rc = 0; spin_lock_irqsave(&hw->cmd_lock, flags); /* * Manually clean up remaining commands. Note: since this calls * efct_hw_command_process(), we'll also process the cmd_pending * list, so no need to manually clean that out. */ while (!list_empty(&hw->cmd_head)) { u8 mqe[SLI4_BMBX_SIZE] = { 0 }; struct efct_command_ctx *ctx; ctx = list_first_entry(&hw->cmd_head, struct efct_command_ctx, list_entry); efc_log_debug(hw->os, "hung command %08x\n", !ctx ? U32_MAX : *((u32 *)ctx->buf)); spin_unlock_irqrestore(&hw->cmd_lock, flags); rc = efct_hw_command_process(hw, -1, mqe, SLI4_BMBX_SIZE); spin_lock_irqsave(&hw->cmd_lock, flags); } spin_unlock_irqrestore(&hw->cmd_lock, flags); return rc; } static void efct_mbox_rsp_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg) { struct efct_mbox_rqst_ctx *ctx = arg; if (ctx) { if (ctx->callback) (*ctx->callback)(hw->os->efcport, status, mqe, ctx->arg); mempool_free(ctx, hw->mbox_rqst_pool); } } int efct_issue_mbox_rqst(void *base, void *cmd, void *cb, void *arg) { struct efct_mbox_rqst_ctx *ctx; struct efct *efct = base; struct efct_hw *hw = &efct->hw; int rc; /* * Allocate a callback context (which includes the mbox cmd buffer), * we need this to be persistent as the mbox cmd submission may be * queued and executed later execution. */ ctx = mempool_alloc(hw->mbox_rqst_pool, GFP_ATOMIC); if (!ctx) return -EIO; ctx->callback = cb; ctx->arg = arg; rc = efct_hw_command(hw, cmd, EFCT_CMD_NOWAIT, efct_mbox_rsp_cb, ctx); if (rc) { efc_log_err(efct, "issue mbox rqst failure rc:%d\n", rc); mempool_free(ctx, hw->mbox_rqst_pool); return -EIO; } return 0; } static inline struct efct_hw_io * _efct_hw_io_alloc(struct efct_hw *hw) { struct efct_hw_io *io = NULL; if (!list_empty(&hw->io_free)) { io = list_first_entry(&hw->io_free, struct efct_hw_io, list_entry); list_del(&io->list_entry); } if (io) { INIT_LIST_HEAD(&io->list_entry); list_add_tail(&io->list_entry, &hw->io_inuse); io->state = EFCT_HW_IO_STATE_INUSE; io->abort_reqtag = U32_MAX; io->wq = hw->wq_cpu_array[raw_smp_processor_id()]; if (!io->wq) { efc_log_err(hw->os, "WQ not assigned for cpu:%d\n", raw_smp_processor_id()); io->wq = hw->hw_wq[0]; } kref_init(&io->ref); io->release = efct_hw_io_free_internal; } else { atomic_add(1, &hw->io_alloc_failed_count); } return io; } struct efct_hw_io * efct_hw_io_alloc(struct efct_hw *hw) { struct efct_hw_io *io = NULL; unsigned long flags = 0; spin_lock_irqsave(&hw->io_lock, flags); io = _efct_hw_io_alloc(hw); spin_unlock_irqrestore(&hw->io_lock, flags); return io; } static void efct_hw_io_free_move_correct_list(struct efct_hw *hw, struct efct_hw_io *io) { /* * When an IO is freed, depending on the exchange busy flag, * move it to the correct list. */ if (io->xbusy) { /* * add to wait_free list and wait for XRI_ABORTED CQEs to clean * up */ INIT_LIST_HEAD(&io->list_entry); list_add_tail(&io->list_entry, &hw->io_wait_free); io->state = EFCT_HW_IO_STATE_WAIT_FREE; } else { /* IO not busy, add to free list */ INIT_LIST_HEAD(&io->list_entry); list_add_tail(&io->list_entry, &hw->io_free); io->state = EFCT_HW_IO_STATE_FREE; } } static inline void efct_hw_io_free_common(struct efct_hw *hw, struct efct_hw_io *io) { /* initialize IO fields */ efct_hw_init_free_io(io); /* Restore default SGL */ efct_hw_io_restore_sgl(hw, io); } void efct_hw_io_free_internal(struct kref *arg) { unsigned long flags = 0; struct efct_hw_io *io = container_of(arg, struct efct_hw_io, ref); struct efct_hw *hw = io->hw; /* perform common cleanup */ efct_hw_io_free_common(hw, io); spin_lock_irqsave(&hw->io_lock, flags); /* remove from in-use list */ if (!list_empty(&io->list_entry) && !list_empty(&hw->io_inuse)) { list_del_init(&io->list_entry); efct_hw_io_free_move_correct_list(hw, io); } spin_unlock_irqrestore(&hw->io_lock, flags); } int efct_hw_io_free(struct efct_hw *hw, struct efct_hw_io *io) { return kref_put(&io->ref, io->release); } struct efct_hw_io * efct_hw_io_lookup(struct efct_hw *hw, u32 xri) { u32 ioindex; ioindex = xri - hw->sli.ext[SLI4_RSRC_XRI].base[0]; return hw->io[ioindex]; } int efct_hw_io_init_sges(struct efct_hw *hw, struct efct_hw_io *io, enum efct_hw_io_type type) { struct sli4_sge *data = NULL; u32 i = 0; u32 skips = 0; u32 sge_flags = 0; if (!io) { efc_log_err(hw->os, "bad parameter hw=%p io=%p\n", hw, io); return -EIO; } /* Clear / reset the scatter-gather list */ io->sgl = &io->def_sgl; io->sgl_count = io->def_sgl_count; io->first_data_sge = 0; memset(io->sgl->virt, 0, 2 * sizeof(struct sli4_sge)); io->n_sge = 0; io->sge_offset = 0; io->type = type; data = io->sgl->virt; /* * Some IO types have underlying hardware requirements on the order * of SGEs. Process all special entries here. */ switch (type) { case EFCT_HW_IO_TARGET_WRITE: /* populate host resident XFER_RDY buffer */ sge_flags = le32_to_cpu(data->dw2_flags); sge_flags &= (~SLI4_SGE_TYPE_MASK); sge_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT); data->buffer_address_high = cpu_to_le32(upper_32_bits(io->xfer_rdy.phys)); data->buffer_address_low = cpu_to_le32(lower_32_bits(io->xfer_rdy.phys)); data->buffer_length = cpu_to_le32(io->xfer_rdy.size); data->dw2_flags = cpu_to_le32(sge_flags); data++; skips = EFCT_TARGET_WRITE_SKIPS; io->n_sge = 1; break; case EFCT_HW_IO_TARGET_READ: /* * For FCP_TSEND64, the first 2 entries are SKIP SGE's */ skips = EFCT_TARGET_READ_SKIPS; break; case EFCT_HW_IO_TARGET_RSP: /* * No skips, etc. for FCP_TRSP64 */ break; default: efc_log_err(hw->os, "unsupported IO type %#x\n", type); return -EIO; } /* * Write skip entries */ for (i = 0; i < skips; i++) { sge_flags = le32_to_cpu(data->dw2_flags); sge_flags &= (~SLI4_SGE_TYPE_MASK); sge_flags |= (SLI4_SGE_TYPE_SKIP << SLI4_SGE_TYPE_SHIFT); data->dw2_flags = cpu_to_le32(sge_flags); data++; } io->n_sge += skips; /* * Set last */ sge_flags = le32_to_cpu(data->dw2_flags); sge_flags |= SLI4_SGE_LAST; data->dw2_flags = cpu_to_le32(sge_flags); return 0; } int efct_hw_io_add_sge(struct efct_hw *hw, struct efct_hw_io *io, uintptr_t addr, u32 length) { struct sli4_sge *data = NULL; u32 sge_flags = 0; if (!io || !addr || !length) { efc_log_err(hw->os, "bad