// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 MediaTek Inc. * Author: Leilk Liu */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPI_CFG0_REG 0x0000 #define SPI_CFG1_REG 0x0004 #define SPI_TX_SRC_REG 0x0008 #define SPI_RX_DST_REG 0x000c #define SPI_TX_DATA_REG 0x0010 #define SPI_RX_DATA_REG 0x0014 #define SPI_CMD_REG 0x0018 #define SPI_STATUS0_REG 0x001c #define SPI_PAD_SEL_REG 0x0024 #define SPI_CFG2_REG 0x0028 #define SPI_TX_SRC_REG_64 0x002c #define SPI_RX_DST_REG_64 0x0030 #define SPI_CFG0_SCK_HIGH_OFFSET 0 #define SPI_CFG0_SCK_LOW_OFFSET 8 #define SPI_CFG0_CS_HOLD_OFFSET 16 #define SPI_CFG0_CS_SETUP_OFFSET 24 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16 #define SPI_CFG1_CS_IDLE_OFFSET 0 #define SPI_CFG1_PACKET_LOOP_OFFSET 8 #define SPI_CFG1_PACKET_LENGTH_OFFSET 16 #define SPI_CFG1_GET_TICK_DLY_OFFSET 29 #define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000 #define SPI_CFG1_CS_IDLE_MASK 0xff #define SPI_CFG1_PACKET_LOOP_MASK 0xff00 #define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000 #define SPI_CFG2_SCK_HIGH_OFFSET 0 #define SPI_CFG2_SCK_LOW_OFFSET 16 #define SPI_CMD_ACT BIT(0) #define SPI_CMD_RESUME BIT(1) #define SPI_CMD_RST BIT(2) #define SPI_CMD_PAUSE_EN BIT(4) #define SPI_CMD_DEASSERT BIT(5) #define SPI_CMD_SAMPLE_SEL BIT(6) #define SPI_CMD_CS_POL BIT(7) #define SPI_CMD_CPHA BIT(8) #define SPI_CMD_CPOL BIT(9) #define SPI_CMD_RX_DMA BIT(10) #define SPI_CMD_TX_DMA BIT(11) #define SPI_CMD_TXMSBF BIT(12) #define SPI_CMD_RXMSBF BIT(13) #define SPI_CMD_RX_ENDIAN BIT(14) #define SPI_CMD_TX_ENDIAN BIT(15) #define SPI_CMD_FINISH_IE BIT(16) #define SPI_CMD_PAUSE_IE BIT(17) #define MT8173_SPI_MAX_PAD_SEL 3 #define MTK_SPI_PAUSE_INT_STATUS 0x2 #define MTK_SPI_IDLE 0 #define MTK_SPI_PAUSED 1 #define MTK_SPI_MAX_FIFO_SIZE 32U #define MTK_SPI_PACKET_SIZE 1024 #define MTK_SPI_32BITS_MASK (0xffffffff) #define DMA_ADDR_EXT_BITS (36) #define DMA_ADDR_DEF_BITS (32) struct mtk_spi_compatible { bool need_pad_sel; /* Must explicitly send dummy Tx bytes to do Rx only transfer */ bool must_tx; /* some IC design adjust cfg register to enhance time accuracy */ bool enhance_timing; /* some IC support DMA addr extension */ bool dma_ext; /* some IC no need unprepare SPI clk */ bool no_need_unprepare; }; struct mtk_spi { void __iomem *base; u32 state; int pad_num; u32 *pad_sel; struct clk *parent_clk, *sel_clk, *spi_clk; struct spi_transfer *cur_transfer; u32 xfer_len; u32 num_xfered; struct scatterlist *tx_sgl, *rx_sgl; u32 tx_sgl_len, rx_sgl_len; const struct mtk_spi_compatible *dev_comp; u32 spi_clk_hz; }; static const struct mtk_spi_compatible mtk_common_compat; static const struct mtk_spi_compatible mt2712_compat = { .must_tx = true, }; static const struct mtk_spi_compatible mt6765_compat = { .need_pad_sel = true, .must_tx = true, .enhance_timing = true, .dma_ext = true, }; static const struct mtk_spi_compatible mt7622_compat = { .must_tx = true, .enhance_timing = true, }; static const struct mtk_spi_compatible mt8173_compat = { .need_pad_sel = true, .must_tx = true, }; static const struct mtk_spi_compatible mt8183_compat = { .need_pad_sel = true, .must_tx = true, .enhance_timing = true, }; static const struct mtk_spi_compatible mt6893_compat = { .need_pad_sel = true, .must_tx = true, .enhance_timing = true, .dma_ext = true, .no_need_unprepare = true, }; /* * A piece of default chip info unless the platform * supplies it. */ static const struct