// SPDX-License-Identifier: GPL-2.0 /* * Analog Devices AD7768-1 SPI ADC driver * * Copyright 2017 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* AD7768 registers definition */ #define AD7768_REG_CHIP_TYPE 0x3 #define AD7768_REG_PROD_ID_L 0x4 #define AD7768_REG_PROD_ID_H 0x5 #define AD7768_REG_CHIP_GRADE 0x6 #define AD7768_REG_SCRATCH_PAD 0x0A #define AD7768_REG_VENDOR_L 0x0C #define AD7768_REG_VENDOR_H 0x0D #define AD7768_REG_INTERFACE_FORMAT 0x14 #define AD7768_REG_POWER_CLOCK 0x15 #define AD7768_REG_ANALOG 0x16 #define AD7768_REG_ANALOG2 0x17 #define AD7768_REG_CONVERSION 0x18 #define AD7768_REG_DIGITAL_FILTER 0x19 #define AD7768_REG_SINC3_DEC_RATE_MSB 0x1A #define AD7768_REG_SINC3_DEC_RATE_LSB 0x1B #define AD7768_REG_DUTY_CYCLE_RATIO 0x1C #define AD7768_REG_SYNC_RESET 0x1D #define AD7768_REG_GPIO_CONTROL 0x1E #define AD7768_REG_GPIO_WRITE 0x1F #define AD7768_REG_GPIO_READ 0x20 #define AD7768_REG_OFFSET_HI 0x21 #define AD7768_REG_OFFSET_MID 0x22 #define AD7768_REG_OFFSET_LO 0x23 #define AD7768_REG_GAIN_HI 0x24 #define AD7768_REG_GAIN_MID 0x25 #define AD7768_REG_GAIN_LO 0x26 #define AD7768_REG_SPI_DIAG_ENABLE 0x28 #define AD7768_REG_ADC_DIAG_ENABLE 0x29 #define AD7768_REG_DIG_DIAG_ENABLE 0x2A #define AD7768_REG_ADC_DATA 0x2C #define AD7768_REG_MASTER_STATUS 0x2D #define AD7768_REG_SPI_DIAG_STATUS 0x2E #define AD7768_REG_ADC_DIAG_STATUS 0x2F #define AD7768_REG_DIG_DIAG_STATUS 0x30 #define AD7768_REG_MCLK_COUNTER 0x31 /* AD7768_REG_POWER_CLOCK */ #define AD7768_PWR_MCLK_DIV_MSK GENMASK(5, 4) #define AD7768_PWR_MCLK_DIV(x) FIELD_PREP(AD7768_PWR_MCLK_DIV_MSK, x) #define AD7768_PWR_PWRMODE_MSK GENMASK(1, 0) #define AD7768_PWR_PWRMODE(x) FIELD_PREP(AD7768_PWR_PWRMODE_MSK, x) /* AD7768_REG_DIGITAL_FILTER */ #define AD7768_DIG_FIL_FIL_MSK GENMASK(6, 4) #define AD7768_DIG_FIL_FIL(x) FIELD_PREP(AD7768_DIG_FIL_FIL_MSK, x) #define AD7768_DIG_FIL_DEC_MSK GENMASK(2, 0) #define AD7768_DIG_FIL_DEC_RATE(x) FIELD_PREP(AD7768_DIG_FIL_DEC_MSK, x) /* AD7768_REG_CONVERSION */ #define AD7768_CONV_MODE_MSK GENMASK(2, 0) #define AD7768_CONV_MODE(x) FIELD_PREP(AD7768_CONV_MODE_MSK, x) #define AD7768_RD_FLAG_MSK(x) (BIT(6) | ((x) & 0x3F)) #define AD7768_WR_FLAG_MSK(x) ((x) & 0x3F) enum ad7768_conv_mode { AD7768_CONTINUOUS, AD7768_ONE_SHOT, AD7768_SINGLE, AD7768_PERIODIC, AD7768_STANDBY }; enum ad7768_pwrmode { AD7768_ECO_MODE = 0, AD7768_MED_MODE = 2, AD7768_FAST_MODE = 3 }; enum ad7768_mclk_div { AD7768_MCLK_DIV_16, AD7768_MCLK_DIV_8, AD7768_MCLK_DIV_4, AD7768_MCLK_DIV_2 }; enum ad7768_dec_rate { AD7768_DEC_RATE_32 = 0, AD7768_DEC_RATE_64 = 1, AD7768_DEC_RATE_128 = 2, AD7768_DEC_RATE_256 = 3, AD7768_DEC_RATE_512 = 4, AD7768_DEC_RATE_1024 = 5, AD7768_DEC_RATE_8 = 9, AD7768_DEC_RATE_16 = 10 }; struct ad7768_clk_configuration { enum ad7768_mclk_div mclk_div; enum ad7768_dec_rate dec_rate; unsigned int clk_div; enum ad7768_pwrmode pwrmode; }; static const struct ad7768_clk_configuration ad7768_clk_config[] = { { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_8, 16, AD7768_FAST_MODE }, { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_16, 32, AD7768_FAST_MODE }, { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_32, 64, AD7768_FAST_MODE }, { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_64, 128, AD7768_FAST_MODE }, { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_128, 256, AD7768_FAST_MODE }, { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_128, 512, AD7768_MED_MODE }, { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_256, 1024, AD7768_MED_MODE }, { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_512, 2048, AD7768_MED_MODE }, { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_1024, 4096, AD7768_MED_MODE }, { AD7768_MCLK_DIV_8, AD7768_DEC_RATE_1024, 8192, AD7768_MED_MODE }, { AD7768_MCLK_DIV_16, AD7768_DEC_RATE_1024, 16384, AD7768_ECO_MODE }, }; static const struct iio_chan_spec ad7768_channels[] = { { .type = IIO_VOLTAGE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .indexed = 1, .channel = 0, .