parameter hw=%p io=%p addr=%lx length=%u\n", hw, io, addr, length); return -EIO; } if (length > hw->sli.sge_supported_length) { efc_log_err(hw->os, "length of SGE %d bigger than allowed %d\n", length, hw->sli.sge_supported_length); return -EIO; } data = io->sgl->virt; data += io->n_sge; sge_flags = le32_to_cpu(data->dw2_flags); sge_flags &= ~SLI4_SGE_TYPE_MASK; sge_flags |= SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT; sge_flags &= ~SLI4_SGE_DATA_OFFSET_MASK; sge_flags |= SLI4_SGE_DATA_OFFSET_MASK & io->sge_offset; data->buffer_address_high = cpu_to_le32(upper_32_bits(addr)); data->buffer_address_low = cpu_to_le32(lower_32_bits(addr)); data->buffer_length = cpu_to_le32(length); /* * Always assume this is the last entry and mark as such. * If this is not the first entry unset the "last SGE" * indication for the previous entry */ sge_flags |= SLI4_SGE_LAST; data->dw2_flags = cpu_to_le32(sge_flags); if (io->n_sge) { sge_flags = le32_to_cpu(data[-1].dw2_flags); sge_flags &= ~SLI4_SGE_LAST; data[-1].dw2_flags = cpu_to_le32(sge_flags); } /* Set first_data_bde if not previously set */ if (io->first_data_sge == 0) io->first_data_sge = io->n_sge; io->sge_offset += length; io->n_sge++; return 0; } void efct_hw_io_abort_all(struct efct_hw *hw) { struct efct_hw_io *io_to_abort = NULL; struct efct_hw_io *next_io = NULL; list_for_each_entry_safe(io_to_abort, next_io, &hw->io_inuse, list_entry) { efct_hw_io_abort(hw, io_to_abort, true, NULL, NULL); } } static void efct_hw_wq_process_abort(void *arg, u8 *cqe, int status) { struct efct_hw_io *io = arg; struct efct_hw *hw = io->hw; u32 ext = 0; u32 len = 0; struct hw_wq_callback *wqcb; /* * For IOs that were aborted internally, we may need to issue the * callback here depending on whether a XRI_ABORTED CQE is expected ot * not. If the status is Local Reject/No XRI, then * issue the callback now. */ ext = sli_fc_ext_status(&hw->sli, cqe); if (status == SLI4_FC_WCQE_STATUS_LOCAL_REJECT && ext == SLI4_FC_LOCAL_REJECT_NO_XRI && io->done) { efct_hw_done_t done = io->done; io->done = NULL; /* * Use latched status as this is always saved for an internal * abort Note: We won't have both a done and abort_done * function, so don't worry about * clobbering the len, status and ext fields. */ status = io->saved_status; len = io->saved_len; ext = io->saved_ext; io->status_saved = false; done(io, len, status, ext, io->arg); } if (io->abort_done) { efct_hw_done_t done = io->abort_done; io->abort_done = NULL; done(io, len, status, ext, io->abort_arg); } /* clear abort bit to indicate abort is complete */ io->abort_in_progress = false; /* Free the WQ callback */ if (io->abort_reqtag == U32_MAX) { efc_log_err(hw->os, "HW IO already freed\n"); return; } wqcb = efct_hw_reqtag_get_instance(hw, io->abort_reqtag); efct_hw_reqtag_free(hw, wqcb); /* * Call efct_hw_io_free() because this releases the WQ reservation as * well as doing the refcount put. Don't duplicate the code here. */ (void)efct_hw_io_free(hw, io); } static void efct_hw_fill_abort_wqe(struct efct_hw *hw, struct efct_hw_wqe *wqe) { struct sli4_abort_wqe *abort = (void *)wqe->wqebuf; memset(abort, 0, hw->sli.wqe_size); abort->criteria = SLI4_ABORT_CRITERIA_XRI_TAG; abort->ia_ir_byte |= wqe->send_abts ? 0 : 1; /* Suppress ABTS retries */ abort->ia_ir_byte |= SLI4_ABRT_WQE_IR; abort->t_tag = cpu_to_le32(wqe->id); abort->command = SLI4_WQE_ABORT; abort->request_tag = cpu_to_le16(wqe->abort_reqtag); abort->dw10w0_flags = cpu_to_le16(SLI4_ABRT_WQE_QOSD); abort->cq_id = cpu_to_le16(SLI4_CQ_DEFAULT); } int efct_hw_io_abort(struct efct_hw *hw, struct efct_hw_io *io_to_abort, bool send_abts, void *cb, void *arg) { struct hw_wq_callback *wqcb; unsigned long flags = 0; if (!io_to_abort) { efc_log_err(hw->os, "bad parameter hw=%p io=%p\n", hw, io_to_abort); return -EIO; } if (hw->state != EFCT_HW_STATE_ACTIVE) { efc_log_err(hw->os, "cannot send IO abort, HW state=%d\n", hw->state); return -EIO; } /* take a reference on IO being aborted */ if (kref_get_unless_zero(&io_to_abort->ref) == 0) { /* command no longer active */ efc_log_debug(hw->os, "io not active xri=0x%x tag=0x%x\n", io_to_abort->indicator, io_to_abort->reqtag); return -ENOENT; } /* Must have a valid WQ reference */ if (!io_to_abort->wq) { efc_log_debug(hw->os, "io_to_abort xri=0x%x not active on WQ\n", io_to_abort->indicator); /* efct_ref_get(): same function */ kref_put(&io_to_abort->ref, io_to_abort->release); return -ENOENT; } /* * Validation checks complete; now check to see if already being * aborted, if not set the flag. */ if (cmpxchg(&io_to_abort->abort_in_progress, false, true)) { /* efct_ref_get(): same function */ kref_put(&io_to_abort->ref, io_to_abort->release); efc_log_debug(hw->os, "io already being aborted xri=0x%x tag=0x%x\n", io_to_abort->indicator, io_to_abort->reqtag); return -EINPROGRESS; } /* * If we got here, the possibilities are: * - host owned xri * - io_to_abort->wq_index != U32_MAX * - submit ABORT_WQE to same WQ * - port owned xri: * - rxri: io_to_abort->wq_index == U32_MAX * - submit ABORT_WQE to any WQ * - non-rxri * - io_to_abort->index != U32_MAX * - submit ABORT_WQE to same WQ * - io_to_abort->index == U32_MAX * - submit ABORT_WQE to any WQ */ io_to_abort->abort_done = cb; io_to_abort->abort_arg = arg; /* Allocate a request tag for the abort portion of this IO */ wqcb = efct_hw_reqtag_alloc(hw, efct_hw_wq_process_abort, io_to_abort); if (!wqcb) { efc_log_err(hw->os, "can't allocate request tag\n"); return -ENOSPC; } io_to_abort->abort_reqtag = wqcb->instance_index; io_to_abort->wqe.send_abts = send_abts; io_to_abort->wqe.id = io_to_abort->indicator; io_to_abort->wqe.abort_reqtag = io_to_abort->abort_reqtag; /* * If the wqe is on the pending list, then set this wqe to be * aborted when the IO's wqe is removed from the list. */ if (io_to_abort->wq) { spin_lock_irqsave(&io_to_abort->wq->queue->lock, flags); if (io_to_abort->wqe.list_entry.next) { io_to_abort->wqe.abort_wqe_submit_needed = true; spin_unlock_irqrestore(&io_to_abort->wq->queue->lock, flags); return 