mtk_chip_config mtk_default_chip_info = { .sample_sel = 0, .tick_delay = 0, }; static const struct of_device_id mtk_spi_of_match[] = { { .compatible = "mediatek,mt2701-spi", .data = (void *)&mtk_common_compat, }, { .compatible = "mediatek,mt2712-spi", .data = (void *)&mt2712_compat, }, { .compatible = "mediatek,mt6589-spi", .data = (void *)&mtk_common_compat, }, { .compatible = "mediatek,mt6765-spi", .data = (void *)&mt6765_compat, }, { .compatible = "mediatek,mt7622-spi", .data = (void *)&mt7622_compat, }, { .compatible = "mediatek,mt7629-spi", .data = (void *)&mt7622_compat, }, { .compatible = "mediatek,mt8135-spi", .data = (void *)&mtk_common_compat, }, { .compatible = "mediatek,mt8173-spi", .data = (void *)&mt8173_compat, }, { .compatible = "mediatek,mt8183-spi", .data = (void *)&mt8183_compat, }, { .compatible = "mediatek,mt8192-spi", .data = (void *)&mt6765_compat, }, { .compatible = "mediatek,mt6893-spi", .data = (void *)&mt6893_compat, }, {} }; MODULE_DEVICE_TABLE(of, mtk_spi_of_match); static void mtk_spi_reset(struct mtk_spi *mdata) { u32 reg_val; /* set the software reset bit in SPI_CMD_REG. */ reg_val = readl(mdata->base + SPI_CMD_REG); reg_val |= SPI_CMD_RST; writel(reg_val, mdata->base + SPI_CMD_REG); reg_val = readl(mdata->base + SPI_CMD_REG); reg_val &= ~SPI_CMD_RST; writel(reg_val, mdata->base + SPI_CMD_REG); } static int mtk_spi_set_hw_cs_timing(struct spi_device *spi) { struct mtk_spi *mdata = spi_master_get_devdata(spi->master); struct spi_delay *cs_setup = &spi->cs_setup; struct spi_delay *cs_hold = &spi->cs_hold; struct spi_delay *cs_inactive = &spi->cs_inactive; u16 setup, hold, inactive; u32 reg_val; int delay; delay = spi_delay_to_ns(cs_setup, NULL); if (delay < 0) return delay; setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; delay = spi_delay_to_ns(cs_hold, NULL); if (delay < 0) return delay; hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; delay = spi_delay_to_ns(cs_inactive, NULL); if (delay < 0) return delay; inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; setup = setup ? setup : 1; hold = hold ? hold : 1; inactive = inactive ? inactive : 1; reg_val = readl(mdata->base + SPI_CFG0_REG); if (mdata->dev_comp->enhance_timing) { hold = min(hold, 0xffff); setup = min(setup, 0xffff); reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); reg_val |= (((hold - 1) & 0xffff) << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); reg_val |= (((setup - 1) & 0xffff) << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); } else { hold = min(hold, 0xff); setup = min(setup, 0xff); reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET); reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET); reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET); reg_val |= (((setup - 1) & 0xff) << SPI_CFG0_CS_SETUP_OFFSET); } writel(reg_val, mdata->base + SPI_CFG0_REG); inactive = min(inactive, 0xff); reg_val = readl(mdata->base + SPI_CFG1_REG); reg_val &= ~SPI_CFG1_CS_IDLE_MASK; reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET); writel(reg_val, mdata->base + SPI_CFG1_REG); return 0; } static int mtk_spi_prepare_message(struct spi_master *master, struct spi_message *msg) { u16 cpha, cpol; u32 reg_val; struct spi_device *spi = msg->spi; struct mtk_chip_config *chip_config = spi->controller_data; struct mtk_spi *mdata = spi_master_get_devdata(master); cpha = spi->mode & SPI_CPHA ? 1 : 0; cpol = spi->mode & SPI_CPOL ? 