The purpose of the memcg_drain_all_list_lrus() is list_lrus reparenting.
It is very similar to memcg_reparent_objcgs(). Rename it to
memcg_reparent_list_lrus() so that the name can more consistent with
memcg_reparent_objcgs().
Link: https://lkml.kernel.org/r/20220228122126.37293-12-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In our server, we found a suspected memory leak problem. The kmalloc-32
consumes more than 6GB of memory. Other kmem_caches consume less than
2GB memory.
After our in-depth analysis, the memory consumption of kmalloc-32 slab
cache is the cause of list_lru_one allocation.
crash> p memcg_nr_cache_ids
memcg_nr_cache_ids = $2 = 24574
memcg_nr_cache_ids is very large and memory consumption of each list_lru
can be calculated with the following formula.
num_numa_node * memcg_nr_cache_ids * 32 (kmalloc-32)
There are 4 numa nodes in our system, so each list_lru consumes ~3MB.
crash> list super_blocks | wc -l
952
Every mount will register 2 list lrus, one is for inode, another is for
dentry. There are 952 super_blocks. So the total memory is 952 * 2 * 3
MB (~5.6GB). But the number of memory cgroup is less than 500. So I
guess more than 12286 containers have been deployed on this machine (I do
not know why there are so many containers, it may be a user's bug or the
user really want to do that). And memcg_nr_cache_ids has not been reduced
to a suitable value. This can waste a lot of memory.
Now the infrastructure for dynamic list_lru_one allocation is ready, so
remove statically allocated memory code to save memory.
Link: https://lkml.kernel.org/r/20220228122126.37293-11-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It will simplify the code if moving memcg_online_kmem() to
mem_cgroup_css_online() and do not need to set ->kmemcg_id to -1 to
indicate the memcg is offline. In the next patch, ->kmemcg_id will be
used to sync list lru reparenting which requires not to change
->kmemcg_id.
Link: https://lkml.kernel.org/r/20220228122126.37293-10-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The workingset will add the xa_node to the shadow_nodes list. So the
allocation of xa_node should be done by kmem_cache_alloc_lru(). Using
xas_set_lru() to pass the list_lru which we want to insert xa_node into to
set up the xa_node reclaim context correctly.
Link: https://lkml.kernel.org/r/20220228122126.37293-9-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Like inode cache, the dentry will also be added to its memcg list_lru. So
replace kmem_cache_alloc() with kmem_cache_alloc_lru() to allocate dentry.
Link: https://lkml.kernel.org/r/20220228122126.37293-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inode allocation is supposed to use alloc_inode_sb(), so convert
kmem_cache_alloc() to alloc_inode_sb().
Link: https://lkml.kernel.org/r/20220228122126.37293-6-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inode allocation is supposed to use alloc_inode_sb(), so convert
kmem_cache_alloc() of all filesystems to alloc_inode_sb().
Link: https://lkml.kernel.org/r/20220228122126.37293-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Theodore Ts'o <tytso@mit.edu> [ext4]
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The allocated inode cache is supposed to be added to its memcg list_lru
which should be allocated as well in advance. That can be done by
kmem_cache_alloc_lru() which allocates object and list_lru. The file
systems is main user of it. So introduce alloc_inode_sb() to allocate
file system specific inodes and set up the inode reclaim context
properly. The file system is supposed to use alloc_inode_sb() to
allocate inodes.
In later patches, we will convert all users to the new API.
Link: https://lkml.kernel.org/r/20220228122126.37293-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently allocate scope for every memcg to be able to tracked on
every superblock instantiated in the system, regardless of whether that
superblock is even accessible to that memcg.
These huge memcg counts come from container hosts where memcgs are
confined to just a small subset of the total number of superblocks that
instantiated at any given point in time.
For these systems with huge container counts, list_lru does not need the
capability of tracking every memcg on every superblock. What it comes
down to is that adding the memcg to the list_lru at the first insert.
So introduce kmem_cache_alloc_lru to allocate objects and its list_lru.
In the later patch, we will convert all inode and dentry allocation from
kmem_cache_alloc to kmem_cache_alloc_lru.
Link: https://lkml.kernel.org/r/20220228122126.37293-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Optimize list lru memory consumption", v6.
In our server, we found a suspected memory leak problem. The kmalloc-32
consumes more than 6GB of memory. Other kmem_caches consume less than
2GB memory.