0; } spin_unlock_irqrestore(&io_to_abort->wq->queue->lock, flags); } efct_hw_fill_abort_wqe(hw, &io_to_abort->wqe); /* ABORT_WQE does not actually utilize an XRI on the Port, * therefore, keep xbusy as-is to track the exchange's state, * not the ABORT_WQE's state */ if (efct_hw_wq_write(io_to_abort->wq, &io_to_abort->wqe)) { io_to_abort->abort_in_progress = false; /* efct_ref_get(): same function */ kref_put(&io_to_abort->ref, io_to_abort->release); return -EIO; } return 0; } void efct_hw_reqtag_pool_free(struct efct_hw *hw) { u32 i; struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool; struct hw_wq_callback *wqcb = NULL; if (reqtag_pool) { for (i = 0; i < U16_MAX; i++) { wqcb = reqtag_pool->tags[i]; if (!wqcb) continue; kfree(wqcb); } kfree(reqtag_pool); hw->wq_reqtag_pool = NULL; } } struct reqtag_pool * efct_hw_reqtag_pool_alloc(struct efct_hw *hw) { u32 i = 0; struct reqtag_pool *reqtag_pool; struct hw_wq_callback *wqcb; reqtag_pool = kzalloc(sizeof(*reqtag_pool), GFP_KERNEL); if (!reqtag_pool) return NULL; INIT_LIST_HEAD(&reqtag_pool->freelist); /* initialize reqtag pool lock */ spin_lock_init(&reqtag_pool->lock); for (i = 0; i < U16_MAX; i++) { wqcb = kmalloc(sizeof(*wqcb), GFP_KERNEL); if (!wqcb) break; reqtag_pool->tags[i] = wqcb; wqcb->instance_index = i; wqcb->callback = NULL; wqcb->arg = NULL; INIT_LIST_HEAD(&wqcb->list_entry); list_add_tail(&wqcb->list_entry, &reqtag_pool->freelist); } return reqtag_pool; } struct hw_wq_callback * efct_hw_reqtag_alloc(struct efct_hw *hw, void (*callback)(void *arg, u8 *cqe, int status), void *arg) { struct hw_wq_callback *wqcb = NULL; struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool; unsigned long flags = 0; if (!callback) return wqcb; spin_lock_irqsave(&reqtag_pool->lock, flags); if (!list_empty(&reqtag_pool->freelist)) { wqcb = list_first_entry(&reqtag_pool->freelist, struct hw_wq_callback, list_entry); } if (wqcb) { list_del_init(&wqcb->list_entry); spin_unlock_irqrestore(&reqtag_pool->lock, flags); wqcb->callback = callback; wqcb->arg = arg; } else { spin_unlock_irqrestore(&reqtag_pool->lock, flags); } return wqcb; } void efct_hw_reqtag_free(struct efct_hw *hw, struct hw_wq_callback *wqcb) { unsigned long flags = 0; struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool; if (!wqcb->callback) efc_log_err(hw->os, "WQCB is already freed\n"); spin_lock_irqsave(&reqtag_pool->lock, flags); wqcb->callback = NULL; wqcb->arg = NULL; INIT_LIST_HEAD(&wqcb->list_entry); list_add(&wqcb->list_entry, &hw->wq_reqtag_pool->freelist); spin_unlock_irqrestore(&reqtag_pool->lock, flags); } struct hw_wq_callback * efct_hw_reqtag_get_instance(struct efct_hw *hw, u32 instance_index) { struct hw_wq_callback *wqcb; wqcb = hw->wq_reqtag_pool->tags[instance_index]; if (!wqcb) efc_log_err(hw->os, "wqcb for instance %d is null\n", instance_index); return wqcb; } int efct_hw_queue_hash_find(struct efct_queue_hash *hash, u16 id) { int index = -1; int i = id & (EFCT_HW_Q_HASH_SIZE - 1); /* * Since the hash is always bigger than the maximum number of Qs, then * we never have to worry about an infinite loop. We will always find * an unused entry. */ do { if (hash[i].in_use && hash[i].id == id) index = hash[i].index; else i = (i + 1) & (EFCT_HW_Q_HASH_SIZE - 1); } while (index == -1 && hash[i].in_use); return index; } int efct_hw_process(struct efct_hw *hw, u32 vector, u32 max_isr_time_msec) { struct hw_eq *eq; /* * The caller should disable interrupts if they wish to prevent us * from processing during a shutdown. The following states are defined: * EFCT_HW_STATE_UNINITIALIZED - No queues allocated * EFCT_HW_STATE_QUEUES_ALLOCATED - The state after a chip reset, * queues are cleared. * EFCT_HW_STATE_ACTIVE - Chip and queues are operational * EFCT_HW_STATE_RESET_IN_PROGRESS - reset, we still want completions * EFCT_HW_STATE_TEARDOWN_IN_PROGRESS - We still want mailbox * completions. */ if (hw->state == EFCT_HW_STATE_UNINITIALIZED) return 0; /* Get pointer to struct hw_eq */ eq = hw->hw_eq[vector]; if (!eq) return 0; eq->use_count++; return efct_hw_eq_process(hw, eq, max_isr_time_msec); } int efct_hw_eq_process(struct efct_hw *hw, struct hw_eq *eq, u32 max_isr_time_msec) { u8 eqe[sizeof(struct sli4_eqe)] = { 0 }; u32 tcheck_count; u64 tstart; u64 telapsed; bool done = false; tcheck_count = EFCT_HW_TIMECHECK_ITERATIONS; tstart = jiffies_to_msecs(jiffies); while (!done && !sli_eq_read(&hw->sli, eq->queue, eqe)) { u16 cq_id = 0; int rc; rc = sli_eq_parse(&hw->sli, eqe, &cq_id); if (unlikely(rc)) { if (rc == SLI4_EQE_STATUS_EQ_FULL) { u32 i; /* * Received a sentinel EQE indicating the * EQ is full. Process all CQs */ for (i = 0; i < hw->cq_count; i++) efct_hw_cq_process(hw, hw->hw_cq[i]); continue; } else { return rc; } } else { int index; index = efct_hw_queue_hash_find(hw->cq_hash, cq_id); if (likely(index >= 0)) efct_hw_cq_process(hw, hw->hw_cq[index]); else efc_log_err(hw->os, "bad CQ_ID %#06x\n", cq_id); } if (eq->queue->n_posted > eq->queue->posted_limit) sli_queue_arm(&hw->sli, eq->queue, false); if (tcheck_count && (--tcheck_count == 0)) { tcheck_count = EFCT_HW_TIMECHECK_ITERATIONS; telapsed = jiffies_to_msecs(jiffies) - tstart; if (telapsed >= max_isr_time_msec) done = true; } } sli_queue_eq_arm(&hw->sli, eq->queue, true); return 0; } static int _efct_hw_wq_write(struct hw_wq *wq, struct efct_hw_wqe *wqe) { int queue_rc; /* Every so often, set the wqec bit to generate comsummed completions */ if (wq->wqec_count) wq->wqec_count--; if (wq->wqec_count == 0) { struct sli4_generic_wqe *genwqe = (void *)wqe->wqebuf; genwqe->cmdtype_wqec_byte |= SLI4_GEN_WQE_WQEC; wq->wqec_count = wq->wqec_set_count; } /* Decrement WQ free count */ wq->free_count--; queue_rc = sli_wq_write(&wq->hw->sli, wq->queue, wqe->wqebuf); return (queue_rc < 0) ? -EIO : 0; } static void hw_wq_submit_pending(struct hw_wq *wq, u32 update_free_count) { struct efct_hw_wqe *wqe; unsigned long flags = 0; spin_lock_irqsave(&wq->queue->lock, flags); /* Update free count with value passed in */ wq->free_count += update_free_count; while ((wq->free_count > 0) && (!list_empty(&wq->pending_list))) { wqe = list_first_entry(&wq->pending_list, struct