1 : 0; reg_val = readl(mdata->base + SPI_CMD_REG); if (cpha) reg_val |= SPI_CMD_CPHA; else reg_val &= ~SPI_CMD_CPHA; if (cpol) reg_val |= SPI_CMD_CPOL; else reg_val &= ~SPI_CMD_CPOL; /* set the mlsbx and mlsbtx */ if (spi->mode & SPI_LSB_FIRST) { reg_val &= ~SPI_CMD_TXMSBF; reg_val &= ~SPI_CMD_RXMSBF; } else { reg_val |= SPI_CMD_TXMSBF; reg_val |= SPI_CMD_RXMSBF; } /* set the tx/rx endian */ #ifdef __LITTLE_ENDIAN reg_val &= ~SPI_CMD_TX_ENDIAN; reg_val &= ~SPI_CMD_RX_ENDIAN; #else reg_val |= SPI_CMD_TX_ENDIAN; reg_val |= SPI_CMD_RX_ENDIAN; #endif if (mdata->dev_comp->enhance_timing) { /* set CS polarity */ if (spi->mode & SPI_CS_HIGH) reg_val |= SPI_CMD_CS_POL; else reg_val &= ~SPI_CMD_CS_POL; if (chip_config->sample_sel) reg_val |= SPI_CMD_SAMPLE_SEL; else reg_val &= ~SPI_CMD_SAMPLE_SEL; } /* set finish and pause interrupt always enable */ reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE; /* disable dma mode */ reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA); /* disable deassert mode */ reg_val &= ~SPI_CMD_DEASSERT; writel(reg_val, mdata->base + SPI_CMD_REG); /* pad select */ if (mdata->dev_comp->need_pad_sel) writel(mdata->pad_sel[spi->chip_select], mdata->base + SPI_PAD_SEL_REG); /* tick delay */ reg_val = readl(mdata->base + SPI_CFG1_REG); reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK; reg_val |= ((chip_config->tick_delay & 0x7) << SPI_CFG1_GET_TICK_DLY_OFFSET); writel(reg_val, mdata->base + SPI_CFG1_REG); /* set hw cs timing */ mtk_spi_set_hw_cs_timing(spi); return 0; } static void mtk_spi_set_cs(struct spi_device *spi, bool enable) { u32 reg_val; struct mtk_spi *mdata = spi_master_get_devdata(spi->master); if (spi->mode & SPI_CS_HIGH) enable = !enable; reg_val = readl(mdata->base + SPI_CMD_REG); if (!enable) { reg_val |= SPI_CMD_PAUSE_EN; writel(reg_val, mdata->base + SPI_CMD_REG); } else { reg_val &= ~SPI_CMD_PAUSE_EN; writel(reg_val, mdata->base + SPI_CMD_REG); mdata->state = MTK_SPI_IDLE; mtk_spi_reset(mdata); } } static void mtk_spi_prepare_transfer(struct spi_master *master, struct spi_transfer *xfer) { u32 div, sck_time, reg_val; struct mtk_spi *mdata = spi_master_get_devdata(master); if (xfer->speed_hz < mdata->spi_clk_hz / 2) div = DIV_ROUND_UP(mdata->spi_clk_hz, xfer->speed_hz); else div = 1; sck_time = (div + 1) / 2; if (mdata->dev_comp->enhance_timing) { reg_val = readl(mdata->base + SPI_CFG2_REG); reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET); reg_val |= (((sck_time - 1) & 0xffff) << SPI_CFG2_SCK_HIGH_OFFSET); reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET); reg_val |= (((sck_time - 1) & 0xffff) << SPI_CFG2_SCK_LOW_OFFSET); writel(reg_val, mdata->base + SPI_CFG2_REG); } else { reg_val = readl(mdata->base + SPI_CFG0_REG); reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET); reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_HIGH_OFFSET); reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET); reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET); writel(reg_val, mdata->base + SPI_CFG0_REG); } } static void mtk_spi_setup_packet(struct spi_master *master) { u32 packet_size, packet_loop, reg_val; struct mtk_spi *mdata = spi_master_get_devdata(master); packet_size = min_t(u32, mdata->xfer_len, MTK_SPI_PACKET_SIZE); packet_loop = mdata->xfer_len / packet_size; reg_val = readl(mdata->base + SPI_CFG1_REG); reg_val &= ~(SPI_CFG1_PACKET_LENGTH_MASK | SPI_CFG1_PACKET_LOOP_MASK); reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET; reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET; writel(reg_val, mdata->base + SPI_CFG1_REG); } static void mtk_spi_enable_transfer(struct spi_master *master) { u32 cmd; struct mtk_spi *mdata = spi_master_get_devdata(master); cmd = readl(mdata->base + SPI_CMD_REG); if (mdata->state == MTK_SPI_IDLE) cmd |= SPI_CMD_ACT; else cmd |= SPI_CMD_RESUME; writel(cmd, mdata->base + SPI_CMD_REG); } static int mtk_spi_get_mult_delta(u32 xfer_len) { u32 mult_delta; if (xfer_len > MTK_SPI_PACKET_SIZE) mult_delta = xfer_len % MTK_SPI_PACKET_SIZE; else mult_delta = 0; return mult_delta; } static void mtk_spi_update_mdata_len(struct spi_master *master) { int mult_delta; struct mtk_spi *mdata = spi_master_get_devdata(master); if (mdata->tx_sgl_len && mdata->rx_sgl_len) { if (mdata->tx_sgl_len > mdata->rx_sgl_len) { mult_delta = mtk_spi_get_mult_delta(mdata->rx_sgl_len); mdata->xfer_len = mdata->rx_sgl_len - mult_delta; mdata->rx_sgl_len = mult_delta; mdata->tx_sgl_len -= mdata->xfer_len; } else { mult_delta = mtk_spi_get_mult_delta(mdata->tx_sgl_len); mdata->xfer_len = mdata->tx_sgl_len - mult_delta; mdata->tx_sgl_len = mult_delta; mdata->rx_sgl_len -= mdata->xfer_len; } } else if (mdata->tx_sgl_len) { mult_delta = mtk_spi_get_mult_delta(mdata->tx_sgl_len); mdata->xfer_len = mdata->tx_sgl_len - mult_delta; mdata->tx_sgl_len = mult_delta; } else if (mdata->rx_sgl_len) { mult_delta = mtk_spi_get_mult_delta(mdata->rx_sgl_len); mdata->xfer_len = mdata->rx_sgl_len - mult_delta; mdata->rx_sgl_len = mult_delta; } } static void mtk_spi_setup_dma_addr(struct spi_master *master, struct spi_transfer *xfer) { struct mtk_spi *mdata = spi_master_get_devdata(master); if (mdata->tx_sgl) { writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK), mdata->base + SPI_TX_SRC_REG); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT if (mdata->dev_comp->dma_ext) writel((u32)(xfer->tx_dma >> 32), mdata->base + SPI_TX_SRC_REG_64); #endif } if (mdata->rx_sgl) { writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK), mdata->base + SPI_RX_DST_REG); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT if (mdata->dev_comp->dma_ext) writel((u32)(xfer->rx_dma >> 32), mdata->base + SPI_RX_DST_REG_64); #endif } } static int mtk_spi_fifo_transfer(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { int cnt, remainder; u32 reg_val; struct mtk_spi *mdata = spi_master_get_devdata(master); mdata->cur_transfer = xfer; mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len); mdata->num_xfered = 0; mtk_spi_prepare_transfer(master, xfer); mtk_spi_setup_packet(master); cnt = xfer->len / 4; iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt); remainder = xfer->len % 4; if (remainder > 0) { reg_val = 0; memcpy(®_val, xfer->tx_buf + (cnt * 4), remainder); writel(reg_val, mdata->base + SPI_TX_DATA_REG); } mtk_spi_enable_transfer(master); return 1; } static int mtk_spi_dma_transfer(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { int cmd; struct mtk_spi *mdata = spi_master_get_devdata(master); mdata->tx_sgl = NULL; mdata->rx_sgl = NULL; mdata->tx_sgl_len = 0; mdata->rx_sgl_len = 0; mdata->cur_transfer = xfer; mdata->num_xfered = 0; mtk_spi_prepare_transfer(master, xfer); cmd = readl(mdata->base + SPI_CMD_REG); if (xfer->tx_buf) cmd |= SPI_CMD_TX_DMA; if (xfer->rx_buf) cmd |= SPI_CMD_RX_DMA; writel(cmd, mdata->base + SPI_CMD_REG); if (xfer->tx_buf) mdata->tx_sgl = xfer->tx_sg.sgl; if (xfer->rx_buf) mdata->rx_sgl = xfer->rx_sg.sgl; if (mdata->tx_sgl) { xfer->tx_dma = sg_dma_address(mdata->tx_sgl); mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); } if (mdata->rx_sgl) { xfer->rx_dma = sg_dma_address(mdata->rx_sgl); mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); } mtk_spi_update_mdata_len(master); mtk_spi_setup_packet(master); mtk_spi_setup_dma_addr(master, xfer); mtk_spi_enable_transfer(master); return 1; } static int mtk_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { if (master->can_dma(master, spi, xfer)) return mtk_spi_dma_transfer(master, spi, xfer); else return mtk_spi_fifo_transfer(master, spi, xfer); } static bool mtk_spi_can_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { /* Buffers for DMA transactions must be 4-byte aligned */ return (xfer->len > MTK_SPI_MAX_FIFO_SIZE && (unsigned long)xfer->tx_buf % 4 == 0 && (unsigned long)xfer->rx_buf % 4 == 0); } static int mtk_spi_setup(struct spi_device *spi) { struct mtk_spi *mdata = spi_master_get_devdata(spi->master); if (!spi->controller_data) spi->controller_data = (void *)&mtk_default_chip_info; if (mdata->dev_comp->need_pad_sel && gpio_is_valid(spi->cs_gpio)) gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); return 0; } static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id) { u32 cmd, reg_val, cnt, remainder, len; struct spi_master *master = dev_id; struct mtk_spi *mdata = spi_master_get_devdata(master); struct spi_transfer *trans = mdata->cur_transfer; reg_val = readl(mdata->base + SPI_STATUS0_REG); if (reg_val & MTK_SPI_PAUSE_INT_STATUS) mdata->state = MTK_SPI_PAUSED; else mdata->state = MTK_SPI_IDLE; if (!master->can_dma(master, master->cur_msg->spi, trans)) { if (trans->rx_buf) { cnt = mdata->xfer_len / 4; ioread32_rep(mdata->base + SPI_RX_DATA_REG, trans->rx_buf + mdata->num_xfered, cnt); remainder = mdata->xfer_len % 4; if (remainder > 0) { reg_val = readl(mdata->base + SPI_RX_DATA_REG); memcpy(trans->rx_buf + mdata->num_xfered + (cnt * 4), ®_val, remainder); } } mdata->num_xfered += mdata->xfer_len; if (mdata->num_xfered == trans->len) { spi_finalize_current_transfer(master); return IRQ_HANDLED; } len = trans->len - mdata->num_xfered; mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len); mtk_spi_setup_packet(master); cnt = mdata->xfer_len / 4; iowrite32_rep(mdata->base + SPI_TX_DATA_REG, trans->tx_buf + mdata->num_xfered, cnt); remainder = mdata->xfer_len % 4; if (remainder > 0) { reg_val = 0; memcpy(®_val, trans->tx_buf + (cnt * 4) + mdata->num_xfered, remainder); writel(reg_val, mdata->base + SPI_TX_DATA_REG); } mtk_spi_enable_transfer(master); return IRQ_HANDLED; } if (mdata->tx_sgl) trans->tx_dma += mdata->xfer_len; if (mdata->rx_sgl) trans->rx_dma += mdata->xfer_len; if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) { mdata->tx_sgl = sg_next(mdata->tx_sgl); if (mdata->tx_sgl) { trans->tx_dma = sg_dma_address(mdata->tx_sgl); mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); } } if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) { mdata->rx_sgl = sg_next(mdata->rx_sgl); if (mdata->rx_sgl) { trans->rx_dma = sg_dma_address(mdata->rx_sgl); mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); } } if (!mdata->tx_sgl && !mdata->rx_sgl) { /* spi disable dma */ cmd = readl(mdata->base + SPI_CMD_REG); cmd &= ~SPI_CMD_TX_DMA; cmd &= ~SPI_CMD_RX_DMA; writel(cmd, mdata->base + SPI_CMD_REG); spi_finalize_current_transfer(master); return