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 24, .storagebits = 32, .shift = 8, .endianness = IIO_BE, }, }, }; struct ad7768_state { struct spi_device *spi; struct regulator *vref; struct mutex lock; struct clk *mclk; unsigned int mclk_freq; unsigned int samp_freq; struct completion completion; struct iio_trigger *trig; struct gpio_desc *gpio_sync_in; const char *labels[ARRAY_SIZE(ad7768_channels)]; /* * DMA (thus cache coherency maintenance) may require the * transfer buffers to live in their own cache lines. */ union { struct { __be32 chan; s64 timestamp; } scan; __be32 d32; u8 d8[2]; } data __aligned(IIO_DMA_MINALIGN); }; static int ad7768_spi_reg_read(struct ad7768_state *st, unsigned int addr, unsigned int len) { unsigned int shift; int ret; shift = 32 - (8 * len); st->data.d8[0] = AD7768_RD_FLAG_MSK(addr); ret = spi_write_then_read(st->spi, st->data.d8, 1, &st->data.d32, len); if (ret < 0) return ret; return (be32_to_cpu(st->data.d32) >> shift); } static int ad7768_spi_reg_write(struct ad7768_state *st, unsigned int addr, unsigned int val) { st->data.d8[0] = AD7768_WR_FLAG_MSK(addr); st->data.d8[1] = val & 0xFF; return spi_write(st->spi, st->data.d8, 2); } static int ad7768_set_mode(struct ad7768_state *st, enum ad7768_conv_mode mode) { int regval; regval = ad7768_spi_reg_read(st, AD7768_REG_CONVERSION, 1); if (regval < 0) return regval; regval &= ~AD7768_CONV_MODE_MSK; regval |= AD7768_CONV_MODE(mode); return ad7768_spi_reg_write(st, AD7768_REG_CONVERSION, regval); } static int ad7768_scan_direct(struct iio_dev *indio_dev) { struct ad7768_state *st = iio_priv(indio_dev); int readval, ret; reinit_completion(&st->completion); ret = ad7768_set_mode(st, AD7768_ONE_SHOT); if (ret < 0) return ret; ret = wait_for_completion_timeout(&st->completion, msecs_to_jiffies(1000)); if (!ret) return -ETIMEDOUT; readval = ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); if (readval < 0) return readval; /* * Any SPI configuration of the AD7768-1 can only be * performed in continuous conversion mode. */ ret = ad7768_set_mode(st, AD7768_CONTINUOUS); if (ret < 0) return ret; return readval; } static int ad7768_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad7768_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); if (readval) { ret = ad7768_spi_reg_read(st, reg, 1); if (ret < 0) goto err_unlock; *readval = ret; ret = 0; } else { ret = ad7768_spi_reg_write(st, reg, writeval); } err_unlock: mutex_unlock(&st->lock); return ret; } static int ad7768_set_dig_fil(struct ad7768_state *st, enum ad7768_dec_rate dec_rate) { unsigned int mode; int ret; if (dec_rate == AD7768_DEC_RATE_8 || dec_rate == AD7768_DEC_RATE_16) mode = AD7768_DIG_FIL_FIL(dec_rate); else mode = AD7768_DIG_FIL_DEC_RATE(dec_rate); ret = ad7768_spi_reg_write(st, AD7768_REG_DIGITAL_FILTER, mode); if (ret < 0) return ret; /* A sync-in pulse is required every time the filter dec rate changes */ gpiod_set_value(st->gpio_sync_in, 1); gpiod_set_value(st->gpio_sync_in, 0); return 0; } static int ad7768_set_freq(struct ad7768_state *st, unsigned int freq) { unsigned int diff_new, diff_old, pwr_mode, i, idx; int res, ret; diff_old = U32_MAX; idx = 0; res = DIV_ROUND_CLOSEST(st->mclk_freq, freq); /* Find the closest match for the desired sampling frequency */ for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { diff_new = abs(res - ad7768_clk_config[i].clk_div); if (diff_new < diff_old) { diff_old = diff_new; idx = i; } } /* * Set both the