After our in-depth analysis, the memory consumption of kmalloc-32 slab
cache is the cause of list_lru_one allocation.
crash> p
memcg_nr_cache_ids memcg_nr_cache_ids = $2 = 24574
memcg_nr_cache_ids is very large and memory consumption of each list_lru
can be calculated with the following formula.
num_numa_node * memcg_nr_cache_ids * 32 (kmalloc-32)
There are 4 numa nodes in our system, so each list_lru consumes ~3MB.
crash> list super_blocks | wc -l
952
Every mount will register 2 list lrus, one is for inode, another is for
dentry. There are 952 super_blocks. So the total memory is 952 * 2 * 3
MB (~5.6GB). But now the number of memory cgroups is less than 500. So
I guess more than 12286 memory cgroups have been created on this machine
(I do not know why there are so many cgroups, it may be a user's bug or
the user really want to do that). Because memcg_nr_cache_ids has not
been reduced to a suitable value. It leads to waste a lot of memory.
If we want to reduce memcg_nr_cache_ids, we have to *reboot* the server.
This is not what we want.
In order to reduce memcg_nr_cache_ids, I had posted a patchset [1] to do
this. But this did not fundamentally solve the problem.
We currently allocate scope for every memcg to be able to tracked on
every superblock instantiated in the system, regardless of whether that
superblock is even accessible to that memcg.
These huge memcg counts come from container hosts where memcgs are
confined to just a small subset of the total number of superblocks that
instantiated at any given point in time.
For these systems with huge container counts, list_lru does not need the
capability of tracking every memcg on every superblock.
What it comes down to is that the list_lru is only needed for a given
memcg if that memcg is instatiating and freeing objects on a given
list_lru.
As Dave said, "Which makes me think we should be moving more towards 'add
the memcg to the list_lru at the first insert' model rather than
'instantiate all at memcg init time just in case'."
This patchset aims to optimize the list lru memory consumption from
different aspects.
I had done a easy test to show the optimization. I create 10k memory
cgroups and mount 10k filesystems in the systems. We use free command to
show how many memory does the systems comsumes after this operation (There
are 2 numa nodes in the system).
+-----------------------+------------------------+
| condition | memory consumption |
+-----------------------+------------------------+
| without this patchset | 24464 MB |
+-----------------------+------------------------+
| after patch 1 | 21957 MB | <--------+
+-----------------------+------------------------+ |
| after patch 10 | 6895 MB | |
+-----------------------+------------------------+ |
| after patch 12 | 4367 MB | |
+-----------------------+------------------------+ |
|
The more the number of nodes, the more obvious the effect---+
BTW, there was a recent discussion [2] on the same issue.
[1] https://lore.kernel.org/all/20210428094949.43579-1-songmuchun@bytedance.com/
[2] https://lore.kernel.org/all/20210405054848.GA1077931@in.ibm.com/
This series not only optimizes the memory usage of list_lru but also
simplifies the code.
This patch (of 16):
The current scheme of maintaining per-node per-memcg lru lists looks like:
struct list_lru {
struct list_lru_node *node; (for each node)
struct list_lru_memcg *memcg_lrus;
struct list_lru_one *lru[]; (for each memcg)
}
By effectively transposing the two-dimension array of list_lru_one's structures
(per-node per-memcg => per-memcg per-node) it's possible to save some memory
and simplify alloc/dealloc paths. The new scheme looks like:
struct list_lru {
struct list_lru_memcg *mlrus;
struct list_lru_per_memcg *mlru[]; (for each memcg)
struct list_lru_one node[0]; (for each node)
}
Memory savings are coming from not only 'struct rcu_head' but also some
pointer arrays used to store the pointer to 'struct list_lru_one'. The
array is per node and its size is 8 (a pointer) * num_memcgs. So the
total size of the arrays is 8 * num_nodes * memcg_nr_cache_ids. After
this patch, the size becomes 8 * memcg_nr_cache_ids.
Link: https://lkml.kernel.org/r/20220228122126.37293-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220228122126.37293-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Chao Yu <chao@kernel.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the for-each-CPU loop, preemption is disabled so that so that
drain_local_stock() can be invoked directly instead of scheduling a
worker. Ensuring that drain_local_stock() completed on the local CPU is
not correctness problem. It _could_ be that the charging path will be
forced to reclaim memory because cached charges are still waiting for
their draining.