IRQ_HANDLED; } mtk_spi_update_mdata_len(master); mtk_spi_setup_packet(master); mtk_spi_setup_dma_addr(master, trans); mtk_spi_enable_transfer(master); return IRQ_HANDLED; } static int mtk_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct mtk_spi *mdata; const struct of_device_id *of_id; int i, irq, ret, addr_bits; master = spi_alloc_master(&pdev->dev, sizeof(*mdata)); if (!master) { dev_err(&pdev->dev, "failed to alloc spi master\n"); return -ENOMEM; } master->auto_runtime_pm = true; master->dev.of_node = pdev->dev.of_node; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; master->set_cs = mtk_spi_set_cs; master->prepare_message = mtk_spi_prepare_message; master->transfer_one = mtk_spi_transfer_one; master->can_dma = mtk_spi_can_dma; master->setup = mtk_spi_setup; master->set_cs_timing = mtk_spi_set_hw_cs_timing; of_id = of_match_node(mtk_spi_of_match, pdev->dev.of_node); if (!of_id) { dev_err(&pdev->dev, "failed to probe of_node\n"); ret = -EINVAL; goto err_put_master; } mdata = spi_master_get_devdata(master); mdata->dev_comp = of_id->data; if (mdata->dev_comp->enhance_timing) master->mode_bits |= SPI_CS_HIGH; if (mdata->dev_comp->must_tx) master->flags = SPI_MASTER_MUST_TX; if (mdata->dev_comp->need_pad_sel) { mdata->pad_num = of_property_count_u32_elems( pdev->dev.of_node, "mediatek,pad-select"); if (mdata->pad_num < 0) { dev_err(&pdev->dev, "No 'mediatek,pad-select' property\n"); ret = -EINVAL; goto err_put_master; } mdata->pad_sel = devm_kmalloc_array(&pdev->dev, mdata->pad_num, sizeof(u32), GFP_KERNEL); if (!mdata->pad_sel) { ret = -ENOMEM; goto err_put_master; } for (i = 0; i < mdata->pad_num; i++) { of_property_read_u32_index(pdev->dev.of_node, "mediatek,pad-select", i, &mdata->pad_sel[i]); if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL) { dev_err(&pdev->dev, "wrong pad-sel[%d]: %u\n", i, mdata->pad_sel[i]); ret = -EINVAL; goto err_put_master; } } } platform_set_drvdata(pdev, master); mdata->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mdata->base)) { ret = PTR_ERR(mdata->base); goto err_put_master; } irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto err_put_master; } if (!pdev->dev.dma_mask) pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask; ret = devm_request_irq(&pdev->dev, irq, mtk_spi_interrupt, IRQF_TRIGGER_NONE, dev_name(&pdev->dev), master); if (ret) { dev_err(&pdev->dev, "failed to register irq (%d)\n", ret); goto err_put_master; } mdata->parent_clk = devm_clk_get(&pdev->dev, "parent-clk"); if (IS_ERR(mdata->parent_clk)) { ret = PTR_ERR(mdata->parent_clk); dev_err(&pdev->dev, "failed to get parent-clk: %d\n", ret); goto err_put_master; } mdata->sel_clk = devm_clk_get(&pdev->dev, "sel-clk"); if (IS_ERR(mdata->sel_clk)) { ret = PTR_ERR(mdata->sel_clk); dev_err(&pdev->dev, "failed to get sel-clk: %d\n", ret); goto err_put_master; } mdata->spi_clk = devm_clk_get(&pdev->dev, "spi-clk"); if (IS_ERR(mdata->spi_clk)) { ret = PTR_ERR(mdata->spi_clk); dev_err(&pdev->dev, "failed to get spi-clk: %d\n", ret); goto err_put_master; } ret = clk_prepare_enable(mdata->spi_clk); if (ret < 0) { dev_err(&pdev->dev, "failed to enable spi_clk (%d)\n", ret); goto err_put_master; } ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk); if (ret < 0) { dev_err(&pdev->dev, "failed to clk_set_parent (%d)\n", ret); clk_disable_unprepare(mdata->spi_clk); goto err_put_master; } mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk); if (mdata->dev_comp->no_need_unprepare) clk_disable(mdata->spi_clk); else clk_disable_unprepare(mdata->spi_clk); pm_runtime_enable(&pdev->dev); ret = devm_spi_register_master(&pdev->dev, master); if (ret) { dev_err(&pdev->dev, "failed to register master (%d)\n", ret); goto err_disable_runtime_pm; } if (mdata->dev_comp->need_pad_sel) { if (mdata->pad_num != master->num_chipselect) { dev_err(&pdev->dev, "pad_num does not match num_chipselect(%d != %d)\n", mdata->pad_num, master->num_chipselect); ret = -EINVAL; goto err_disable_runtime_pm; } if (!master->cs_gpios && master->num_chipselect > 1) { dev_err(&pdev->dev, "cs_gpios not specified and num_chipselect > 1\n"); ret = -EINVAL; goto err_disable_runtime_pm; } if (master->cs_gpios) { for (i = 0; i < master->num_chipselect; i++) { ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i], dev_name(&pdev->dev)); if (ret) { dev_err(&pdev->dev, "can't get CS GPIO %i\n", i); goto err_disable_runtime_pm; } } } } if (mdata->dev_comp->dma_ext) addr_bits = DMA_ADDR_EXT_BITS; else addr_bits = DMA_ADDR_DEF_BITS; ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(addr_bits)); if (ret) dev_notice(&pdev->dev, "SPI dma_set_mask(%d) failed, ret:%d\n", addr_bits, ret); return 0; err_disable_runtime_pm: pm_runtime_disable(&pdev->dev); err_put_master: spi_master_put(master); return ret; } static int mtk_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct mtk_spi *mdata = spi_master_get_devdata(master); pm_runtime_disable(&pdev->dev); mtk_spi_reset(mdata); if (mdata->dev_comp->no_need_unprepare) clk_unprepare(mdata->spi_clk); return 0; } #ifdef CONFIG_PM_SLEEP static int mtk_spi_suspend(struct device *dev) { int ret; struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); ret = spi_master_suspend(master); if (ret) return ret; if (!pm_runtime_suspended(dev)) clk_disable_unprepare(mdata->spi_clk); return ret; } static int mtk_spi_resume(struct device *dev) { int ret; struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); if (!pm_runtime_suspended(dev)) { ret = clk_prepare_enable(mdata->spi_clk); if (ret < 0) { dev_err(dev, "failed to enable spi_clk (%d)\n", ret); return ret; } } ret = spi_master_resume(master); if (ret < 0) clk_disable_unprepare(mdata->spi_clk); return ret; } #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM static int mtk_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); if (mdata->dev_comp->no_need_unprepare) clk_disable(mdata->spi_clk); else clk_disable_unprepare(mdata->spi_clk); return 0; } static int mtk_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct mtk_spi *mdata = spi_master_get_devdata(master); int ret; if (mdata->dev_comp->no_need_unprepare) ret = clk_enable(mdata->spi_clk); else ret = clk_prepare_enable(mdata->spi_clk); if (ret < 0) { dev_err(dev, "failed to enable spi_clk (%d)\n", ret); return ret; } return 0; } #endif /* CONFIG_PM */ static const struct dev_pm_ops mtk_spi_pm = { SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume) SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend, mtk_spi_runtime_resume, NULL) }; static struct platform_driver mtk_spi_driver = { .driver = { .name = "mtk-spi", .pm = &mtk_spi_pm, .of_match_table = mtk_spi_of_match, }, .probe = mtk_spi_probe, .remove = mtk_spi_remove, }; module_platform_driver(mtk_spi_driver); MODULE_DESCRIPTION("MTK SPI Controller driver"); MODULE_AUTHOR("Leilk Liu "); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:mtk-spi");