// SPDX-License-Identifier: GPL-2.0-or-later /* * fs/eventpoll.c (Efficient event retrieval implementation) * Copyright (C) 2001,...,2009 Davide Libenzi * * Davide Libenzi */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * LOCKING: * There are three level of locking required by epoll : * * 1) epmutex (mutex) * 2) ep->mtx (mutex) * 3) ep->lock (rwlock) * * The acquire order is the one listed above, from 1 to 3. * We need a rwlock (ep->lock) because we manipulate objects * from inside the poll callback, that might be triggered from * a wake_up() that in turn might be called from IRQ context. * So we can't sleep inside the poll callback and hence we need * a spinlock. During the event transfer loop (from kernel to * user space) we could end up sleeping due a copy_to_user(), so * we need a lock that will allow us to sleep. This lock is a * mutex (ep->mtx). It is acquired during the event transfer loop, * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). * Then we also need a global mutex to serialize eventpoll_release_file() * and ep_free(). * This mutex is acquired by ep_free() during the epoll file * cleanup path and it is also acquired by eventpoll_release_file() * if a file has been pushed inside an epoll set and it is then * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). * It is also acquired when inserting an epoll fd onto another epoll * fd. We do this so that we walk the epoll tree and ensure that this * insertion does not create a cycle of epoll file descriptors, which * could lead to deadlock. We need a global mutex to prevent two * simultaneous inserts (A into B and B into A) from racing and * constructing a cycle without either insert observing that it is * going to. * It is necessary to acquire multiple "ep->mtx"es at once in the * case when one epoll fd is added to another. In this case, we * always acquire the locks in the order of nesting (i.e. after * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired * before e2->mtx). Since we disallow cycles of epoll file * descriptors, this ensures that the mutexes are well-ordered. In * order to communicate this nesting to lockdep, when walking a tree * of epoll file descriptors, we use the current recursion depth as * the lockdep subkey. * It is possible to drop the "ep->mtx" and to use the global * mutex "epmutex" (together with "ep->lock") to have it working, * but having "ep->mtx" will make the interface more scalable. * Events that require holding "epmutex" are very rare, while for * normal operations the epoll private "ep->mtx" will guarantee * a better scalability. */ /* Epoll private bits inside the event mask */ #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) /* Maximum number of nesting allowed inside epoll sets */ #define EP_MAX_NESTS 4 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) #define EP_UNACTIVE_PTR ((void *) -1L) #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) struct epoll_filefd { struct file *file; int fd; } __packed; /* Wait structure used by the poll hooks */ struct eppoll_entry { /* List header used to link this structure to the "struct epitem" */ struct eppoll_entry *next; /* The "base" pointer is set to the container "struct epitem" */ struct epitem *base; /* * Wait queue item that will be linked to the target file wait * queue head. */ wait_queue_entry_t wait; /* The wait queue head that linked the "wait" wait queue item */ wait_queue_head_t *whead; }; /* * Each file descriptor added to the eventpoll interface will * have an entry of this type linked to the "rbr" RB tree. * Avoid increasing the size of this struct, there can be many thousands * of these on a server and we do not want this to take another cache line. */ struct epitem { union { /* RB tree node links this structure to the eventpoll RB tree */ struct rb_node rbn; /* Used to free the struct epitem */ struct rcu_head rcu; }; /* List header used to link this structure to the eventpoll ready list */ struct list_head rdllink; /* * Works together "struct eventpoll"->ovflist in keeping the * single linked chain of items. */ struct epitem *next; /* The file descriptor information this item refers to */ struct epoll_filefd ffd; /* List containing poll wait queues */ struct eppoll_entry *pwqlist; /* The "container" of this item */ struct eventpoll *ep; /* List header used to link this item to the "struct file" items list */ struct hlist_node fllink; /* wakeup_source used when EPOLLWAKEUP is set */ struct wakeup_source __rcu *ws; /* The structure that describe the interested events and the source fd */ struct epoll_event event; }; /* * This structure is stored inside the "private_data" member of the file * structure and represents the main data structure for the eventpoll * interface. */ struct eventpoll { /* * This mutex is used to ensure that files are not removed * while epoll is using them. This is held during the event * collection loop, the file cleanup path, the epoll file exit * code and the ctl operations. */ struct mutex mtx; /* Wait queue used by sys_epoll_wait() */ wait_queue_head_t wq; /* Wait queue used by file->poll() */ wait_queue_head_t poll_wait; /* List of ready file descriptors */ struct list_head rdllist; /* Lock which protects rdllist and ovflist */ rwlock_t lock; /* RB tree root used to store monitored fd structs */ struct rb_root_cached rbr; /* * This is a single linked list that chains all the "struct epitem" that * happened while transferring ready events to userspace w/out * holding ->lock. */ struct epitem *ovflist; /* wakeup_source used when ep_scan_ready_list is running */ struct wakeup_source *ws; /* The user that created the eventpoll descriptor */ struct user_struct *user; struct file *file; /* used to optimize loop detection check */ u64 gen; struct hlist_head refs; #ifdef CONFIG_NET_RX_BUSY_POLL /* used to track busy poll napi_id */ unsigned int napi_id; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC /* tracks wakeup nests for lockdep validation */ u8 nests; #endif }; /* Wrapper struct used by poll queueing */ struct ep_pqueue { poll_table pt; struct epitem *epi; }; /* * Configuration options available inside /proc/sys/fs/epoll/ */ /* Maximum number of epoll watched descriptors, per user */ static long max_user_watches __read_mostly; /* * This mutex is used to serialize ep_free() and eventpoll_release_file(). */ static DEFINE_MUTEX(epmutex); static u64 loop_check_gen = 0; /* Used to check for epoll file descriptor inclusion loops */ static struct eventpoll *inserting_into; /* Slab cache used to allocate "struct epitem" */ static struct kmem_cache *epi_cache __read_mostly; /* Slab cache used to allocate "struct eppoll_entry" */ static struct kmem_cache *pwq_cache __read_mostly; /* * List of files with newly added links, where we may need to limit the number * of emanating paths. Protected by the epmutex. */ struct epitems_head { struct hlist_head epitems; struct epitems_head *next; }; static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; static struct kmem_cache *ephead_cache __read_mostly; static inline void free_ephead(struct epitems_head *head) { if (head) kmem_cache_free(ephead_cache, head); } static void list_file(struct file *file) { struct epitems_head *head; head = container_of(file->f_ep, struct epitems_head, epitems); if (!head->next) { head->next = tfile_check_list; tfile_check_list = head; } } static void unlist_file(struct epitems_head *head) { struct epitems_head *to_free = head; struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); if (p) { struct epitem *epi= container_of(p, struct epitem, fllink); spin_lock(&epi->ffd.file->f_lock); if (!hlist_empty(&head->epitems)) to_free = NULL; head->next = NULL; spin_unlock(&epi->ffd.file->f_lock); } free_ephead(to_free); } #ifdef CONFIG_SYSCTL #include static long long_zero; static long long_max = LONG_MAX; static struct ctl_table epoll_table[] = { { .procname = "max_user_watches", .data = &max_user_watches, .maxlen = sizeof(max_user_watches), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = &long_zero, .extra2 = &long_max, }, { } }; static void __init epoll_sysctls_init(void) { register_sysctl("fs/epoll", epoll_table); } #else #define epoll_sysctls_init() do { } while (0) #endif /* CONFIG_SYSCTL */ static const struct file_operations eventpoll_fops; static inline int is_file_epoll(struct file *f) { return f->f_op == &eventpoll_fops; } /* Setup the structure that is used as key for the RB tree */ static inline void ep_set_ffd(struct epoll_filefd *ffd, struct file *file, int fd) { ffd->file = file; ffd->fd = fd; } /* Compare RB tree keys */ static inline int ep_cmp_ffd(struct epoll_filefd *p1, struct epoll_filefd *p2) { return (p1->file > p2->file ? +1: (p1->file < p2->file ? -1 : p1->fd - p2->fd)); } /* Tells us if the item is currently linked */ static inline int ep_is_linked(struct epitem *epi) { return !list_empty(&epi->rdllink); } static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) { return container_of(p, struct eppoll_entry, wait); } /* Get the "struct epitem" from a wait queue pointer */ static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) { return container_of(p, struct eppoll_entry, wait)->base; } /** * ep_events_available - Checks if ready events might be available. * * @ep: Pointer to the eventpoll context. * * Return: a value different than %zero if ready events are available, * or %zero otherwise. */ static inline int ep_events_available(struct eventpoll *ep) { return !list_empty_careful(&ep->rdllist) || READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; } #ifdef CONFIG_NET_RX_BUSY_POLL static bool ep_busy_loop_end(void *p, unsigned long start_time) { struct eventpoll *ep = p; return ep_events_available(ep) || busy_loop_timeout(start_time); } /* * Busy poll if globally on and supporting sockets found && no events, * busy loop will return if need_resched or ep_events_available. * * we must do our busy polling with irqs enabled */ static bool ep_busy_loop(struct eventpoll *ep, int nonblock) { unsigned int napi_id = READ_ONCE(ep->napi_id); if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, BUSY_POLL_BUDGET); if (ep_events_available(ep)) return true; /* * Busy poll timed out. Drop NAPI ID for now, we can add * it back in when we have moved a socket with a valid NAPI * ID onto the ready list. */ ep->napi_id = 0; return false; } return false; } /* * Set epoll busy poll NAPI ID from sk. */ static inline void ep_set_busy_poll_napi_id(struct epitem *epi) { struct eventpoll *ep; unsigned int napi_id; struct socket *sock; struct sock *sk; if (!net_busy_loop_on()) return; sock = sock_from_file(epi->ffd.file); if (!sock) return; sk = sock->sk; if (!sk) return; napi_id = READ_ONCE(sk->sk_napi_id); ep = epi->ep; /* Non-NAPI IDs can be rejected * or * Nothing to do if we already have this ID */ if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) return; /* record NAPI ID for use in next busy poll */ ep->napi_id = napi_id; } #else static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) { return false; } static inline void ep_set_busy_poll_napi_id(struct epitem *epi) { } #endif /* CONFIG_NET_RX_BUSY_POLL */ /* * As described in commit 0ccf831cb lockdep: annotate epoll * the use of wait queues used by epoll is done in a very controlled * manner. Wake ups can nest inside each other, but are never done * with the same locking. For example: * * dfd = socket(...); * efd1 = epoll_create(); * efd2 = epoll_create(); * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); * * When a packet arrives to the device underneath "dfd", the net code will * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a * callback wakeup entry on that queue, and the wake_up() performed by the * "dfd" net code will end up in ep_poll_callback(). At this point epoll * (efd1) notices that it may have some event ready, so it needs to wake up * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() * that ends up in another wake_up(), after having checked about the * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to * avoid stack blasting. * * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle * this special case of epoll. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, unsigned pollflags) { struct eventpoll *ep_src; unsigned long flags; u8 nests = 0; /* * To set the subclass or nesting level for spin_lock_irqsave_nested() * it might be natural to create a per-cpu nest count. However, since * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can * schedule() in the -rt kernel, the per-cpu variable are no longer * protected. Thus, we are introducing a per eventpoll nest field. * If we are not being call from ep_poll_callback(), epi is NULL and * we are at the first level of nesting, 0. Otherwise, we are being * called from ep_poll_callback() and if a previous wakeup source is * not an epoll file itself, we are at depth 1 since the wakeup source * is depth 0. If the wakeup source is a previous epoll file in the * wakeup chain then we use its nests value and record ours as * nests + 1. The previous epoll file nests value is stable since its * already holding its own poll_wait.lock. */ if (epi) { if ((is_file_epoll(epi->ffd.file))) { ep_src = epi->ffd.file->private_data; nests = ep_src->nests; } else { nests = 1; } } spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); ep->nests = nests + 1; wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); ep->nests = 0; spin_unlock_irqrestore(&ep->poll_wait.lock, flags); } #else static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, unsigned pollflags) { wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); } #endif static void ep_remove_wait_queue(struct eppoll_entry *pwq) { wait_queue_head_t *whead; rcu_read_lock(); /* * If it is cleared by POLLFREE, it should be rcu-safe. * If we read NULL we need a barrier paired with * smp_store_release() in ep_poll_callback(), otherwise * we rely on whead->lock. */ whead = smp_load_acquire(&pwq->whead); if (whead) remove_wait_queue(whead, &pwq->wait); rcu_read_unlock(); } /* * This function unregisters poll callbacks from the associated file * descriptor. Must be called with "mtx" held (or "epmutex" if called from * ep_free). */ static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) { struct eppoll_entry **p = &epi->pwqlist; struct eppoll_entry *pwq; while ((pwq = *p) != NULL) { *p = pwq->next; ep_remove_wait_queue(pwq); kmem_cache_free(pwq_cache, pwq); } } /* call only when ep->mtx is held */ static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) { return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); } /* call only when ep->mtx is held */ static inline void ep_pm_stay_awake(struct epitem *epi) { struct wakeup_source *ws = ep_wakeup_source(epi); if (ws) __pm_stay_awake(ws); } static inline bool ep_has_wakeup_source(struct epitem *epi) { return rcu_access_pointer(epi->ws) ? true : false; } /* call when ep->mtx cannot be held (ep_poll_callback) */ static inline void ep_pm_stay_awake_rcu(struct epitem *epi) { struct wakeup_source *ws; rcu_read_lock(); ws = rcu_dereference(epi->ws); if (ws) __pm_stay_awake(ws); rcu_read_unlock(); } /* * ep->mutex needs to be held because we could be hit by * eventpoll_release_file() and epoll_ctl(). */ static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) { /* * Steal the ready list, and re-init the original