Disabling preemption before invoking drain_local_stock() is problematic
on PREEMPT_RT due to the sleeping locks involved. To ensure that no CPU
migrations happens across for_each_online_cpu() it is enouhg to use
migrate_disable() which disables migration and keeps context preemptible
to a sleeping lock can be acquired. A race with CPU hotplug is not a
problem because pcp data is not going away. In the worst case we just
schedule draining of an empty stock.
Use migrate_disable() instead of get_cpu() around the
for_each_online_cpu() loop.
Link: https://lkml.kernel.org/r/20220226204144.1008339-7-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The members of the per-CPU structure memcg_stock_pcp are protected by
disabling interrupts. This is not working on PREEMPT_RT because it
creates atomic context in which actions are performed which require
preemptible context. One example is obj_cgroup_release().
The IRQ-disable sections can be replaced with local_lock_t which
preserves the explicit disabling of interrupts while keeps the code
preemptible on PREEMPT_RT.
drain_obj_stock() drops a reference on obj_cgroup which leads to an
invocat= ion of obj_cgroup_release() if it is the last object. This in
turn leads to recursive locking of the local_lock_t. To avoid this,
obj_cgroup_release() = is invoked outside of the locked section.
obj_cgroup_uncharge_pages() can be invoked with the local_lock_t
acquired a= nd without it. This will lead later to a recursion in
refill_stock(). To avoid the locking recursion provide
obj_cgroup_uncharge_pages_locked() which uses the locked version of
refill_stock().
- Replace disabling interrupts for memcg_stock with a local_lock_t.
- Let drain_obj_stock() return the old struct obj_cgroup which is
passed to obj_cgroup_put() outside of the locked section.
- Provide obj_cgroup_uncharge_pages_locked() which uses the locked
version of refill_stock() to avoid recursive locking in
drain_obj_stock().
Link: https://lkml.kernel.org/r/20220209014709.GA26885@xsang-OptiPlex-9020
Link: https://lkml.kernel.org/r/20220226204144.1008339-6-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide the inner part of refill_stock() as __refill_stock() without
disabling interrupts. This eases the integration of local_lock_t where
recursive locking must be avoided.
Open code obj_cgroup_uncharge_pages() in drain_obj_stock() and use
__refill_stock(). The caller of drain_obj_stock() already disables
interrupts.
[bigeasy@linutronix.de: patch body around Johannes' diff]
Link: https://lkml.kernel.org/r/20220226204144.1008339-5-bigeasy@linutronix.de
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-CPU counter are modified with the non-atomic modifier. The
consistency is ensured by disabling interrupts for the update. On non
PREEMPT_RT configuration this works because acquiring a spinlock_t typed
lock with the _irq() suffix disables interrupts. On PREEMPT_RT
configurations the RMW operation can be interrupted.
Another problem is that mem_cgroup_swapout() expects to be invoked with
disabled interrupts because the caller has to acquire a spinlock_t which
is acquired with disabled interrupts. Since spinlock_t never disables
interrupts on PREEMPT_RT the interrupts are never disabled at this
point.
The code is never called from in_irq() context on PREEMPT_RT therefore
disabling preemption during the update is sufficient on PREEMPT_RT. The
sections which explicitly disable interrupts can remain on PREEMPT_RT
because the sections remain short and they don't involve sleeping locks
(memcg_check_events() is doing nothing on PREEMPT_RT).
Disable preemption during update of the per-CPU variables which do not
explicitly disable interrupts.
Link: https://lkml.kernel.org/r/20220226204144.1008339-4-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During the integration of PREEMPT_RT support, the code flow around
memcg_check_events() resulted in `twisted code'. Moving the code around
and avoiding then would then lead to an additional local-irq-save
section within memcg_check_events(). While looking better, it adds a
local-irq-save section to code flow which is usually within an
local-irq-off block on non-PREEMPT_RT configurations.
The threshold event handler is a deprecated memcg v1 feature. Instead
of trying to get it to work under PREEMPT_RT just disable it. There
should be no users on PREEMPT_RT. From that perspective it makes even
less sense to get it to work under PREEMPT_RT while having zero users.
Make memory.soft_limit_in_bytes and cgroup.event_control return
-EOPNOTSUPP on PREEMPT_RT. Make an empty memcg_check_events() and
memcg_write_event_control() which return only -EOPNOTSUPP on PREEMPT_RT.
Document that the two knobs are disabled on PREEMPT_RT.
Link: https://lkml.kernel.org/r/20220226204144.1008339-3-bigeasy@linutronix.de
Suggested-by: Michal Hocko <mhocko@kernel.org>
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memcg: Address PREEMPT_RT problems instead of disabling it", v5.