efct_hw_wqe, list_entry); list_del_init(&wqe->list_entry); _efct_hw_wq_write(wq, wqe); if (wqe->abort_wqe_submit_needed) { wqe->abort_wqe_submit_needed = false; efct_hw_fill_abort_wqe(wq->hw, wqe); INIT_LIST_HEAD(&wqe->list_entry); list_add_tail(&wqe->list_entry, &wq->pending_list); wq->wq_pending_count++; } } spin_unlock_irqrestore(&wq->queue->lock, flags); } void efct_hw_cq_process(struct efct_hw *hw, struct hw_cq *cq) { u8 cqe[sizeof(struct sli4_mcqe)]; u16 rid = U16_MAX; /* completion type */ enum sli4_qentry ctype; u32 n_processed = 0; u32 tstart, telapsed; tstart = jiffies_to_msecs(jiffies); while (!sli_cq_read(&hw->sli, cq->queue, cqe)) { int status; status = sli_cq_parse(&hw->sli, cq->queue, cqe, &ctype, &rid); /* * The sign of status is significant. If status is: * == 0 : call completed correctly and * the CQE indicated success * > 0 : call completed correctly and * the CQE indicated an error * < 0 : call failed and no information is available about the * CQE */ if (status < 0) { if (status == SLI4_MCQE_STATUS_NOT_COMPLETED) /* * Notification that an entry was consumed, * but not completed */ continue; break; } switch (ctype) { case SLI4_QENTRY_ASYNC: sli_cqe_async(&hw->sli, cqe); break; case SLI4_QENTRY_MQ: /* * Process MQ entry. Note there is no way to determine * the MQ_ID from the completion entry. */ efct_hw_mq_process(hw, status, hw->mq); break; case SLI4_QENTRY_WQ: efct_hw_wq_process(hw, cq, cqe, status, rid); break; case SLI4_QENTRY_WQ_RELEASE: { u32 wq_id = rid; int index; struct hw_wq *wq = NULL; index = efct_hw_queue_hash_find(hw->wq_hash, wq_id); if (likely(index >= 0)) { wq = hw->hw_wq[index]; } else { efc_log_err(hw->os, "bad WQ_ID %#06x\n", wq_id); break; } /* Submit any HW IOs that are on the WQ pending list */ hw_wq_submit_pending(wq, wq->wqec_set_count); break; } case SLI4_QENTRY_RQ: efct_hw_rqpair_process_rq(hw, cq, cqe); break; case SLI4_QENTRY_XABT: { efct_hw_xabt_process(hw, cq, cqe, rid); break; } default: efc_log_debug(hw->os, "unhandled ctype=%#x rid=%#x\n", ctype, rid); break; } n_processed++; if (n_processed == cq->queue->proc_limit) break; if (cq->queue->n_posted >= cq->queue->posted_limit) sli_queue_arm(&hw->sli, cq->queue, false); } sli_queue_arm(&hw->sli, cq->queue, true); if (n_processed > cq->queue->max_num_processed) cq->queue->max_num_processed = n_processed; telapsed = jiffies_to_msecs(jiffies) - tstart; if (telapsed > cq->queue->max_process_time) cq->queue->max_process_time = telapsed; } void efct_hw_wq_process(struct efct_hw *hw, struct hw_cq *cq, u8 *cqe, int status, u16 rid) { struct hw_wq_callback *wqcb; if (rid == EFCT_HW_REQUE_XRI_REGTAG) { if (status) efc_log_err(hw->os, "reque xri failed, status = %d\n", status); return; } wqcb = efct_hw_reqtag_get_instance(hw, rid); if (!wqcb) { efc_log_err(hw->os, "invalid request tag: x%x\n", rid); return; } if (!wqcb->callback) { efc_log_err(hw->os, "wqcb callback is NULL\n"); return; } (*wqcb->callback)(wqcb->arg, cqe, status); } void efct_hw_xabt_process(struct efct_hw *hw, struct hw_cq *cq, u8 *cqe, u16 rid) { /* search IOs wait free list */ struct efct_hw_io *io = NULL; unsigned long flags = 0; io = efct_hw_io_lookup(hw, rid); if (!io) { /* IO lookup failure should never happen */ efc_log_err(hw->os, "xabt io lookup failed rid=%#x\n", rid); return; } if (!io->xbusy) efc_log_debug(hw->os, "xabt io not busy rid=%#x\n", rid); else /* mark IO as no longer busy */ io->xbusy = false; /* * For IOs that were aborted internally, we need to issue any pending * callback here. */ if (io->done) { efct_hw_done_t done = io->done; void *arg = io->arg; /* * Use latched status as this is always saved for an internal * abort */ int status = io->saved_status; u32 len = io->saved_len; u32 ext = io->saved_ext; io->done = NULL; io->status_saved = false; done(io, len, status, ext, arg); } spin_lock_irqsave(&hw->io_lock, flags); if (io->state == EFCT_HW_IO_STATE_INUSE || io->state == EFCT_HW_IO_STATE_WAIT_FREE) { /* if on wait_free list, caller has already freed IO; * remove from wait_free list and add to free list. * if on in-use list, already marked as no longer busy; * just leave there and wait for caller to free. */ if (io->state == EFCT_HW_IO_STATE_WAIT_FREE) { io->state = EFCT_HW_IO_STATE_FREE; list_del_init(&io->list_entry); efct_hw_io_free_move_correct_list(hw, io); } } spin_unlock_irqrestore(&hw->io_lock, flags); } static int efct_hw_flush(struct efct_hw *hw) { u32 i = 0; /* Process any remaining completions */ for (i = 0; i < hw->eq_count; i++) efct_hw_process(hw, i, ~0); return 0; } int efct_hw_wq_write(struct hw_wq *wq, struct efct_hw_wqe *wqe) { int rc = 0; unsigned long flags = 0; spin_lock_irqsave(&wq->queue->lock, flags); if (list_empty(&wq->pending_list)) { if (wq->free_count > 0) { rc = _efct_hw_wq_write(wq, wqe); } else { INIT_LIST_HEAD(&wqe->list_entry); list_add_tail(&wqe->list_entry, &wq->pending_list); wq->wq_pending_count++; } spin_unlock_irqrestore(&wq->queue->lock, flags); return rc; } INIT_LIST_HEAD(&wqe->list_entry); list_add_tail(&wqe->list_entry, &wq->pending_list); wq->wq_pending_count++; while (wq->free_count > 0) { wqe = list_first_entry(&wq->pending_list, struct efct_hw_wqe, list_entry); if (!wqe) break; list_del_init(&wqe->list_entry); rc = _efct_hw_wq_write(wq, wqe); if (rc) break; if (wqe->abort_wqe_submit_needed) { wqe->abort_wqe_submit_needed = false; efct_hw_fill_abort_wqe(wq->hw, wqe); INIT_LIST_HEAD(&wqe->list_entry); list_add_tail(&wqe->list_entry, &wq->pending_list); wq->wq_pending_count++; } } spin_unlock_irqrestore(&wq->queue->lock, flags); return rc; } int efct_efc_bls_send(struct efc *efc, u32 type, struct sli_bls_params *bls) { struct efct *efct = efc->base; return efct_hw_bls_send(efct, type, bls, NULL, NULL); } int efct_hw_bls_send(struct efct *efct, u32 type, struct sli_bls_params *bls_params, void *cb, void *arg) { struct efct_hw *hw = &efct->hw; struct efct_hw_io *hio; struct sli_bls_payload bls; int rc; if (hw->state != EFCT_HW_STATE_ACTIVE) { efc_log_err(hw->os, "cannot send BLS, HW state=%d\n", hw->state); return -EIO; } hio = efct_hw_io_alloc(hw); if (!hio) { efc_log_err(hw->os, "HIO allocation failed\n"); return -EIO; } hio->done = cb; hio->arg = arg; bls_params->xri = hio->indicator; bls_params->tag = hio->reqtag; if (type == FC_RCTL_BA_ACC) { hio->type = EFCT_HW_BLS_ACC; bls.type = SLI4_SLI_BLS_ACC; memcpy(&bls.u.acc, bls_params->payload, sizeof(bls.u.acc)); } else { hio->type = EFCT_HW_BLS_RJT; bls.type = SLI4_SLI_BLS_RJT; memcpy(&bls.u.rjt, bls_params->payload, sizeof(bls.u.rjt)); } bls.ox_id = cpu_to_le16(bls_params->ox_id); bls.rx_id = cpu_to_le16(bls_params->rx_id); if (sli_xmit_bls_rsp64_wqe(&hw->sli, hio->wqe.wqebuf, &bls, bls_params)) { efc_log_err(hw->os, "XMIT_BLS_RSP64 WQE error\n"); return -EIO; } hio->xbusy = true; /* * Add IO to active io wqe list before submitting, in case the * wcqe processing preempts this thread. */ hio->wq->use_count++; rc = efct_hw_wq_write(hio->wq, &hio->wqe); if (rc >= 0) { /* non-negative return is success */ rc = 0; } else { /* failed to write wqe, remove from active wqe list */ efc_log_err(hw->os, "sli_queue_write failed: %d\n", rc); hio->xbusy = false; } return rc; } static int efct_els_ssrs_send_cb(struct efct_hw_io *hio, u32 length, int status, u32 ext_status, void *arg) { struct efc_disc_io *io = arg; efc_disc_io_complete(io, length, status, ext_status); return 0; } static inline void efct_fill_els_params(struct efc_disc_io *io, struct sli_els_params *params) { u8 *cmd = io->req.virt; params->cmd = *cmd; params->s_id = io->s_id; params->d_id = io->d_id; params->ox_id = io->iparam.els.ox_id; params->rpi = io->rpi; params->vpi = io->vpi; params->rpi_registered = io->rpi_registered; params->xmit_len = io->xmit_len; params->rsp_len = io->rsp_len; params->timeout = io->iparam.els.timeout; } static inline void efct_fill_ct_params(struct efc_disc_io *io, struct sli_ct_params *params) { params->r_ctl = io->iparam.ct.r_ctl; params->type = io->iparam.ct.type; params->df_ctl = io->iparam.ct.df_ctl; params->d_id = io->d_id; params->ox_id = io->iparam.ct.ox_id; params->rpi = io->rpi; params->vpi = io->vpi; params->rpi_registered = io->rpi_registered; params->xmit_len = io->xmit_len; params->rsp_len = io->rsp_len; params->timeout = io->iparam.ct.timeout; } /** * efct_els_hw_srrs_send() - Send a single request and response cmd. * @efc: efc library structure * @io: Discovery IO used to hold els and ct cmd context. * * This routine supports communication sequences consisting of a single * request and single response between two endpoints. Examples include: * - Sending an ELS request. * - Sending an ELS response - To send an ELS response, the caller must provide * the OX_ID from the received request. * - Sending a FC Common Transport (FC-CT) request - To send a FC-CT request, * the caller must provide the R_CTL, TYPE, and DF_CTL * values to place in the FC frame header. * * Return: Status of the request. */ int efct_els_hw_srrs_send(struct efc *efc, struct efc_disc_io *io) { struct efct *efct = efc->base; struct efct_hw_io *hio; struct efct_hw *hw = &efct->hw; struct efc_dma *send = &io->req; struct efc_dma *receive = &io->rsp; struct sli4_sge *sge = NULL; int rc = 0; u32 len = io->xmit_len; u32 sge0_flags; u32 sge1_flags; hio = efct_hw_io_alloc(hw); if (!hio) { pr_err("HIO alloc failed\n"); return -EIO; } if (hw->state != EFCT_HW_STATE_ACTIVE) { efc_log_debug(hw->os, "cannot send SRRS, HW state=%d\n", hw->state); return -EIO; } hio->done = efct_els_ssrs_send_cb; hio->arg = io; sge = hio->sgl->virt; /* clear both SGE */ memset(hio->sgl->virt, 0, 2 * sizeof(struct sli4_sge)); sge0_flags = le32_to_cpu(sge[0].dw2_flags); sge1_flags = le32_to_cpu(sge[1].dw2_flags); if (send->size) { sge[0].buffer_address_high = cpu_to_le32(upper_32_bits(send->phys)); sge[0].buffer_address_low = cpu_to_le32(lower_32_bits(send->phys)); sge0_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT); sge[0].buffer_length = cpu_to_le32(len); } if (io->io_type == EFC_DISC_IO_ELS_REQ || io->io_type == EFC_DISC_IO_CT_REQ) { sge[1].buffer_address_high = cpu_to_le32(upper_32_bits(receive->phys)); sge[1].buffer_address_low = cpu_to_le32(lower_32_bits(receive->phys)); sge1_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT); sge1_flags |= SLI4_SGE_LAST; sge[1].buffer_length = cpu_to_le32(receive->size); } else { sge0_flags |= SLI4_SGE_LAST; } sge[0].dw2_flags = cpu_to_le32(sge0_flags); sge[1].dw2_flags = cpu_to_le32(sge1_flags); switch (io->io_type) { case EFC_DISC_IO_ELS_REQ: { struct sli_els_params els_params; hio->type = EFCT_HW_ELS_REQ; efct_fill_els_params(io, &els_params); els_params.xri = hio->indicator; els_params.tag = hio->reqtag; if (sli_els_request64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl, &els_params)) { efc_log_err(hw->os, "REQ WQE error\n"); rc = -EIO; } break; } case EFC_DISC_IO_ELS_RESP: { struct sli_els_params els_params; hio->type = EFCT_HW_ELS_RSP; efct_fill_els_params(io, &els_params); els_params.xri = hio->indicator; els_params.tag = hio->reqtag; if (sli_xmit_els_rsp64_wqe(&hw->sli, hio->wqe.wqebuf, send, &els_params)){ efc_log_err(hw->os, "RSP WQE error\n"); rc = -EIO; } break; } case EFC_DISC_IO_CT_REQ: { struct sli_ct_params ct_params; hio->type = EFCT_HW_FC_CT; efct_fill_ct_params(io, &ct_params); ct_params.xri = hio->indicator; ct_params.tag = hio->reqtag; if (sli_gen_request64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl, &ct_params)){ efc_log_err(hw->os, "GEN WQE error\n"); rc = -EIO; } break; } case EFC_DISC_IO_CT_RESP: { struct sli_ct_params ct_params; hio->type = EFCT_HW_FC_CT_RSP; efct_fill_ct_params(io, &ct_params); ct_params.xri = hio->indicator; ct_params.tag = hio->reqtag; if (sli_xmit_sequence64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl, &ct_params)){ efc_log_err(hw->os, "XMIT SEQ WQE error\n"); rc = -EIO; } break; } default: efc_log_err(hw->os, "bad SRRS type %#x\n", io->io_type); rc = -EIO; } if (rc == 0) { hio->xbusy = true; /* * Add IO to active io wqe list before submitting, in case the * wcqe processing preempts this thread. */ hio->wq->use_count++; rc = efct_hw_wq_write(hio->wq, &hio->wqe); if (rc >= 0) { /* non-negative return is success */ rc = 0; } else { /* failed to write wqe, remove from active wqe list */ efc_log_err(hw->os, "sli_queue_write failed: %d\n", rc); hio->xbusy = false; } } return rc; } int efct_hw_io_send(struct efct_hw *hw, enum efct_hw_io_type type, struct efct_hw_io *io, union efct_hw_io_param_u *iparam, void *cb, void *arg) { int rc = 0; bool send_wqe = true; if (!io) { pr_err("bad parm hw=%p io=%p\n", hw, io); return -EIO; } if (hw->state != EFCT_HW_STATE_ACTIVE) { efc_log_err(hw->os, "cannot send IO, HW state=%d\n", hw->state); return -EIO; } /* * Save state needed during later stages */ io->type = type; io->done = cb; io->arg = arg; /* * Format the work queue entry used to send the IO */ switch (type) { case EFCT_HW_IO_TARGET_WRITE: { u16 *flags = &iparam->fcp_tgt.flags; struct fcp_txrdy *xfer = io->xfer_rdy.virt; /* * Fill in the XFER_RDY for IF_TYPE 0 devices */ xfer->ft_data_ro = cpu_to_be32(iparam->fcp_tgt.offset); xfer->ft_burst_len = cpu_to_be32(iparam->fcp_tgt.xmit_len); if (io->xbusy) *flags |= SLI4_IO_CONTINUATION; else *flags &= ~SLI4_IO_CONTINUATION; iparam->fcp_tgt.xri = io->indicator; iparam->fcp_tgt.tag = io->reqtag; if (sli_fcp_treceive64_wqe(&hw->sli, io->wqe.wqebuf, &io->def_sgl, io->first_data_sge, SLI4_CQ_DEFAULT, 0, 0, &iparam->fcp_tgt)) { efc_log_err(hw->os, "TRECEIVE WQE error\n"); rc = -EIO; } break; } case EFCT_HW_IO_TARGET_READ: { u16 *flags = &iparam->fcp_tgt.flags; if (io->xbusy) *flags |= SLI4_IO_CONTINUATION; else *flags &= ~SLI4_IO_CONTINUATION; iparam->fcp_tgt.xri = io->indicator; iparam->fcp_tgt.tag = io->reqtag; if (sli_fcp_tsend64_wqe(&hw->sli, io->wqe.wqebuf, &io->def_sgl, io->first_data_sge, SLI4_CQ_DEFAULT, 0, 0, &iparam->fcp_tgt)) { efc_log_err(hw->os, "TSEND WQE error\n"); rc = -EIO; } break; } case EFCT_HW_IO_TARGET_RSP: { u16 *flags = &iparam->fcp_tgt.flags; if (io->xbusy) *flags |= SLI4_IO_CONTINUATION; else *flags &= ~SLI4_IO_CONTINUATION; iparam->fcp_tgt.xri = io->indicator; iparam->fcp_tgt.tag = io->reqtag; if (sli_fcp_trsp64_wqe(&hw->sli, io->wqe.wqebuf, &io->def_sgl, SLI4_CQ_DEFAULT, 0, &iparam->fcp_tgt)) { efc_log_err(hw->os, "TRSP WQE error\n"); rc = -EIO; } break; } default: efc_log_err(hw->os, "unsupported IO type %#x\n", type); rc = -EIO; } if (send_wqe && rc == 0) { io->xbusy = true; /* * Add IO to active io wqe list before submitting, in case the * wcqe processing preempts this thread. */ hw->tcmd_wq_submit[io->wq->instance]++; io->wq->use_count++; rc = efct_hw_wq_write(io->wq, &io->wqe); if (rc >= 0) { /* non-negative return is success */ rc = 0; } else { /* failed to write wqe, remove from active wqe list */ efc_log_err(hw->os, "sli_queue_write failed: %d\n", rc); io->xbusy = false; } } return rc; } int efct_hw_send_frame(struct efct_hw *hw, struct fc_frame_header *hdr, u8 sof, u8 eof, struct efc_dma *payload, struct efct_hw_send_frame_context *ctx, void (*callback)(void *arg, u8 *cqe, int status), void *arg) { int rc; struct efct_hw_wqe *wqe; u32 xri; struct hw_wq *wq; wqe = &ctx->wqe; /* populate the callback object */ ctx->hw = hw; /* Fetch and populate request tag */ ctx->wqcb = efct_hw_reqtag_alloc(hw, callback, arg); if (!ctx->wqcb) { efc_log_err(hw->os, "can't allocate request tag\n"); return -ENOSPC; } wq = hw->hw_wq[0]; /* Set XRI and RX_ID in the header based on which WQ, and which * send_frame_io we are using */ xri = wq->send_frame_io->indicator; /* Build the send frame WQE */ rc = sli_send_frame_wqe(&hw->sli, wqe->wqebuf, sof, eof, (u32 *)hdr, payload, payload->len, EFCT_HW_SEND_FRAME_TIMEOUT, xri, ctx->wqcb->instance_index); if (rc) { efc_log_err(hw->os, "sli_send_frame_wqe failed: %d\n", rc); return -EIO; } /* Write to WQ */ rc = efct_hw_wq_write(wq, wqe); if (rc) { efc_log_err(hw->os, "efct_hw_wq_write failed: %d\n", rc); return -EIO; } wq->use_count++; return 0; } static int efct_hw_cb_link_stat(struct efct_hw *hw, int status, u8 *mqe, void *arg) { struct sli4_cmd_read_link_stats *mbox_rsp; struct efct_hw_link_stat_cb_arg *cb_arg = arg; struct efct_hw_link_stat_counts counts[EFCT_HW_LINK_STAT_MAX]; u32 num_counters, i; u32 mbox_rsp_flags = 0; mbox_rsp = (struct sli4_cmd_read_link_stats *)mqe; mbox_rsp_flags = le32_to_cpu(mbox_rsp->dw1_flags); num_counters = (mbox_rsp_flags & SLI4_READ_LNKSTAT_GEC) ? 20 : 13; memset(counts, 0, sizeof(struct efct_hw_link_stat_counts) * EFCT_HW_LINK_STAT_MAX); /* Fill overflow counts, mask starts from SLI4_READ_LNKSTAT_W02OF*/ for (i = 0; i < EFCT_HW_LINK_STAT_MAX; i++) counts[i].overflow = (mbox_rsp_flags & (1 << (i + 2))); counts[EFCT_HW_LINK_STAT_LINK_FAILURE_COUNT].counter = le32_to_cpu(mbox_rsp->linkfail_errcnt); counts[EFCT_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].counter = le32_to_cpu(mbox_rsp->losssync_errcnt); counts[EFCT_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT].counter = le32_to_cpu(mbox_rsp->losssignal_errcnt); counts[EFCT_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].counter = le32_to_cpu(mbox_rsp->primseq_errcnt); counts[EFCT_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].counter = le32_to_cpu(mbox_rsp->inval_txword_errcnt); counts[EFCT_HW_LINK_STAT_CRC_COUNT].counter = le32_to_cpu(mbox_rsp->crc_errcnt); counts[EFCT_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT].counter = le32_to_cpu(mbox_rsp->primseq_eventtimeout_cnt); counts[EFCT_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT].counter = le32_to_cpu(mbox_rsp->elastic_bufoverrun_errcnt); counts[EFCT_HW_LINK_STAT_ARB_TIMEOUT_COUNT].counter = le32_to_cpu(mbox_rsp->arbit_fc_al_timeout_cnt); counts[EFCT_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT].counter = le32_to_cpu(mbox_rsp->adv_rx_buftor_to_buf_credit); counts[EFCT_HW_LINK_STAT_CURR_RCV_B2B_CREDIT].counter = le32_to_cpu(mbox_rsp->curr_rx_buf_to_buf_credit); counts[EFCT_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT].counter = le32_to_cpu(mbox_rsp->adv_tx_buf_to_buf_credit); counts[EFCT_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT].counter = le32_to_cpu(mbox_rsp->curr_tx_buf_to_buf_credit); counts[EFCT_HW_LINK_STAT_RCV_EOFA_COUNT].counter = le32_to_cpu(mbox_rsp->rx_eofa_cnt); counts[EFCT_HW_LINK_STAT_RCV_EOFDTI_COUNT].counter = le32_to_cpu(mbox_rsp->rx_eofdti_cnt); counts[EFCT_HW_LINK_STAT_RCV_EOFNI_COUNT].counter = le32_to_cpu(mbox_rsp->rx_eofni_cnt); counts[EFCT_HW_LINK_STAT_RCV_SOFF_COUNT].counter = le32_to_cpu(mbox_rsp->rx_soff_cnt); counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT].counter = le32_to_cpu(mbox_rsp->rx_dropped_no_aer_cnt); counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT].counter = le32_to_cpu(mbox_rsp->rx_dropped_no_avail_rpi_rescnt); counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT].counter = le32_to_cpu(mbox_rsp->rx_dropped_no_avail_xri_rescnt); if (cb_arg) { if (cb_arg->cb) { if (status == 0 && le16_to_cpu(mbox_rsp->hdr.status)) status = le16_to_cpu(mbox_rsp->hdr.status); cb_arg->cb(status, num_counters, counts, cb_arg->arg); } kfree(cb_arg); } return 0; } int efct_hw_get_link_stats(struct efct_hw *hw, u8 req_ext_counters, u8 clear_overflow_flags, u8 clear_all_counters, void (*cb)(int status, u32 num_counters, struct efct_hw_link_stat_counts *counters, void *arg), void *arg) { int rc = -EIO; struct efct_hw_link_stat_cb_arg *cb_arg; u8 mbxdata[SLI4_BMBX_SIZE]; cb_arg = kzalloc(sizeof(*cb_arg), GFP_ATOMIC); if (!cb_arg) return -ENOMEM; cb_arg->cb = cb; cb_arg->arg = arg; /* Send the HW command */ if (!sli_cmd_read_link_stats(&hw->sli, mbxdata, req_ext_counters, clear_overflow_flags, clear_all_counters)) rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT, efct_hw_cb_link_stat, cb_arg); if (rc) kfree(cb_arg); return rc; } static int efct_hw_cb_host_stat(struct efct_hw *hw, int status, u8 *mqe, void *arg) { struct sli4_cmd_read_status *mbox_rsp = (struct sli4_cmd_read_status *)mqe; struct efct_hw_host_stat_cb_arg *cb_arg = arg; struct efct_hw_host_stat_counts counts[EFCT_HW_HOST_STAT_MAX]; u32 num_counters = EFCT_HW_HOST_STAT_MAX; memset(counts, 0, sizeof(struct efct_hw_host_stat_counts) * EFCT_HW_HOST_STAT_MAX); counts[EFCT_HW_HOST_STAT_TX_KBYTE_COUNT].counter = le32_to_cpu(mbox_rsp->trans_kbyte_cnt); counts[EFCT_HW_HOST_STAT_RX_KBYTE_COUNT].counter = le32_to_cpu(mbox_rsp->recv_kbyte_cnt); counts[EFCT_HW_HOST_STAT_TX_FRAME_COUNT].counter = le32_to_cpu(mbox_rsp->trans_frame_cnt); counts[EFCT_HW_HOST_STAT_RX_FRAME_COUNT].counter = le32_to_cpu(mbox_rsp->recv_frame_cnt); counts[EFCT_HW_HOST_STAT_TX_SEQ_COUNT].counter = le32_to_cpu(mbox_rsp->trans_seq_cnt); counts[EFCT_HW_HOST_STAT_RX_SEQ_COUNT].counter = le32_to_cpu(mbox_rsp->recv_seq_cnt); counts[EFCT_HW_HOST_STAT_TOTAL_EXCH_ORIG].counter = le32_to_cpu(mbox_rsp->tot_exchanges_orig); counts[EFCT_HW_HOST_STAT_TOTAL_EXCH_RESP].counter = le32_to_cpu(mbox_rsp->tot_exchanges_resp); counts[EFCT_HW_HOSY_STAT_RX_P_BSY_COUNT].counter = le32_to_cpu(mbox_rsp->recv_p_bsy_cnt); counts[EFCT_HW_HOST_STAT_RX_F_BSY_COUNT].counter = le32_to_cpu(mbox_rsp->recv_f_bsy_cnt); counts[EFCT_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_RQ_BUF_COUNT].counter = le32_to_cpu(mbox_rsp->no_rq_buf_dropped_frames_cnt); counts[EFCT_HW_HOST_STAT_EMPTY_RQ_TIMEOUT_COUNT].counter = le32_to_cpu(mbox_rsp->empty_rq_timeout_cnt); counts[EFCT_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_XRI_COUNT].counter = le32_to_cpu(mbox_rsp->no_xri_dropped_frames_cnt); counts[EFCT_HW_HOST_STAT_EMPTY_XRI_POOL_COUNT].counter = le32_to_cpu(mbox_rsp->empty_xri_pool_cnt); if (cb_arg) { if (cb_arg->cb) { if (status == 0 && le16_to_cpu(mbox_rsp->hdr.status)) status = le16_to_cpu(mbox_rsp->hdr.status); cb_arg->cb(status, num_counters, counts, cb_arg->arg); } kfree(cb_arg); } return 0; } int efct_hw_get_host_stats(struct efct_hw *hw, u8 cc, void (*cb)(int status, u32 num_counters, struct efct_hw_host_stat_counts *counters, void *arg), void *arg) { int rc = -EIO; struct efct_hw_host_stat_cb_arg *cb_arg; u8 mbxdata[SLI4_BMBX_SIZE]; cb_arg = kmalloc(sizeof(*cb_arg), GFP_ATOMIC); if (!cb_arg) return -ENOMEM; cb_arg->cb = cb; cb_arg->arg = arg; /* Send the HW command to get the host stats */ if (!sli_cmd_read_status(&hw->sli, mbxdata, cc)) rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT, efct_hw_cb_host_stat, cb_arg); if (rc) { efc_log_debug(hw->os, "READ_HOST_STATS failed\n"); kfree(cb_arg); } return rc; } struct efct_hw_async_call_ctx { efct_hw_async_cb_t callback; void *arg; u8 cmd[SLI4_BMBX_SIZE]; }; static void efct_hw_async_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg) { struct efct_hw_async_call_ctx *ctx = arg; if (ctx) { if (ctx->callback) (*ctx->callback)(hw, status, mqe, ctx->arg); kfree(ctx); } } int efct_hw_async_call(struct efct_hw *hw, efct_hw_async_cb_t callback, void *arg) { struct efct_hw_async_call_ctx *ctx; int rc; /* * Allocate a callback context (which includes the mbox cmd buffer), * we need this to be persistent as the mbox cmd submission may be * queued and executed later execution. */ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->callback = callback; ctx->arg = arg; /* Build and send a NOP mailbox command */ if (sli_cmd_common_nop(&hw->sli, ctx->cmd, 0)) { efc_log_err(hw->os, "COMMON_NOP format failure\n"); kfree(ctx); return -EIO; } rc = efct_hw_command(hw, ctx->cmd, EFCT_CMD_NOWAIT, efct_hw_async_cb, ctx); if (rc) { efc_log_err(hw->os, "COMMON_NOP command failure, rc=%d\n", rc); kfree(ctx); return -EIO; } return 0; } static int efct_hw_cb_fw_write(struct efct_hw *hw, int status, u8 *mqe, void *arg) { struct sli4_cmd_sli_config *mbox_rsp = (struct sli4_cmd_sli_config *)mqe; struct sli4_rsp_cmn_write_object *wr_obj_rsp; struct efct_hw_fw_wr_cb_arg *cb_arg = arg; u32 bytes_written; u16 mbox_status; u32 change_status; wr_obj_rsp = (struct sli4_rsp_cmn_write_object *) &mbox_rsp->payload.embed; bytes_written = le32_to_cpu(wr_obj_rsp->actual_write_length); mbox_status = le16_to_cpu(mbox_rsp->hdr.status); change_status = (le32_to_cpu(wr_obj_rsp->change_status_dword) & RSP_CHANGE_STATUS); if (cb_arg) { if (cb_arg->cb) { if (!status && mbox_status) status = mbox_status; cb_arg->cb(status, bytes_written, change_status, cb_arg->arg); } kfree(cb_arg); } return 0; } int efct_hw_firmware_write(struct efct_hw *hw, struct efc_dma *dma, u32 size, u32 offset, int last, void (*cb)(int status, u32 bytes_written, u32 