one to the * empty list. Also, set ep->ovflist to NULL so that events * happening while looping w/out locks, are not lost. We cannot * have the poll callback to queue directly on ep->rdllist, * because we want the "sproc" callback to be able to do it * in a lockless way. */ lockdep_assert_irqs_enabled(); write_lock_irq(&ep->lock); list_splice_init(&ep->rdllist, txlist); WRITE_ONCE(ep->ovflist, NULL); write_unlock_irq(&ep->lock); } static void ep_done_scan(struct eventpoll *ep, struct list_head *txlist) { struct epitem *epi, *nepi; write_lock_irq(&ep->lock); /* * During the time we spent inside the "sproc" callback, some * other events might have been queued by the poll callback. * We re-insert them inside the main ready-list here. */ for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { /* * We need to check if the item is already in the list. * During the "sproc" callback execution time, items are * queued into ->ovflist but the "txlist" might already * contain them, and the list_splice() below takes care of them. */ if (!ep_is_linked(epi)) { /* * ->ovflist is LIFO, so we have to reverse it in order * to keep in FIFO. */ list_add(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); } } /* * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after * releasing the lock, events will be queued in the normal way inside * ep->rdllist. */ WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); /* * Quickly re-inject items left on "txlist". */ list_splice(txlist, &ep->rdllist); __pm_relax(ep->ws); if (!list_empty(&ep->rdllist)) { if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); } write_unlock_irq(&ep->lock); } static void epi_rcu_free(struct rcu_head *head) { struct epitem *epi = container_of(head, struct epitem, rcu); kmem_cache_free(epi_cache, epi); } /* * Removes a "struct epitem" from the eventpoll RB tree and deallocates * all the associated resources. Must be called with "mtx" held. */ static int ep_remove(struct eventpoll *ep, struct epitem *epi) { struct file *file = epi->ffd.file; struct epitems_head *to_free; struct hlist_head *head; lockdep_assert_irqs_enabled(); /* * Removes poll wait queue hooks. */ ep_unregister_pollwait(ep, epi); /* Remove the current item from the list of epoll hooks */ spin_lock(&file->f_lock); to_free = NULL; head = file->f_ep; if (head->first == &epi->fllink && !epi->fllink.next) { file->f_ep = NULL; if (!is_file_epoll(file)) { struct epitems_head *v; v = container_of(head, struct epitems_head, epitems); if (!smp_load_acquire(&v->next)) to_free = v; } } hlist_del_rcu(&epi->fllink); spin_unlock(&file->f_lock); free_ephead(to_free); rb_erase_cached(&epi->rbn, &ep->rbr); write_lock_irq(&ep->lock); if (ep_is_linked(epi)) list_del_init(&epi->rdllink); write_unlock_irq(&ep->lock); wakeup_source_unregister(ep_wakeup_source(epi)); /* * At this point it is safe to free the eventpoll item. Use the union * field epi->rcu, since we are trying to minimize the size of * 'struct epitem'. The 'rbn' field is no longer in use. Protected by * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make * use of the rbn field. */ call_rcu(&epi->rcu, epi_rcu_free); percpu_counter_dec(&ep->user->epoll_watches); return 0; } static void ep_free(struct eventpoll *ep) { struct rb_node *rbp; struct epitem *epi; /* We need to release all tasks waiting for these file */ if (waitqueue_active(&ep->poll_wait)) ep_poll_safewake(ep, NULL, 0); /* * We need to lock this because we could be hit by * eventpoll_release_file() while we're freeing the "struct eventpoll". * We do not need to hold "ep->mtx" here because the epoll file * is on the way to be removed and no one has references to it * anymore. The only hit might come from eventpoll_release_file() but * holding "epmutex" is sufficient here. */ mutex_lock(&epmutex); /* * Walks through the whole tree by unregistering poll callbacks. */ for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { epi = rb_entry(rbp, struct epitem, rbn); ep_unregister_pollwait(ep, epi); cond_resched(); } /* * Walks through the whole tree by freeing each "struct epitem". At this * point we are sure no poll callbacks will be lingering around, and also by * holding "epmutex" we can be sure that no file cleanup code will hit * us during this operation. So we can avoid the lock on "ep->lock". * We do not need to lock ep->mtx, either, we only do it to prevent * a lockdep warning. */ mutex_lock(&ep->mtx); while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { epi = rb_entry(rbp, struct epitem, rbn); ep_remove(ep, epi); cond_resched(); } mutex_unlock(&ep->mtx); mutex_unlock(&epmutex); mutex_destroy(&ep->mtx); free_uid(ep->user); wakeup_source_unregister(ep->ws); kfree(ep); } static int ep_eventpoll_release(struct inode *inode, struct file *file) { struct eventpoll *ep = file->private_data; if (ep) ep_free(ep); return 0; } static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) { struct eventpoll *ep = file->private_data; LIST_HEAD(txlist); struct epitem *epi, *tmp; poll_table pt; __poll_t res = 0; init_poll_funcptr(&pt, NULL); /* Insert inside our poll wait queue */ poll_wait(file, &ep->poll_wait, wait); /* * Proceed to find out if wanted events are really available inside * the ready list. */ mutex_lock_nested(&ep->mtx, depth); ep_start_scan(ep, &txlist); list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { if (ep_item_poll(epi, &pt, depth + 1)) { res = EPOLLIN | EPOLLRDNORM; break; } else { /* * Item has been dropped into the ready list by the poll * callback, but it's not actually ready, as far as * caller requested events goes. We can remove it here. */ __pm_relax(ep_wakeup_source(epi)); list_del_init(&epi->rdllink); } } ep_done_scan(ep, &txlist); mutex_unlock(&ep->mtx); return res; } /* * The ffd.file pointer may be in the process of being torn down due to * being closed, but we may not have finished eventpoll_release() yet. * * Normally, even with the atomic_long_inc_not_zero, the file may have * been free'd and then gotten re-allocated to something else (since * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). * * But for epoll, users hold the ep->mtx mutex, and as such any file in * the process of being free'd will block in eventpoll_release_file() * and thus the underlying file allocation will not be free'd, and the * file re-use cannot happen. * * For the same reason we can avoid a rcu_read_lock() around the * operation - 'ffd.file' cannot go away even if the refcount has * reached zero (but we must still not call out to ->poll() functions * etc). */ static struct file *epi_fget(const struct epitem *epi) { struct file *file; file = epi->ffd.file; if (!atomic_long_inc_not_zero(&file->f_count)) file = NULL; return file; } /* * Differs from ep_eventpoll_poll() in that internal callers already have * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() * is correctly annotated. */ static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth) { struct file *file = epi_fget(epi); __poll_t res; /* * We could return EPOLLERR | EPOLLHUP or something, but let's * treat this more as "file doesn't exist, poll didn't happen". */ if (!file) return 0; pt->_key = epi->event.events; if (!is_file_epoll(file)) res = vfs_poll(file, pt); else res = __ep_eventpoll_poll(file, pt, depth); fput(file); return res & epi->event.events; } static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) { return __ep_eventpoll_poll(file, wait, 0); } #ifdef CONFIG_PROC_FS static void ep_show_fdinfo(struct seq_file *m, struct file *f) { struct eventpoll *ep = f->private_data; struct rb_node *rbp; mutex_lock(&ep->mtx); for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { struct epitem *epi = rb_entry(rbp, struct epitem, rbn); struct inode *inode = file_inode(epi->ffd.file); seq_printf(m, "tfd: %8d events: %8x data: %16llx " " pos:%lli ino:%lx sdev:%x\n", epi->ffd.fd, epi->event.events, (long long)epi->event.data, (long long)epi->ffd.file->f_pos, inode->i_ino, inode->i_sb->s_dev); if (seq_has_overflowed(m)) break; } mutex_unlock(&ep->mtx); } #endif /* File callbacks that implement the eventpoll file behaviour */ static const struct file_operations eventpoll_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = ep_show_fdinfo, #endif .release = ep_eventpoll_release, .poll = ep_eventpoll_poll, .llseek = noop_llseek, }; /* * This is called from eventpoll_release() to unlink files from the eventpoll * interface. We need to have this facility to cleanup correctly files that are * closed without being removed from the eventpoll interface. */ void eventpoll_release_file(struct file *file) { struct eventpoll *ep; struct epitem *epi; struct hlist_node *next; /* * We don't want to get "file->f_lock" because it is not * necessary. It is not necessary because we're in the "struct file" * cleanup path, and this means that no one is using this file anymore. * So, for example, epoll_ctl() cannot hit here since if we reach this * point, the file counter already went to zero and fget() would fail. * The only hit might come from ep_free() but by holding the mutex * will correctly serialize the operation. We do need to acquire * "ep->mtx" after "epmutex" because ep_remove() requires it when called * from anywhere but ep_free(). * * Besides, ep_remove() acquires the lock, so we can't hold it here. */ mutex_lock(&epmutex); if (unlikely(!file->f_ep)) { mutex_unlock(&epmutex); return; } hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) { ep = epi->ep; mutex_lock_nested(&ep->mtx, 0); ep_remove(ep, epi); mutex_unlock(&ep->mtx); } mutex_unlock(&epmutex); } static int ep_alloc(struct eventpoll **pep) { int error; struct user_struct *user; struct eventpoll *ep; user = get_current_user(); error = -ENOMEM; ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (unlikely(!ep)) goto free_uid; mutex_init(&ep->mtx); rwlock_init(&ep->lock); init_waitqueue_head(&ep->wq); init_waitqueue_head(&ep->poll_wait); INIT_LIST_HEAD(&ep->rdllist); ep->rbr = RB_ROOT_CACHED; ep->ovflist = EP_UNACTIVE_PTR; ep->user = user; *pep = ep; return 0; free_uid: free_uid(user); return error; } /* * Search the file inside the eventpoll tree. The RB tree operations * are protected by the "mtx" mutex, and ep_find() must be called with * "mtx" held. */ static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) { int kcmp; struct rb_node *rbp; struct epitem *epi, *epir = NULL; struct epoll_filefd ffd; ep_set_ffd(&ffd, file, fd); for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { epi = rb_entry(rbp, struct epitem, rbn); kcmp = ep_cmp_ffd(&ffd, &epi->ffd); if (kcmp > 0) rbp = rbp->rb_right; else if (kcmp < 0) rbp = rbp->rb_left; else { epir = epi; break; } } return epir; } #ifdef CONFIG_KCMP static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) { struct rb_node *rbp; struct epitem *epi; for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { epi = rb_entry(rbp, struct epitem, rbn); if (epi->ffd.fd == tfd) { if (toff == 0) return epi; else toff--; } cond_resched(); } return NULL; } struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff) { struct file *file_raw; struct eventpoll *ep; struct epitem *epi; if (!is_file_epoll(file)) return ERR_PTR(-EINVAL); ep = file->private_data; mutex_lock(&ep->mtx); epi = ep_find_tfd(ep, tfd, toff); if (epi) file_raw = epi->ffd.file; else file_raw = ERR_PTR(-ENOENT); mutex_unlock(&ep->mtx); return file_raw; } #endif /* CONFIG_KCMP */ /* * Adds a new entry to the tail of the list in a lockless way, i.e. * multiple CPUs are allowed to call this function concurrently. * * Beware: it is necessary to prevent any other modifications of the * existing list until all changes are completed, in other words * concurrent list_add_tail_lockless() calls should be protected * with a read lock, where write lock acts as a barrier which * makes sure all list_add_tail_lockless() calls are fully * completed. * * Also an element can be locklessly added to the list only in one * direction i.e. either to the tail or to the head, otherwise * concurrent access will corrupt the list. * * Return: %false if element has been already added to the list, %true * otherwise. */ static inline bool list_add_tail_lockless(struct list_head *new, struct list_head *head) { struct list_head *prev; /* * This is simple 'new->next = head' operation, but cmpxchg() * is used in order to detect that same element has been just * added to the list from another CPU: the winner observes * new->next == new. */ if (!try_cmpxchg(&new->next, &new, head)) return false; /* * Initially ->next of a new element must be updated with the head * (we are inserting to the tail) and only then pointers are atomically * exchanged. XCHG guarantees memory ordering, thus ->next should be * updated before pointers are actually swapped and pointers are * swapped before prev->next is updated. */ prev = xchg(&head->prev, new); /* * It is safe to modify prev->next and new->prev, because a new element * is added only to the tail and new->next is updated before XCHG. */ prev->next = new; new->prev = prev; return true; } /* * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, * i.e. multiple CPUs are allowed to call this function concurrently. * * Return: %false if epi element has been already chained, %true otherwise. */ static inline bool chain_epi_lockless(struct epitem *epi) { struct eventpoll *ep = epi->ep; /* Fast preliminary check */ if (epi->next != EP_UNACTIVE_PTR) return false; /* Check that the same epi has not been just chained from another CPU */ if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) return false; /* Atomically exchange tail */ epi->next = xchg(&ep->ovflist, epi); return true; } /* * This is the callback that is passed to the wait queue wakeup * mechanism. It is called by the stored file descriptors when they * have events to report. * * This callback takes a read lock in order not to contend with concurrent * events from another file descriptor, thus all modifications to ->rdllist * or ->ovflist are lockless. Read lock is paired with the write lock from * ep_scan_ready_list(), which stops all list modifications and guarantees * that lists state is seen correctly. * * Another thing worth to mention is that ep_poll_callback() can be called * concurrently for the same @epi from different CPUs if poll table was inited * with several wait queues entries. Plural wakeup from different CPUs of a * single wait queue is serialized by wq.lock, but the case when multiple wait * queues are used should be detected accordingly. This is detected using * cmpxchg() operation. */ static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { int pwake = 0; struct epitem *epi = ep_item_from_wait(wait); struct eventpoll *ep = epi->ep; __poll_t pollflags = key_to_poll(key); unsigned long flags; int ewake = 0; read_lock_irqsave(&ep->lock, flags); ep_set_busy_poll_napi_id(epi); /* * If the event mask does not contain any poll(2) event, we consider the * descriptor to be disabled. This condition is likely the effect of the * EPOLLONESHOT bit that disables the descriptor when an event is received, * until the next EPOLL_CTL_MOD will be issued. */ if (!(epi->event.events & ~EP_PRIVATE_BITS)) goto out_unlock; /* * Check the events coming with the callback. At this stage, not * every device reports the events in the "key" parameter of the * callback. We need to be able to handle both cases here, hence the * test for "key" != NULL before the event match test. */ if (pollflags && !