mclk_div and pwrmode with a single write to the * POWER_CLOCK register */ pwr_mode = AD7768_PWR_MCLK_DIV(ad7768_clk_config[idx].mclk_div) | AD7768_PWR_PWRMODE(ad7768_clk_config[idx].pwrmode); ret = ad7768_spi_reg_write(st, AD7768_REG_POWER_CLOCK, pwr_mode); if (ret < 0) return ret; ret = ad7768_set_dig_fil(st, ad7768_clk_config[idx].dec_rate); if (ret < 0) return ret; st->samp_freq = DIV_ROUND_CLOSEST(st->mclk_freq, ad7768_clk_config[idx].clk_div); return 0; } static ssize_t ad7768_sampling_freq_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7768_state *st = iio_priv(indio_dev); unsigned int freq; int i, len = 0; for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { freq = DIV_ROUND_CLOSEST(st->mclk_freq, ad7768_clk_config[i].clk_div); len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", freq); } buf[len - 1] = '\n'; return len; } static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(ad7768_sampling_freq_avail); static int ad7768_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct ad7768_state *st = iio_priv(indio_dev); int scale_uv, ret; switch (info) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = ad7768_scan_direct(indio_dev); if (ret >= 0) *val = ret; iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: scale_uv = regulator_get_voltage(st->vref); if (scale_uv < 0) return scale_uv; *val = (scale_uv * 2) / 1000; *val2 = chan->scan_type.realbits; return IIO_VAL_FRACTIONAL_LOG2; case IIO_CHAN_INFO_SAMP_FREQ: *val = st->samp_freq; return IIO_VAL_INT; } return -EINVAL; } static int ad7768_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct ad7768_state *st = iio_priv(indio_dev); switch (info) { case IIO_CHAN_INFO_SAMP_FREQ: return ad7768_set_freq(st, val); default: return -EINVAL; } } static int ad7768_read_label(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, char *label) { struct ad7768_state *st = iio_priv(indio_dev); return sprintf(label, "%s\n", st->labels[chan->channel]); } static struct attribute *ad7768_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, NULL }; static const struct attribute_group ad7768_group = { .attrs = ad7768_attributes, }; static const struct iio_info ad7768_info = { .attrs = &ad7768_group, .read_raw = &ad7768_read_raw, .write_raw = &ad7768_write_raw, .read_label = ad7768_read_label, .debugfs_reg_access = &ad7768_reg_access, }; static int ad7768_setup(struct ad7768_state *st) { int ret; /* * Two writes to the SPI_RESET[1:0] bits are required to initiate * a software reset. The bits must first be set to 11, and then * to 10. When the sequence is detected, the reset occurs. * See the datasheet, page 70. */ ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x3); if (ret) return ret; ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x2); if (ret) return ret; st->gpio_sync_in = devm_gpiod_get(&st->spi->dev, "adi,sync-in", GPIOD_OUT_LOW); if (IS_ERR(st->gpio_sync_in)) return PTR_ERR(st->gpio_sync_in); /* Set the default sampling frequency to 32000 kSPS */ return ad7768_set_freq(st, 32000); } static irqreturn_t ad7768_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ad7768_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); ret = spi_read(st->spi, &st->data.scan.chan, 3); if (ret < 0) goto err_unlock; iio_push_to_buffers_with_timestamp(indio_dev, &st->data.scan, iio_get_time_ns(indio_dev)); err_unlock: iio_trigger_notify_done(indio_dev->trig); mutex_unlock(&st->lock); return IRQ_HANDLED; } static irqreturn_t ad7768_interrupt(int irq, void *dev_id) { struct iio_dev *indio_dev = dev_id; struct ad7768_state *st = iio_priv(indio_dev); if (iio_buffer_enabled(indio_dev)) iio_trigger_poll(st->trig); else complete(&st->completion); return IRQ_HANDLED; }; static int ad7768_buffer_postenable(struct