This series aims to address the memcg related problem on PREEMPT_RT.
I tested them on CONFIG_PREEMPT and CONFIG_PREEMPT_RT with the
tools/testing/selftests/cgroup/* tests and I haven't observed any
regressions (other than the lockdep report that is already there).
This patch (of 6):
The optimisation is based on a micro benchmark where local_irq_save() is
more expensive than a preempt_disable(). There is no evidence that it
is visible in a real-world workload and there are CPUs where the
opposite is true (local_irq_save() is cheaper than preempt_disable()).
Based on micro benchmarks, the optimisation makes sense on PREEMPT_NONE
where preempt_disable() is optimized away. There is no improvement with
PREEMPT_DYNAMIC since the preemption counter is always available.
The optimization makes also the PREEMPT_RT integration more complicated
since most of the assumption are not true on PREEMPT_RT.
Revert the optimisation since it complicates the PREEMPT_RT integration
and the improvement is hardly visible.
[bigeasy@linutronix.de: patch body around Michal's diff]
Link: https://lkml.kernel.org/r/20220226204144.1008339-1-bigeasy@linutronix.de
Link: https://lore.kernel.org/all/YgOGkXXCrD%2F1k+p4@dhcp22.suse.cz
Link: https://lkml.kernel.org/r/YdX+INO9gQje6d0S@linutronix.de
Link: https://lkml.kernel.org/r/20220226204144.1008339-2-bigeasy@linutronix.de
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Waiman Long <longman@redhat.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment).
The only reason that this particular __setup handler does not pollute
init's environment is that the setup string contains a '.', as in
"cgroup.memory". This causes init/main.c::unknown_boottoption() to
consider it to be an "Unused module parameter" and ignore it. (This is
for parsing of loadable module parameters any time after kernel init.)
Otherwise the string "cgroup.memory=whatever" would be added to init's
environment strings.
Instead of relying on this '.' quirk, just return 1 to indicate that the
boot option has been handled.
Note that there is no warning message if someone enters:
cgroup.memory=anything_invalid
Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org
Fixes: f7e1cb6ec5 ("mm: memcontrol: account socket memory in unified hierarchy memory controller")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The high limit is used to throttle the workload without invoking the
oom-killer. Recently we tried to use the high limit to right size our
internal workloads. More specifically dynamically adjusting the limits
of the workload without letting the workload get oom-killed. However
due to the limitation of the implementation of high limit enforcement,
we observed the mechanism fails for some real workloads.
The high limit is enforced on return-to-userspace i.e. the kernel let
the usage goes over the limit and when the execution returns to
userspace, the high reclaim is triggered and the process can get
throttled as well. However this mechanism fails for workloads which do
large allocations in a single kernel entry e.g. applications that
mlock() a large chunk of memory in a single syscall. Such applications
bypass the high limit and can trigger the oom-killer.
To make high limit enforcement more robust, this patch makes the limit
enforcement synchronous only if the accumulated overcharge becomes
larger than MEMCG_CHARGE_BATCH. So, most of the allocations would still
be throttled on the return-to-userspace path but only the extreme
allocations which accumulates large amount of overcharge without
returning to the userspace will be throttled synchronously. The value
MEMCG_CHARGE_BATCH is a bit arbitrary but most of other places in the
memcg codebase uses this constant therefore for now uses the same one.
Link: https://lkml.kernel.org/r/20220211064917.2028469-5-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Test the enforcement of memory.high limit for large amount of memory
allocation within a single kernel entry. There are valid use-cases
where the application can trigger large amount of memory allocation
within a single syscall e.g. mlock() or mmap(MAP_POPULATE).
Make sure memory.high limit enforcement works for such use-cases.
Link: https://lkml.kernel.org/r/20220211064917.2028469-4-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel force charges the allocations which have __GFP_HIGH
flag without triggering the memory reclaim. __GFP_HIGH indicates that
the caller is high priority and since commit 869712fd3d ("mm:
memcontrol: fix network errors from failing __GFP_ATOMIC charges") the
kernel lets such allocations do force charging. Please note that
__GFP_ATOMIC has been replaced by __GFP_HIGH.
__GFP_HIGH does not tell if the caller can block or can trigger reclaim.
There are separate checks to determine that. So, there is no need to
skip reclaiming for __GFP_HIGH allocations. So, handle __GFP_HIGH
together with __GFP_NOFAIL which also does force charging.