(pollflags & epi->event.events)) goto out_unlock; /* * If we are transferring events to userspace, we can hold no locks * (because we're accessing user memory, and because of linux f_op->poll() * semantics). All the events that happen during that period of time are * chained in ep->ovflist and requeued later on. */ if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { if (chain_epi_lockless(epi)) ep_pm_stay_awake_rcu(epi); } else if (!ep_is_linked(epi)) { /* In the usual case, add event to ready list. */ if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) ep_pm_stay_awake_rcu(epi); } /* * Wake up ( if active ) both the eventpoll wait list and the ->poll() * wait list. */ if (waitqueue_active(&ep->wq)) { if ((epi->event.events & EPOLLEXCLUSIVE) && !(pollflags & POLLFREE)) { switch (pollflags & EPOLLINOUT_BITS) { case EPOLLIN: if (epi->event.events & EPOLLIN) ewake = 1; break; case EPOLLOUT: if (epi->event.events & EPOLLOUT) ewake = 1; break; case 0: ewake = 1; break; } } wake_up(&ep->wq); } if (waitqueue_active(&ep->poll_wait)) pwake++; out_unlock: read_unlock_irqrestore(&ep->lock, flags); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); if (!(epi->event.events & EPOLLEXCLUSIVE)) ewake = 1; if (pollflags & POLLFREE) { /* * If we race with ep_remove_wait_queue() it can miss * ->whead = NULL and do another remove_wait_queue() after * us, so we can't use __remove_wait_queue(). */ list_del_init(&wait->entry); /* * ->whead != NULL protects us from the race with ep_free() * or ep_remove(), ep_remove_wait_queue() takes whead->lock * held by the caller. Once we nullify it, nothing protects * ep/epi or even wait. */ smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); } return ewake; } /* * This is the callback that is used to add our wait queue to the * target file wakeup lists. */ static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, poll_table *pt) { struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); struct epitem *epi = epq->epi; struct eppoll_entry *pwq; if (unlikely(!epi)) // an earlier allocation has failed return; pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); if (unlikely(!pwq)) { epq->epi = NULL; return; } init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); pwq->whead = whead; pwq->base = epi; if (epi->event.events & EPOLLEXCLUSIVE) add_wait_queue_exclusive(whead, &pwq->wait); else add_wait_queue(whead, &pwq->wait); pwq->next = epi->pwqlist; epi->pwqlist = pwq; } static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) { int kcmp; struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; struct epitem *epic; bool leftmost = true; while (*p) { parent = *p; epic = rb_entry(parent, struct epitem, rbn); kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); if (kcmp > 0) { p = &parent->rb_right; leftmost = false; } else p = &parent->rb_left; } rb_link_node(&epi->rbn, parent, p); rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); } #define PATH_ARR_SIZE 5 /* * These are the number paths of length 1 to 5, that we are allowing to emanate * from a single file of interest. For example, we allow 1000 paths of length * 1, to emanate from each file of interest. This essentially represents the * potential wakeup paths, which need to be limited in order to avoid massive * uncontrolled wakeup storms. The common use case should be a single ep which * is connected to n file sources. In this case each file source has 1 path * of length 1. Thus, the numbers below should be more than sufficient. These * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify * and delete can't add additional paths. Protected by the epmutex. */ static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; static int path_count[PATH_ARR_SIZE]; static int path_count_inc(int nests) { /* Allow an arbitrary number of depth 1 paths */ if (nests == 0) return 0; if (++path_count[nests] > path_limits[nests]) return -1; return 0; } static void path_count_init(void) { int i; for (i = 0; i < PATH_ARR_SIZE; i++) path_count[i] = 0; } static int reverse_path_check_proc(struct hlist_head *refs, int depth) { int error = 0; struct epitem *epi; if (depth > EP_MAX_NESTS) /* too deep nesting */ return -1; /* CTL_DEL can remove links here, but that can't increase our count */ hlist_for_each_entry_rcu(epi, refs, fllink) { struct hlist_head *refs = &epi->ep->refs; if (hlist_empty(refs)) error = path_count_inc(depth); else error = reverse_path_check_proc(refs, depth + 1); if (error != 0) break; } return error; } /** * reverse_path_check - The tfile_check_list is list of epitem_head, which have * links that are proposed to be newly added. We need to * make sure that those added links don't add too many * paths such that we will spend all our time waking up * eventpoll objects. * * Return: %zero if the proposed links don't create too many paths, * %-1 otherwise. */ static int reverse_path_check(void) { struct epitems_head *p; for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { int error; path_count_init(); rcu_read_lock(); error = reverse_path_check_proc(&p->epitems, 0); rcu_read_unlock(); if (error) return error; } return 0; } static int ep_create_wakeup_source(struct epitem *epi) { struct name_snapshot n; struct wakeup_source *ws; if (!epi->ep->ws) { epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); if (!epi->ep->ws) return -ENOMEM; } take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); ws = wakeup_source_register(NULL, n.name.name); release_dentry_name_snapshot(&n); if (!ws) return -ENOMEM; rcu_assign_pointer(epi->ws, ws); return 0; } /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ static noinline void ep_destroy_wakeup_source(struct epitem *epi) { struct wakeup_source *ws = ep_wakeup_source(epi); RCU_INIT_POINTER(epi->ws, NULL); /* * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is * used internally by wakeup_source_remove, too (called by * wakeup_source_unregister), so we cannot use call_rcu */ synchronize_rcu(); wakeup_source_unregister(ws); } static int attach_epitem(struct file *file, struct epitem *epi) { struct epitems_head *to_free = NULL; struct hlist_head *head = NULL; struct eventpoll *ep = NULL; if (is_file_epoll(file)) ep = file->private_data; if (ep) { head = &ep->refs; } else if (!READ_ONCE(file->f_ep)) { allocate: to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); if (!to_free) return -ENOMEM; head = &to_free->epitems; } spin_lock(&file->f_lock); if (!file->f_ep) { if (unlikely(!head)) { spin_unlock(&file->f_lock); goto allocate; } file->f_ep = head; to_free = NULL; } hlist_add_head_rcu(&epi->fllink, file->f_ep); spin_unlock(&file->f_lock); free_ephead(to_free); return 0; } /* * Must be called with "mtx" held. */ static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, struct file *tfile, int fd, int full_check) { int error, pwake = 0; __poll_t revents; struct epitem *epi; struct ep_pqueue epq; struct eventpoll *tep = NULL; if (is_file_epoll(tfile)) tep = tfile->private_data; lockdep_assert_irqs_enabled(); if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, max_user_watches) >= 0)) return -ENOSPC; percpu_counter_inc(&ep->user->epoll_watches); if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { percpu_counter_dec(&ep->user->epoll_watches); return -ENOMEM; } /* Item initialization follow here ... */ INIT_LIST_HEAD(&epi->rdllink); epi->ep = ep; ep_set_ffd(&epi->ffd, tfile, fd); epi->event = *event; epi->next = EP_UNACTIVE_PTR; if (tep) mutex_lock_nested(&tep->mtx, 1); /* Add the current item to the list of active epoll hook for this file */ if (unlikely(attach_epitem(tfile, epi) < 0)) { if (tep) mutex_unlock(&tep->mtx); kmem_cache_free(epi_cache, epi); percpu_counter_dec(&ep->user->epoll_watches); return -ENOMEM; } if (full_check && !tep) list_file(tfile); /* * Add the current item to the RB tree. All RB tree operations are * protected by "mtx", and ep_insert() is called with "mtx" held. */ ep_rbtree_insert(ep, epi); if (tep) mutex_unlock(&tep->mtx); /* now check if we've created too many backpaths */ if (unlikely(full_check && reverse_path_check())) { ep_remove(ep, epi); return -EINVAL; } if (epi->event.events & EPOLLWAKEUP) { error = ep_create_wakeup_source(epi); if (error) { ep_remove(ep, epi); return error; } } /* Initialize the poll table using the queue callback */ epq.epi = epi; init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); /* * Attach the item to the poll hooks and get current event bits. * We can safely use the file* here because its usage count has * been increased by the caller of this function. Note that after * this operation completes, the poll callback can start hitting * the new item. */ revents = ep_item_poll(epi, &epq.pt, 1); /* * We have to check if something went wrong during the poll wait queue * install process. Namely an allocation for a wait queue failed due * high memory pressure. */ if (unlikely(!epq.epi)) { ep_remove(ep, epi); return -ENOMEM; } /* We have to drop the new item inside our item list to keep track of it */ write_lock_irq(&ep->lock); /* record NAPI ID of new item if present */ ep_set_busy_poll_napi_id(epi); /* If the file is already "ready" we drop it inside the ready list */ if (revents && !ep_is_linked(epi)) { list_add_tail(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); /* Notify waiting tasks that events are available */ if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } write_unlock_irq(&ep->lock); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(ep, NULL, 0); return 0; } /* * Modify the interest event mask by dropping an event if the new mask * has a match in the current file status. Must be called with "mtx" held. */ static int ep_modify(struct eventpoll *ep, struct epitem *epi, const struct epoll_event *event) { int pwake = 0; poll_table pt; lockdep_assert_irqs_enabled(); init_poll_funcptr(&pt, NULL); /* * Set the new event interest mask before calling f_op->poll(); * otherwise we might miss an event that happens between the * f_op->poll() call and the new event set registering. */ epi->event.events = event->events; /* need barrier below */ epi->event.data = event->data; /* protected by mtx */ if (epi->event.events & EPOLLWAKEUP) { if (!ep_has_wakeup_source(epi)) ep_create_wakeup_source(epi); } else if (ep_has_wakeup_source(epi)) { ep_destroy_wakeup_source(epi); } /* * The following barrier has two effects: * * 1) Flush epi changes above to other CPUs. This ensures * we do not miss events from ep_poll_callback if an * event occurs immediately after we call f_op->poll(). * We need this because we did not take ep->lock while * changing epi above (but ep_poll_callback does take * ep->lock). * * 2) We also need to ensure we do not miss _past_ events * when calling f_op->poll(). This barrier also * pairs with the barrier in wq_has_sleeper (see * comments for wq_has_sleeper). * * This barrier will now guarantee ep_poll_callback or f_op->poll * (or both) will notice the readiness of an item. */ smp_mb(); /* * Get current event bits. We can safely use the file* here because * its usage count has been increased by the caller of this function. * If the item is "hot" and it is not registered inside the ready * list, push it inside. */ if (ep_item_poll(epi, &pt, 1)) { write_lock_irq(&ep->lock); if (!ep_is_linked(epi)) { list_add_tail(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); /* Notify waiting tasks that events are available */ if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } write_unlock_irq(&ep->lock); } /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(ep, NULL, 0); return 0; } static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, int maxevents) { struct epitem *epi, *tmp; LIST_HEAD(txlist); poll_table pt; int res = 0; /* * Always short-circuit for fatal signals to allow threads to make a * timely exit without the chance of finding more events available and * fetching repeatedly. */ if (fatal_signal_pending(current)) return -EINTR; init_poll_funcptr(&pt, NULL); mutex_lock(&ep->mtx); ep_start_scan(ep, &txlist); /* * We can loop without lock because we are passed a task private list. * Items cannot vanish during the loop we are holding ep->mtx. */ list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { struct wakeup_source *ws; __poll_t revents; if (res >= maxevents) break; /* * Activate ep->ws before deactivating epi->ws to prevent * triggering auto-suspend here (in case we reactive epi->ws * below). * * This could be rearranged to delay the deactivation of epi->ws * instead, but then epi->ws would temporarily be out of sync * with ep_is_linked(). */ ws = ep_wakeup_source(epi); if (ws) { if (ws->active) __pm_stay_awake(ep->ws); __pm_relax(ws); } list_del_init(&epi->rdllink); /* * If the event mask intersect the caller-requested one, * deliver the event to userspace. Again, we are holding ep->mtx, * so no operations coming from userspace can change the item. */ revents = ep_item_poll(epi, &pt, 1); if (!revents) continue; events = epoll_put_uevent(revents, epi->event.data, events); if (!events) { list_add(&epi->rdllink, &txlist); ep_pm_stay_awake(epi); if (!res) res = -EFAULT; break; } res++; if (epi->event.events & EPOLLONESHOT) epi->event.events &= EP_PRIVATE_BITS; else if (!(epi->event.events & EPOLLET)) { /* * If this file has been added with Level * Trigger mode, we need to insert back inside * the ready list, so that the next call to * epoll_wait() will check again the events * availability. At this point, no one can insert * into ep->rdllist besides us. The epoll_ctl() * callers are locked out by * ep_scan_ready_list() holding "mtx" and the * poll callback will queue them in ep->ovflist. */ list_add_tail(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); } } ep_done_scan(ep, &txlist); mutex_unlock(&ep->mtx); return res; } static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) { struct timespec64 now; if (ms < 0) return NULL; if (!ms) { to->tv_sec = 0; to->tv_nsec = 0; return to; } to->tv_sec = ms / MSEC_PER_SEC; to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); ktime_get_ts64(&now); *to = timespec64_add_safe(now, *to); return to; } /* * autoremove_wake_function, but remove even on failure to wake up, because we * know that default_wake_function/ttwu will only fail if the thread is already * woken, and in that case the ep_poll loop will remove the entry anyways, not * try to reuse it. */ static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode, int sync, void *key) { int ret = default_wake_function(wq_entry, mode, sync, key); /* * Pairs with list_empty_careful in ep_poll, and ensures future loop * iterations see the cause of this wakeup. */ list_del_init_careful(&wq_entry->entry); return ret; } /** * ep_poll - Retrieves ready events, and delivers them to the caller-supplied * event buffer. * * @ep: Pointer to the eventpoll context. * @events: Pointer to the userspace buffer where the ready events should be * stored. * @maxevents: Size (in terms of number of events) of the caller event buffer. * @timeout: Maximum timeout for the ready events fetch operation, in * timespec. If the timeout is zero, the function will not block, * while if the @timeout ptr is NULL, the function will block * until at least one event has been retrieved (or an error * occurred). * * Return: the number of ready events