change_status, void *arg), void *arg) { int rc = -EIO; u8 mbxdata[SLI4_BMBX_SIZE]; struct efct_hw_fw_wr_cb_arg *cb_arg; int noc = 0; cb_arg = kzalloc(sizeof(*cb_arg), GFP_KERNEL); if (!cb_arg) return -ENOMEM; cb_arg->cb = cb; cb_arg->arg = arg; /* Write a portion of a firmware image to the device */ if (!sli_cmd_common_write_object(&hw->sli, mbxdata, noc, last, size, offset, "/prg/", dma)) rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT, efct_hw_cb_fw_write, cb_arg); if (rc != 0) { efc_log_debug(hw->os, "COMMON_WRITE_OBJECT failed\n"); kfree(cb_arg); } return rc; } static int efct_hw_cb_port_control(struct efct_hw *hw, int status, u8 *mqe, void *arg) { return 0; } int efct_hw_port_control(struct efct_hw *hw, enum efct_hw_port ctrl, uintptr_t value, void (*cb)(int status, uintptr_t value, void *arg), void *arg) { int rc = -EIO; u8 link[SLI4_BMBX_SIZE]; u32 speed = 0; u8 reset_alpa = 0; switch (ctrl) { case EFCT_HW_PORT_INIT: if (!sli_cmd_config_link(&hw->sli, link)) rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT, efct_hw_cb_port_control, NULL); if (rc != 0) { efc_log_err(hw->os, "CONFIG_LINK failed\n"); break; } speed = hw->config.speed; reset_alpa = (u8)(value & 0xff); rc = -EIO; if (!sli_cmd_init_link(&hw->sli, link, speed, reset_alpa)) rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT, efct_hw_cb_port_control, NULL); /* Free buffer on error, since no callback is coming */ if (rc) efc_log_err(hw->os, "INIT_LINK failed\n"); break; case EFCT_HW_PORT_SHUTDOWN: if (!sli_cmd_down_link(&hw->sli, link)) rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT, efct_hw_cb_port_control, NULL); /* Free buffer on error, since no callback is coming */ if (rc) efc_log_err(hw->os, "DOWN_LINK failed\n"); break; default: efc_log_debug(hw->os, "unhandled control %#x\n", ctrl); break; } return rc; } void efct_hw_teardown(struct efct_hw *hw) { u32 i = 0; u32 destroy_queues; u32 free_memory; struct efc_dma *dma; struct efct *efct = hw->os; destroy_queues = (hw->state == EFCT_HW_STATE_ACTIVE); free_memory = (hw->state != EFCT_HW_STATE_UNINITIALIZED); /* Cancel Sliport Healthcheck */ if (hw->sliport_healthcheck) { hw->sliport_healthcheck = 0; efct_hw_config_sli_port_health_check(hw, 0, 0); } if (hw->state != EFCT_HW_STATE_QUEUES_ALLOCATED) { hw->state = EFCT_HW_STATE_TEARDOWN_IN_PROGRESS; efct_hw_flush(hw); if (list_empty(&hw->cmd_head)) efc_log_debug(hw->os, "All commands completed on MQ queue\n"); else efc_log_debug(hw->os, "Some cmds still pending on MQ queue\n"); /* Cancel any remaining commands */ efct_hw_command_cancel(hw); } else { hw->state = EFCT_HW_STATE_TEARDOWN_IN_PROGRESS; } dma_free_coherent(&efct->pci->dev, hw->rnode_mem.size, hw->rnode_mem.virt, hw->rnode_mem.phys); memset(&hw->rnode_mem, 0, sizeof(struct efc_dma)); if (hw->io) { for (i = 0; i < hw->config.n_io; i++) { if (hw->io[i] && hw->io[i]->sgl && hw->io[i]->sgl->virt) { dma_free_coherent(&efct->pci->dev, hw->io[i]->sgl->size, hw->io[i]->sgl->virt, hw->io[i]->sgl->phys); } kfree(hw->io[i]); hw->io[i] = NULL; } kfree(hw->io); hw->io = NULL; kfree(hw->wqe_buffs); hw->wqe_buffs = NULL; } dma = &hw->xfer_rdy; dma_free_coherent(&efct->pci->dev, dma->size, dma->virt, dma->phys); memset(dma, 0, sizeof(struct efc_dma)); dma = &hw->loop_map; dma_free_coherent(&efct->pci->dev, dma->size, dma->virt, dma->phys); memset(dma, 0, sizeof(struct efc_dma)); for (i = 0; i < hw->wq_count; i++) sli_queue_free(&hw->sli, &hw->wq[i], destroy_queues, free_memory); for (i = 0; i < hw->rq_count; i++) sli_queue_free(&hw->sli, &hw->rq[i], destroy_queues, free_memory); for (i = 0; i < hw->mq_count; i++) sli_queue_free(&hw->sli, &hw->mq[i], destroy_queues, free_memory); for (i = 0; i < hw->cq_count; i++) sli_queue_free(&hw->sli, &hw->cq[i], destroy_queues, free_memory); for (i = 0; i < hw->eq_count; i++) sli_queue_free(&hw->sli, &hw->eq[i], destroy_queues, free_memory); /* Free rq buffers */ efct_hw_rx_free(hw); efct_hw_queue_teardown(hw); kfree(hw->wq_cpu_array); sli_teardown(&hw->sli); /* record the fact that the queues are non-functional */ hw->state = EFCT_HW_STATE_UNINITIALIZED; /* free sequence free pool */ kfree(hw->seq_pool); hw->seq_pool = NULL; /* free hw_wq_callback pool */ efct_hw_reqtag_pool_free(hw); mempool_destroy(hw->cmd_ctx_pool); mempool_destroy(hw->mbox_rqst_pool); /* Mark HW setup as not having been called */ hw->hw_setup_called = false; } static int efct_hw_sli_reset(struct efct_hw *hw, enum efct_hw_reset reset, enum efct_hw_state prev_state) { int rc = 0; switch (reset) { case EFCT_HW_RESET_FUNCTION: efc_log_debug(hw->os, "issuing function level reset\n"); if (sli_reset(&hw->sli)) { efc_log_err(hw->os, "sli_reset failed\n"); rc = -EIO; } break; case EFCT_HW_RESET_FIRMWARE: efc_log_debug(hw->os, "issuing firmware reset\n"); if (sli_fw_reset(&hw->sli)) { efc_log_err(hw->os, "sli_soft_reset failed\n"); rc = -EIO; } /* * Because the FW reset leaves the FW in a non-running state, * follow that with a regular reset. */ efc_log_debug(hw->os, "issuing function level reset\n"); if (sli_reset(&hw->sli)) { efc_log_err(hw->os, "sli_reset failed\n"); rc = -EIO; } break; default: efc_log_err(hw->os, "unknown type - no reset performed\n"); hw->state = prev_state; rc = -EINVAL; break; } return rc; } int efct_hw_reset(struct efct_hw *hw, enum efct_hw_reset reset) { int rc = 0; enum efct_hw_state prev_state = hw->state; if (hw->state != EFCT_HW_STATE_ACTIVE) efc_log_debug(hw->os, "HW state %d is not active\n", hw->state); hw->state = EFCT_HW_STATE_RESET_IN_PROGRESS; /* * If the prev_state is already reset/teardown in progress, * don't continue further */ if (prev_state == EFCT_HW_STATE_RESET_IN_PROGRESS || prev_state == EFCT_HW_STATE_TEARDOWN_IN_PROGRESS) return efct_hw_sli_reset(hw, reset, prev_state); if (prev_state != EFCT_HW_STATE_UNINITIALIZED) { efct_hw_flush(hw); if (list_empty(&hw->cmd_head)) efc_log_debug(hw->os, "All commands completed on MQ queue\n"); else efc_log_err(hw->os, "Some commands still pending on MQ queue\n"); } /* Reset the chip */ rc = efct_hw_sli_reset(hw, reset, prev_state); if (rc == -EINVAL) return -EIO; return rc; }