Please note that this is a noop change as there are no __GFP_HIGH
allocators in the kernel which also have __GFP_ACCOUNT (or SLAB_ACCOUNT)
and does not allow reclaim for now.
Link: https://lkml.kernel.org/r/20220211064917.2028469-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcg: robust enforcement of memory.high", v2.
Due to the semantics of memory.high enforcement i.e. throttle the
workload without oom-kill, we are trying to use it for right sizing the
workloads in our production environment. However we observed the
mechanism fails for some specific applications which does big chunck of
allocations in a single syscall. The reason behind this failure is due
to the limitation of the memory.high enforcement's current
implementation.
This patch series solves this issue by enforcing the memory.high
synchronously if the current process has accumulated a large amount of
high overcharge.
This patch (of 4):
The function mem_cgroup_oom returns enum which has four possible values
but the caller does not care about such values and only cares if the
return value is OOM_SUCCESS or not. So, remove the enum altogether and
make mem_cgroup_oom returns a simple bool.
Link: https://lkml.kernel.org/r/20220211064917.2028469-1-shakeelb@google.com
Link: https://lkml.kernel.org/r/20220211064917.2028469-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The parent we get from page_counter is correct, while this is two
different hierarchy.
Let's retrieve the parent memcg from css.parent just like parent_cs(),
blkcg_parent(), etc.
Link: https://lkml.kernel.org/r/20220201004643.8391-2-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kzalloc_node() would set data to 0, so it's not necessary to set it
again.
Link: https://lkml.kernel.org/r/20220201004643.8391-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently memcg stats show several types of kernel memory: kernel stack,
page tables, sock, vmalloc, and slab. However, there are other
allocations with __GFP_ACCOUNT (or supersets such as GFP_KERNEL_ACCOUNT)
that are not accounted in any of those stats, a few examples are:
- various kvm allocations (e.g. allocated pages to create vcpus)
- io_uring
- tmp_page in pipes during pipe_write()
- bpf ringbuffers
- unix sockets
Keeping track of the total kernel memory is essential for the ease of
migration from cgroup v1 to v2 as there are large discrepancies between
v1's kmem.usage_in_bytes and the sum of the available kernel memory
stats in v2. Adding separate memcg stats for all __GFP_ACCOUNT kernel
allocations is an impractical maintenance burden as there a lot of those
all over the kernel code, with more use cases likely to show up in the
future.
Therefore, add a "kernel" memcg stat that is analogous to kmem page
counter, with added benefits such as using rstat infrastructure which
aggregates stats more efficiently. Additionally, this provides a
lighter alternative in case the legacy kmem is deprecated in the future
[yosryahmed@google.com: v2]
Link: https://lkml.kernel.org/r/20220203193856.972500-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20220201200823.3283171-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the deprecated in_interrupt() with !in_task() because
in_interrupt() returns true for BH disabled even if the call happens in
the task context. in_task() is the right interface to differentiate
task context from NMI, hard IRQ and softirq contexts.
Link: https://lkml.kernel.org/r/20220127162636.3461256-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper macro __ATTR_RW to define shmem_enabled_attr to make code
more clear. Minor readability improvement.
Link: https://lkml.kernel.org/r/20220312082252.55586-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikulas asked in "Do we still need commit a0ee5ec520 ('tmpfs: allocate
on read when stacked')?" in [1]
Lukas noticed this unusual behavior of loop device backed by tmpfs in [2].
Normally, shmem_file_read_iter() copies the ZERO_PAGE when reading
holes; but if it looks like it might be a read for "a stacking
filesystem", it allocates actual pages to the page cache, and even marks
them as dirty. And reads from the loop device do satisfy the test that
is used.
This oddity was added for an old version of unionfs, to help to limit
its usage to the limited size of the tmpfs mount involved; but about the
same time as the tmpfs mod went in (2.6.25), unionfs was reworked to
proceed differently; and the mod kept just in case others needed it.
Do we still need it? I cannot answer with more certainty than "Probably
not". It's nasty enough that we really should try to delete it; but if
a regression is reported somewhere, then we might have to revert later.
It's not quite as simple as just removing the test (as Mikulas did):
xfstests generic/013 hung because splice from tmpfs failed on page not
up-to-date and page mapping unset. That can be fixed just by marking
the ZERO_PAGE as Uptodate, which of course it is: do so in
pagecache_init() - it might be useful to others than tmpfs.