which have been fetched, or an * error code, in case of error. */ static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, int maxevents, struct timespec64 *timeout) { int res, eavail, timed_out = 0; u64 slack = 0; wait_queue_entry_t wait; ktime_t expires, *to = NULL; lockdep_assert_irqs_enabled(); if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { slack = select_estimate_accuracy(timeout); to = &expires; *to = timespec64_to_ktime(*timeout); } else if (timeout) { /* * Avoid the unnecessary trip to the wait queue loop, if the * caller specified a non blocking operation. */ timed_out = 1; } /* * This call is racy: We may or may not see events that are being added * to the ready list under the lock (e.g., in IRQ callbacks). For cases * with a non-zero timeout, this thread will check the ready list under * lock and will add to the wait queue. For cases with a zero * timeout, the user by definition should not care and will have to * recheck again. */ eavail = ep_events_available(ep); while (1) { if (eavail) { /* * Try to transfer events to user space. In case we get * 0 events and there's still timeout left over, we go * trying again in search of more luck. */ res = ep_send_events(ep, events, maxevents); if (res) return res; } if (timed_out) return 0; eavail = ep_busy_loop(ep, timed_out); if (eavail) continue; if (signal_pending(current)) return -EINTR; /* * Internally init_wait() uses autoremove_wake_function(), * thus wait entry is removed from the wait queue on each * wakeup. Why it is important? In case of several waiters * each new wakeup will hit the next waiter, giving it the * chance to harvest new event. Otherwise wakeup can be * lost. This is also good performance-wise, because on * normal wakeup path no need to call __remove_wait_queue() * explicitly, thus ep->lock is not taken, which halts the * event delivery. * * In fact, we now use an even more aggressive function that * unconditionally removes, because we don't reuse the wait * entry between loop iterations. This lets us also avoid the * performance issue if a process is killed, causing all of its * threads to wake up without being removed normally. */ init_wait(&wait); wait.func = ep_autoremove_wake_function; write_lock_irq(&ep->lock); /* * Barrierless variant, waitqueue_active() is called under * the same lock on wakeup ep_poll_callback() side, so it * is safe to avoid an explicit barrier. */ __set_current_state(TASK_INTERRUPTIBLE); /* * Do the final check under the lock. ep_scan_ready_list() * plays with two lists (->rdllist and ->ovflist) and there * is always a race when both lists are empty for short * period of time although events are pending, so lock is * important. */ eavail = ep_events_available(ep); if (!eavail) __add_wait_queue_exclusive(&ep->wq, &wait); write_unlock_irq(&ep->lock); if (!eavail) timed_out = !schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS); __set_current_state(TASK_RUNNING); /* * We were woken up, thus go and try to harvest some events. * If timed out and still on the wait queue, recheck eavail * carefully under lock, below. */ eavail = 1; if (!list_empty_careful(&wait.entry)) { write_lock_irq(&ep->lock); /* * If the thread timed out and is not on the wait queue, * it means that the thread was woken up after its * timeout expired before it could reacquire the lock. * Thus, when wait.entry is empty, it needs to harvest * events. */ if (timed_out) eavail = list_empty(&wait.entry); __remove_wait_queue(&ep->wq, &wait); write_unlock_irq(&ep->lock); } } } /** * ep_loop_check_proc - verify that adding an epoll file inside another * epoll structure does not violate the constraints, in * terms of closed loops, or too deep chains (which can * result in excessive stack usage). * * @ep: the &struct eventpoll to be currently checked. * @depth: Current depth of the path being checked. * * Return: %zero if adding the epoll @file inside current epoll * structure @ep does not violate the constraints, or %-1 otherwise. */ static int ep_loop_check_proc(struct eventpoll *ep, int depth) { int error = 0; struct rb_node *rbp; struct epitem *epi; mutex_lock_nested(&ep->mtx, depth + 1); ep->gen = loop_check_gen; for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { epi = rb_entry(rbp, struct epitem, rbn); if (unlikely(is_file_epoll(epi->ffd.file))) { struct eventpoll *ep_tovisit; ep_tovisit = epi->ffd.file->private_data; if (ep_tovisit->gen == loop_check_gen) continue; if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) error = -1; else error = ep_loop_check_proc(ep_tovisit, depth + 1); if (error != 0) break; } else { /* * If we've reached a file that is not associated with * an ep, then we need to check if the newly added * links are going to add too many wakeup paths. We do * this by adding it to the tfile_check_list, if it's * not already there, and calling reverse_path_check() * during ep_insert(). */ list_file(epi->ffd.file); } } mutex_unlock(&ep->mtx); return error; } /** * ep_loop_check - Performs a check to verify that adding an epoll file (@to) * into another epoll file (represented by @ep) does not create * closed loops or too deep chains. * * @ep: Pointer to the epoll we are inserting into. * @to: Pointer to the epoll to be inserted. * * Return: %zero if adding the epoll @to inside the epoll @from * does not violate the constraints, or %-1 otherwise. */ static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) { inserting_into = ep; return ep_loop_check_proc(to, 0); } static void clear_tfile_check_list(void) { rcu_read_lock(); while (tfile_check_list != EP_UNACTIVE_PTR) { struct epitems_head *head = tfile_check_list; tfile_check_list = head->next; unlist_file(head); } rcu_read_unlock(); } /* * Open an eventpoll file descriptor. */ static int do_epoll_create(int flags) { int error, fd; struct eventpoll *ep = NULL; struct file *file; /* Check the EPOLL_* constant for consistency. */ BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); if (flags & ~EPOLL_CLOEXEC) return -EINVAL; /* * Create the internal data structure ("struct eventpoll"). */ error = ep_alloc(&ep); if (error < 0) return error; /* * Creates all the items needed to setup an eventpoll file. That is, * a file structure and a free file descriptor. */ fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); if (fd < 0) { error = fd; goto out_free_ep; } file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, O_RDWR | (flags & O_CLOEXEC)); if (IS_ERR(file)) { error = PTR_ERR(file); goto out_free_fd; } ep->file = file; fd_install(fd, file); return fd; out_free_fd: put_unused_fd(fd); out_free_ep: ep_free(ep); return error; } SYSCALL_DEFINE1(epoll_create1, int, flags) { return do_epoll_create(flags); } SYSCALL_DEFINE1(epoll_create, int, size) { if (size <= 0) return -EINVAL; return do_epoll_create(0); } static inline int epoll_mutex_lock(struct mutex *mutex, int depth, bool nonblock) { if (!nonblock) { mutex_lock_nested(mutex, depth); return 0; } if (mutex_trylock(mutex)) return 0; return -EAGAIN; } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock) { int error; int full_check = 0; struct fd f, tf; struct eventpoll *ep; struct epitem *epi; struct eventpoll *tep = NULL; error = -EBADF; f = fdget(epfd); if (!f.file) goto error_return; /* Get the "struct file *" for the target file */ tf = fdget(fd); if (!tf.file) goto error_fput; /* The target file descriptor must support poll */ error = -EPERM; if (!file_can_poll(tf.file)) goto error_tgt_fput; /* Check if EPOLLWAKEUP is allowed */ if (ep_op_has_event(op)) ep_take_care_of_epollwakeup(epds); /* * We have to check that the file structure underneath the file descriptor * the user passed to us _is_ an eventpoll