iio_dev *indio_dev) { struct ad7768_state *st = iio_priv(indio_dev); /* * Write a 1 to the LSB of the INTERFACE_FORMAT register to enter * continuous read mode. Subsequent data reads do not require an * initial 8-bit write to query the ADC_DATA register. */ return ad7768_spi_reg_write(st, AD7768_REG_INTERFACE_FORMAT, 0x01); } static int ad7768_buffer_predisable(struct iio_dev *indio_dev) { struct ad7768_state *st = iio_priv(indio_dev); /* * To exit continuous read mode, perform a single read of the ADC_DATA * reg (0x2C), which allows further configuration of the device. */ return ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); } static const struct iio_buffer_setup_ops ad7768_buffer_ops = { .postenable = &ad7768_buffer_postenable, .predisable = &ad7768_buffer_predisable, }; static const struct iio_trigger_ops ad7768_trigger_ops = { .validate_device = iio_trigger_validate_own_device, }; static void ad7768_regulator_disable(void *data) { struct ad7768_state *st = data; regulator_disable(st->vref); } static int ad7768_set_channel_label(struct iio_dev *indio_dev, int num_channels) { struct ad7768_state *st = iio_priv(indio_dev); struct device *device = indio_dev->dev.parent; const char *label; int crt_ch = 0; device_for_each_child_node_scoped(device, child) { if (fwnode_property_read_u32(child, "reg", &crt_ch)) continue; if (crt_ch >= num_channels) continue; if (fwnode_property_read_string(child, "label", &label)) continue; st->labels[crt_ch] = label; } return 0; } static int ad7768_probe(struct spi_device *spi) { struct ad7768_state *st; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->spi = spi; st->vref = devm_regulator_get(&spi->dev, "vref"); if (IS_ERR(st->vref)) return PTR_ERR(st->vref); ret = regulator_enable(st->vref); if (ret) { dev_err(&spi->dev, "Failed to enable specified vref supply\n"); return ret; } ret = devm_add_action_or_reset(&spi->dev, ad7768_regulator_disable, st); if (ret) return ret; st->mclk = devm_clk_get_enabled(&spi->dev, "mclk"); if (IS_ERR(st->mclk)) return PTR_ERR(st->mclk); st->mclk_freq = clk_get_rate(st->mclk); mutex_init(&st->lock); indio_dev->channels = ad7768_channels; indio_dev->num_channels = ARRAY_SIZE(ad7768_channels); indio_dev->name = spi_get_device_id(spi)->name; indio_dev->info = &ad7768_info; indio_dev->modes = INDIO_DIRECT_MODE; ret = ad7768_setup(st); if (ret < 0) { dev_err(&spi->dev, "AD7768 setup failed\n"); return ret; } st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!st->trig) return -ENOMEM; st->trig->ops = &ad7768_trigger_ops; iio_trigger_set_drvdata(st->trig, indio_dev); ret = devm_iio_trigger_register(&spi->dev, st->trig); if (ret) return ret; indio_dev->trig = iio_trigger_get(st->trig); init_completion(&st->completion); ret = ad7768_set_channel_label(indio_dev, ARRAY_SIZE(ad7768_channels)); if (ret) return ret; ret = devm_request_irq(&spi->dev, spi->irq, &ad7768_interrupt, IRQF_TRIGGER_RISING | IRQF_ONESHOT, indio_dev->name, indio_dev); if (ret) return ret; ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, &iio_pollfunc_store_time, &ad7768_trigger_handler, &ad7768_buffer_ops); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static const struct spi_device_id ad7768_id_table[] = { { "ad7768-1", 0 }, {} }; MODULE_DEVICE_TABLE(spi, ad7768_id_table); static const struct of_device_id ad7768_of_match[] = { { .compatible = "adi,ad7768-1" }, { } }; MODULE_DEVICE_TABLE(of, ad7768_of_match); static struct spi_driver ad7768_driver = { .driver = { .name = "ad7768-1", .of_match_table = ad7768_of_match, }, .probe = ad7768_probe, .id_table = ad7768_id_table, }; module_spi_driver(ad7768_driver); MODULE_AUTHOR("Stefan Popa "); MODULE_DESCRIPTION("Analog Devices AD7768-1 ADC driver"); MODULE_LICENSE("GPL v2");