My intention, though, was to stop using the ZERO_PAGE here altogether:
surely iov_iter_zero() is better for this case? Sadly not: it relies on
clear_user(), and the x86 clear_user() is slower than its copy_user() [3].
But while we are still using the ZERO_PAGE, let's stop dirtying its
struct page cacheline with unnecessary get_page() and put_page().
Link: https://lore.kernel.org/linux-mm/alpine.LRH.2.02.2007210510230.6959@file01.intranet.prod.int.rdu2.redhat.com/ [1]
Link: https://lore.kernel.org/linux-mm/20211126075100.gd64odg2bcptiqeb@work/ [2]
Link: https://lore.kernel.org/lkml/2f5ca5e4-e250-a41c-11fb-a7f4ebc7e1c9@google.com/ [3]
Link: https://lkml.kernel.org/r/90bc5e69-9984-b5fa-a685-be55f2b64b@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Reported-by: Lukas Czerner <lczerner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Zdenek Kabelac <zkabelac@redhat.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I added page_mapped() resilience in __delete_from_page_cache() for
the mapping_exiting() case, I missed that mapping_set_exiting() is done
in truncate_inode_pages_final(), which is not actually called for shmem.
(Today, it is folio_mapped() resilience in filemap_unaccount_folio().)
So the fixup to avoid a memory leak in this case never worked on shmem:
add a mapping_set_exiting() in shmem_evict_inode() at last. But this is
hardly a candidate for stable, since it's only useful if "Bad page".
Link: https://lkml.kernel.org/r/beefffda-6326-e36d-2d41-ed15b51af872@google.com
Fixes: 06b241f32c ("mm: __delete_from_page_cache show Bad page if mapped")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For unevictable pages, we don't need mark them.
Link: https://lkml.kernel.org/r/20220311141519.59948-1-libang.linuxer@gmail.com
Signed-off-by: Bang Li <libang.linuxer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the last caller of get_user_pages_locked() is gone, remove it.
Link: https://lkml.kernel.org/r/20220204020010.68930-6-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The purpose of calling get_user_pages_locked() from lookup_node() was to
allow for unlocking the mmap_lock when reading a page from the disk
during a page fault (hidden behind VM_FAULT_RETRY). The idea was to
reduce contention on the heavily-used mmap_lock. (Thanks to Jan Kara
for clearly pointing that out, and in fact I've used some of his wording
here.)
However, it is unlikely for lookup_node() to take a page fault. With
that in mind, change over to calling get_user_pages_fast(). This
simplifies the code, runs a little faster in the expected case, and
allows removing get_user_pages_locked() entirely, in a subsequent patch.
Link: https://lkml.kernel.org/r/20220204020010.68930-5-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This routine was used for a short while, but then the calling code was
refactored and the only caller was removed.
Link: https://lkml.kernel.org/r/20220204020010.68930-4-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove a quirky special case from follow_pfn_pte(), and adjust its
callers to match. Caller changes include:
__get_user_pages(): Regardless of any FOLL_* flags, get_user_pages() and
its variants should handle PFN-only entries by stopping early, if the
caller expected **pages to be filled in. This makes for a more reliable
API, as compared to the previous approach of skipping over such entries
(and thus leaving them silently unwritten).
move_pages(): squash the -EEXIST error return from follow_page() into
-EFAULT, because -EFAULT is listed in the man page, whereas -EEXIST is
not.
Link: https://lkml.kernel.org/r/20220204020010.68930-3-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/gup: some cleanups", v5.
This patch (of 5):
Alex reported invalid page pointer returned with pin_user_pages_remote()
from vfio after upstream commit 4b6c33b322 ("vfio/type1: Prepare for
batched pinning with struct vfio_batch").
It turns out that it's not the fault of the vfio commit; however after
vfio switches to a full page buffer to store the page pointers it starts
to expose the problem easier.
The problem is for VM_PFNMAP vmas we should normally fail with an
-EFAULT then vfio will carry on to handle the MMIO regions. However
when the bug triggered, follow_page_mask() returned -EEXIST for such a
page, which will jump over the current page, leaving that entry in
**pages untouched. However the caller is not aware of it, hence the
caller will reference the page as usual even if the pointer data can be
anything.