file. And also we do not permit * adding an epoll file descriptor inside itself. */ error = -EINVAL; if (f.file == tf.file || !is_file_epoll(f.file)) goto error_tgt_fput; /* * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. * Also, we do not currently supported nested exclusive wakeups. */ if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { if (op == EPOLL_CTL_MOD) goto error_tgt_fput; if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) goto error_tgt_fput; } /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ ep = f.file->private_data; /* * When we insert an epoll file descriptor inside another epoll file * descriptor, there is the chance of creating closed loops, which are * better be handled here, than in more critical paths. While we are * checking for loops we also determine the list of files reachable * and hang them on the tfile_check_list, so we can check that we * haven't created too many possible wakeup paths. * * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when * the epoll file descriptor is attaching directly to a wakeup source, * unless the epoll file descriptor is nested. The purpose of taking the * 'epmutex' on add is to prevent complex toplogies such as loops and * deep wakeup paths from forming in parallel through multiple * EPOLL_CTL_ADD operations. */ error = epoll_mutex_lock(&ep->mtx, 0, nonblock); if (error) goto error_tgt_fput; if (op == EPOLL_CTL_ADD) { if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || is_file_epoll(tf.file)) { mutex_unlock(&ep->mtx); error = epoll_mutex_lock(&epmutex, 0, nonblock); if (error) goto error_tgt_fput; loop_check_gen++; full_check = 1; if (is_file_epoll(tf.file)) { tep = tf.file->private_data; error = -ELOOP; if (ep_loop_check(ep, tep) != 0) goto error_tgt_fput; } error = epoll_mutex_lock(&ep->mtx, 0, nonblock); if (error) goto error_tgt_fput; } } /* * Try to lookup the file inside our RB tree. Since we grabbed "mtx" * above, we can be sure to be able to use the item looked up by * ep_find() till we release the mutex. */ epi = ep_find(ep, tf.file, fd); error = -EINVAL; switch (op) { case EPOLL_CTL_ADD: if (!epi) { epds->events |= EPOLLERR | EPOLLHUP; error = ep_insert(ep, epds, tf.file, fd, full_check); } else error = -EEXIST; break; case EPOLL_CTL_DEL: if (epi) error = ep_remove(ep, epi); else error = -ENOENT; break; case EPOLL_CTL_MOD: if (epi) { if (!(epi->event.events & EPOLLEXCLUSIVE)) { epds->events |= EPOLLERR | EPOLLHUP; error = ep_modify(ep, epi, epds); } } else error = -ENOENT; break; } mutex_unlock(&ep->mtx); error_tgt_fput: if (full_check) { clear_tfile_check_list(); loop_check_gen++; mutex_unlock(&epmutex); } fdput(tf); error_fput: fdput(f); error_return: return error; } /* * The following function implements the controller interface for * the eventpoll file that enables the insertion/removal/change of * file descriptors inside the interest set. */ SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event __user *, event) { struct epoll_event epds; if (ep_op_has_event(op) && copy_from_user(&epds, event, sizeof(struct epoll_event))) return -EFAULT; return do_epoll_ctl(epfd, op, fd, &epds, false); } /* * Implement the event wait interface for the eventpoll file. It is the kernel * part of the user space epoll_wait(2). */ static int do_epoll_wait(int epfd, struct epoll_event __user *events, int maxevents, struct timespec64 *to) { int error; struct fd f; struct eventpoll *ep; /* The maximum number of event must be greater than zero */ if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) return -EINVAL; /* Verify that the area passed by the user is writeable */ if (!access_ok(events, maxevents * sizeof(struct epoll_event))) return -EFAULT; /* Get the "struct file *" for the eventpoll file */ f = fdget(epfd); if (!f.file) return -EBADF; /* * We have to check that the file structure underneath the fd * the user passed to us _is_ an eventpoll file. */ error = -EINVAL; if (!is_file_epoll(f.file)) goto error_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ ep = f.file->private_data; /* Time to fish for events ... */ error = ep_poll(ep, events, maxevents, to); error_fput: fdput(f); return error; } SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout) { struct timespec64 to; return do_epoll_wait(epfd, events, maxevents, ep_timeout_to_timespec(&to, timeout)); } /* * Implement the event wait interface for the eventpoll file. It is the kernel * part of the user space epoll_pwait(2). */ static int do_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, struct timespec64 *to, const sigset_t __user *sigmask, size_t sigsetsize) { int error; /* * If the caller wants a certain signal mask to be set during the wait, * we apply it here. */ error = set_user_sigmask(sigmask, sigsetsize); if (error) return error; error = do_epoll_wait(epfd, events, maxevents, to); restore_saved_sigmask_unless(error == -EINTR); return error; } SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout, const sigset_t __user *, sigmask, size_t, sigsetsize) { struct timespec64 to; return do_epoll_pwait(epfd, events, maxevents, ep_timeout_to_timespec(&to, timeout), sigmask, sigsetsize); } SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, int, maxevents, const struct __kernel_timespec __user *, timeout, const sigset_t __user *, sigmask, size_t, sigsetsize) { struct timespec64 ts, *to = NULL; if (timeout) { if (get_timespec64(&ts, timeout)) return -EFAULT; to = &ts; if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) return -EINVAL; } return do_epoll_pwait(epfd, events, maxevents, to, sigmask, sigsetsize); } #ifdef CONFIG_COMPAT static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, struct timespec64 *timeout, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize) { long err; /* * If the caller wants a certain signal mask to be set during the wait, * we apply it here. */ err = set_compat_user_sigmask(sigmask, sigsetsize); if (err) return err; err = do_epoll_wait(epfd, events, maxevents, timeout); restore_saved_sigmask_unless(err == -EINTR); return err; } COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout, const compat_sigset_t __user *, sigmask, compat_size_t, sigsetsize) { struct timespec64 to; return do_compat_epoll_pwait(epfd, events, maxevents, ep_timeout_to_timespec(&to, timeout), sigmask, sigsetsize); } COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, int, maxevents, const struct __kernel_timespec __user *, timeout, const compat_sigset_t __user *, sigmask, compat_size_t, sigsetsize) { struct timespec64 ts, *to = NULL; if (timeout) { if (get_timespec64(&ts, timeout)) return -EFAULT; to = &ts; if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) return -EINVAL; } return do_compat_epoll_pwait(epfd, events, maxevents, to, sigmask, sigsetsize); } #endif static int __init eventpoll_init(void) { struct sysinfo si; si_meminfo(&si); /* * Allows top 4% of lomem to be allocated for epoll watches (per user). */ max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / EP_ITEM_COST; BUG_ON(max_user_watches < 0); /* * We can have many thousands of epitems, so prevent this from * using an extra cache line on 64-bit (and smaller) CPUs */ BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); /* Allocates slab cache used to allocate "struct epitem" items */ epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); /* Allocates slab cache used to allocate "struct eppoll_entry" */ pwq_cache = kmem_cache_create("eventpoll_pwq", sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); epoll_sysctls_init(); ephead_cache = kmem_cache_create("ep_head", sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); return 0; } fs_initcall(eventpoll_init);