We had that -EEXIST logic since commit 1027e4436b ("mm: make GUP
handle pfn mapping unless FOLL_GET is requested") which seems very
reasonable. It could be that when we reworked GUP with FOLL_PIN we
could have overlooked that special path in commit 3faa52c03f ("mm/gup:
track FOLL_PIN pages"), even if that commit rightfully touched up
follow_devmap_pud() on checking FOLL_PIN when it needs to return an
-EEXIST.
Attaching the Fixes to the FOLL_PIN rework commit, as it happened later
than 1027e4436b.
[jhubbard@nvidia.com: added some tags, removed a reference to an out of tree module.]
Link: https://lkml.kernel.org/r/20220207062213.235127-1-jhubbard@nvidia.com
Link: https://lkml.kernel.org/r/20220204020010.68930-1-jhubbard@nvidia.com
Link: https://lkml.kernel.org/r/20220204020010.68930-2-jhubbard@nvidia.com
Fixes: 3faa52c03f ("mm/gup: track FOLL_PIN pages")
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reported-by: Alex Williamson <alex.williamson@redhat.com>
Debugged-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: David Hildenbrand <david@redhat.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check lru_cache_disabled under bh_lru_lock. Otherwise, it could introduce
race below and it fails to migrate pages containing buffer_head.
CPU 0 CPU 1
bh_lru_install
lru_cache_disable
lru_cache_disabled = false
atomic_inc(&lru_disable_count);
invalidate_bh_lrus_cpu of CPU 0
bh_lru_lock
__invalidate_bh_lrus
bh_lru_unlock
bh_lru_lock
install the bh
bh_lru_unlock
WHen this race happens a CMA allocation fails, which is critical for
the workload which depends on CMA.
Link: https://lkml.kernel.org/r/20220308180709.2017638-1-minchan@kernel.org
Fixes: 8cc621d2f4 ("mm: fs: invalidate BH LRU during page migration")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Chris Goldsworthy <cgoldswo@codeaurora.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Dias <joaodias@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a804552b9a ("mm/page-writeback.c: fix
dirty_balance_reserve subtraction from dirtyable memory"), local
variable x can not be negative. And it can not overflow when it is the
total number of dirtyable highmem pages. Thus remove the unneeded
comment and overflow check.
Link: https://lkml.kernel.org/r/20220224115416.46089-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unused now. Remove it and clean up the relevant comment.
Link: https://lkml.kernel.org/r/20220208134149.47299-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For device private memory, we do not create a linear mapping for the
memory because the device memory is un-accessible. Thus we do not add
kasan zero shadow for it. So it's unnecessary to do
kasan_remove_zero_shadow() for it.
Link: https://lkml.kernel.org/r/20220126092602.1425-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f8b92ba67c ("mount: Add mount warning for impending timestamp
expiry") introduced a mount warning regarding filesystem timestamp
limits, that is printed upon each writable mount or remount.
This can result in a lot of unnecessary messages in the kernel log in
setups where filesystems are being frequently remounted (or mounted
multiple times).
Avoid this by setting a superblock flag which indicates that the warning
has been emitted at least once for any particular mount, as suggested in
[1].
Link: https://lore.kernel.org/CAHk-=wim6VGnxQmjfK_tDg6fbHYKL4EFkmnTjVr9QnRqjDBAeA@mail.gmail.com/ [1]
Link: https://lkml.kernel.org/r/20220119202934.26495-1-ailiop@suse.com
Signed-off-by: Anthony Iliopoulos <ailiop@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This framework is no longer used - so discard it.
Link: https://lkml.kernel.org/r/164549983747.9187.6171768583526866601.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bfq_get_queue() expects a "bool" for the third arg, so pass "false"
rather than "BLK_RW_ASYNC" which will soon be removed.
Link: https://lkml.kernel.org/r/164549983746.9187.7949730109246767909.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Jens Axboe <axboe@kernel.dk>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As congestion is no longer tracked, congestion_wait() is effectively
equivalent to io_schedule_timeout().
So introduce f2fs_io_schedule_timeout() which sets TASK_UNINTERRUPTIBLE
and call that instead.
Link: https://lkml.kernel.org/r/164549983744.9187.6425865370954230902.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These functions are no longer useful as no BDIs report congestions any
more.
Removing the test on bdi_write_contested() in current_may_throttle()
could cause a small change in behaviour, but only when PF_LOCAL_THROTTLE
is set.
So replace the calls by 'false' and simplify the code - and remove the
functions.
[akpm@linux-foundation.org: fix build]
Link: https://lkml.kernel.org/r/164549983742.9187.2570198746005819592.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs]
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
inode_congested() reports if the backing-device for the inode is
congested. No bdi reports congestion any more, so this always returns
'false'.
So remove inode_congested() and related functions, and remove the call
sites, assuming that inode_congested() always returns 'false'.
Link: https://lkml.kernel.org/r/164549983741.9187.2174285592262191311.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bdi congestion tracking in not widely used and will be removed.
CEPHfs is one of a small number of filesystems that uses it, setting just
the async (write) congestion flags at what it determines are appropriate
times.
The only remaining effect of the async flag is to cause (some)
WB_SYNC_NONE writes to be skipped.
So instead of setting the flag, set an internal flag and change:
- .writepages to do nothing if WB_SYNC_NONE and the flag is set
- .writepage to return AOP_WRITEPAGE_ACTIVATE if WB_SYNC_NONE and the
flag is set.
The writepages change causes a behavioural change in that pageout() can
now return PAGE_ACTIVATE instead of PAGE_KEEP, so SetPageActive() will
be called on the page which (I think) wil further delay the next attempt
at writeout. This might be a good thing.
Link: https://lkml.kernel.org/r/164549983739.9187.14895675781408171186.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bdi congestion tracking in not widely used and will be removed.
NFS is one of a small number of filesystems that uses it, setting just
the async (write) congestion flag at what it determines are appropriate
times.
The only remaining effect of the async flag is to cause (some)
WB_SYNC_NONE writes to be skipped.
So instead of setting the flag, set an internal flag and change:
- .writepages to do nothing if WB_SYNC_NONE and the flag is set
- .writepage to return AOP_WRITEPAGE_ACTIVATE if WB_SYNC_NONE and the
flag is set.
The writepages change causes a behavioural change in that pageout() can
now return PAGE_ACTIVATE instead of PAGE_KEEP, so SetPageActive() will be
called on the page which (I think) wil further delay the next attempt at
writeout. This might be a good thing.
Link: https://lkml.kernel.org/r/164549983738.9187.3972219847989393182.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bdi congestion tracking in not widely used and will be removed.
Fuse is one of a small number of filesystems that uses it, setting both
the sync (read) and async (write) congestion flags at what it determines
are appropriate times.
The only remaining effect of the sync flag is to cause read-ahead to be
skipped. The only remaining effect of the async flag is to cause (some)
WB_SYNC_NONE writes to be skipped.
So instead of setting the flags, change:
- .readahead to stop when it has submitted all non-async pages for
read.
- .writepages to do nothing if WB_SYNC_NONE and the flag would be set
- .writepage to return AOP_WRITEPAGE_ACTIVATE if WB_SYNC_NONE and the
flag would be set.
The writepages change causes a behavioural change in that pageout() can
now return PAGE_ACTIVATE instead of PAGE_KEEP, so SetPageActive() will be
called on the page which (I think) will further delay the next attempt at
writeout. This might be a good thing.
Link: https://lkml.kernel.org/r/164549983737.9187.2627117501000365074.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If ->readpages doesn't process all the pages, then it is best to act as
though they weren't requested so that a subsequent readahead can try
again.
So:
- remove any 'ahead' pages from the page cache so they can be loaded
with ->readahead() rather then multiple ->read()s
- update the file_ra_state to reflect the reads that were actually
submitted.
This allows ->readpages() to abort early due e.g. to congestion, which
will then allow us to remove the inode_read_congested() test from
page_Cache_async_ra().
Link: https://lkml.kernel.org/r/164549983736.9187.16755913785880819183.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add some "big-picture" documentation for read-ahead and polish the code
to make it fit this documentation.
The meaning of ->async_size is clarified to match its name. i.e. Any
request to ->readahead() has a sync part and an async part. The caller
will wait for the sync pages to complete, but will not wait for the
async pages. The first async page is still marked PG_readahead
Note that the current function names page_cache_sync_ra() and
page_cache_async_ra() are misleading. All ra request are partly sync
and partly async, so either part can be empty. A page_cache_sync_ra()
request will usually set ->async_size non-zero, implying it is not all
synchronous.
When a non-zero req_count is passed to page_cache_async_ra(), the
implication is that some prefix of the request is synchronous, though
the calculation made there is incorrect - I haven't tried to fix it.
Link: https://lkml.kernel.org/r/164549983734.9187.11586890887006601405.stgit@noble.brown
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Paolo Valente <paolo.valente@linaro.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>