Commit Graph

443 Commits

Author SHA1 Message Date
Mauricio Faria de Oliveira
c9f50e06ca mm: fix race between MADV_FREE reclaim and blkdev direct IO read
commit 6c8e2a2569 upstream.

Problem:
=======

Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.

- Race condition:
  ==============

During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs.  remap back
if the page is dirty).

However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).

Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.

So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.

The direct IO read eventually completes.  Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!

A synthetic reproducer is provided.

- Page faults:
  ===========

If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO.  The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).

But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:

The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.

Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs.  And even if it were
available, its data cannot be trusted anymore.)

Solution:
========

One solution is to check for the expected page reference count in
try_to_unmap_one().

There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label).  Further references mean
that rmap/PTE cannot be unmapped/nuked.

(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)

So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).

- Races and Barriers:
  ==================

The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.

The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).

The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.

And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()).  (This can be
a load memory barrier only; no writes are involved.)

Call stack/comments:

- try_to_unmap_one()
  - page_vma_mapped_walk()
    - map_pte()			# see pte_offset_map_lock():
        pte_offset_map()
        spin_lock()

  - ptep_get_and_clear()	# write PTE
  - smp_mb()			# (new barrier) GUP fast path
  - page_ref_count()		# (new check) read refcount

  - page_vma_mapped_walk_done()	# see pte_unmap_unlock():
      pte_unmap()
      spin_unlock()

- bio_iov_iter_get_pages()
  - __bio_iov_iter_get_pages()
    - iov_iter_get_pages()
      - get_user_pages_fast()
        - internal_get_user_pages_fast()

          # fast path
          - lockless_pages_from_mm()
            - gup_{pgd,p4d,pud,pmd,pte}_range()
                ptep = pte_offset_map()		# not _lock()
                pte = ptep_get_lockless(ptep)

                page = pte_page(pte)
                try_grab_compound_head(page)	# inc refcount
                                            	# (RMW/barrier
                                             	#  on success)

                if (pte_val(pte) != pte_val(*ptep)) # read PTE
                        put_compound_head(page) # dec refcount
                        			# go slow path

          # slow path
          - __gup_longterm_unlocked()
            - get_user_pages_unlocked()
              - __get_user_pages_locked()
                - __get_user_pages()
                  - follow_{page,p4d,pud,pmd}_mask()
                    - follow_page_pte()
                        ptep = pte_offset_map_lock()
                        pte = *ptep
                        page = vm_normal_page(pte)
                        try_grab_page(page)	# inc refcount
                        pte_unmap_unlock()

- Huge Pages:
  ==========

Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.

(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages.  That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)

MADV_FREE'd buffers:
===================

So, back to the "if MADV_FREE pages are used as buffers" note.  The case
is arguable, and subject to multiple interpretations.

The madvise(2) manual page on the MADV_FREE advice value says:

1) 'After a successful MADV_FREE ... data will be lost when
   the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
   into the page' / 'subsequent writes ... will succeed and
   then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
   pages at any time.'

Thoughts, questions, considerations... respectively:

1) Since the kernel didn't actually free the page (page_ref_freeze()
   failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
   the free operation?
   - Should the direct IO read be considered as 'the caller' too,
     as it's been requested by 'the caller'?
   - Should the bio technique to dirty pages on return to userspace
     (bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
     be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
   read be considered as a subsequent write, so the kernel should
   not free the pages? (as it's known at the time of page reclaim.)

And lastly:

Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly)..  plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.

Reproducer:
==========

@ test.c (simplified, but works)

	#define _GNU_SOURCE
	#include <fcntl.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <sys/mman.h>

	int main() {
		int fd, i;
		char *buf;

		fd = open(DEV, O_RDONLY | O_DIRECT);

		buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
                	   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			buf[i] = 1; // init to non-zero

		madvise(buf, BUF_SIZE, MADV_FREE);

		read(fd, buf, BUF_SIZE);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			printf("%p: 0x%x\n", &buf[i], buf[i]);

		return 0;
	}

@ block/fops.c (formerly fs/block_dev.c)

	+#include <linux/swap.h>
	...
	... __blkdev_direct_IO[_simple](...)
	{
	...
	+	if (!strcmp(current->comm, "good"))
	+		shrink_all_memory(ULONG_MAX);
	+
         	ret = bio_iov_iter_get_pages(...);
	+
	+	if (!strcmp(current->comm, "bad"))
	+		shrink_all_memory(ULONG_MAX);
	...
	}

@ shell

        # NUM_PAGES=4
        # PAGE_SIZE=$(getconf PAGE_SIZE)

        # yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
        # DEV=$(losetup -f --show test.img)

        # gcc -DDEV=\"$DEV\" \
              -DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
              -DPAGE_SIZE=${PAGE_SIZE} \
               test.c -o test

        # od -tx1 $DEV
        0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
        *
        0040000

        # mv test good
        # ./good
        0x7f7c10418000: 0x79
        0x7f7c10419000: 0x79
        0x7f7c1041a000: 0x79
        0x7f7c1041b000: 0x79

        # mv good bad
        # ./bad
        0x7fa1b8050000: 0x0
        0x7fa1b8051000: 0x0
        0x7fa1b8052000: 0x0
        0x7fa1b8053000: 0x0

Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap).  [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].

- v5.17-rc3:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x0

        # free | grep Swap
        Swap:             0           0           0

- v4.5:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           2702  0x0
           1298  0x79

        # swapoff -av
        swapoff /swap

        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

Ceph/TCMalloc:
=============

For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.

Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.

The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).

The issue in Ceph was reasonably deemed a kernel bug (comment #50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb).  Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.

(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad

[1] https://tracker.ceph.com/issues/22464

Thanks:
======

Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:

- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan

Reviews, suggestions, corrections, comments:

- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig

[mfo@canonical.com: v4]
  Link: https://lkml.kernel.org/r/20220209202659.183418-1-mfo@canonical.comLink: https://lkml.kernel.org/r/20220131230255.789059-1-mfo@canonical.com

Fixes: 802a3a92ad ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Hill <daniel.hill@canonical.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Cc: Dongdong Tao <dongdong.tao@canonical.com>
Cc: Gavin Guo <gavin.guo@canonical.com>
Cc: Gerald Yang <gerald.yang@canonical.com>
Cc: Heitor Alves de Siqueira <halves@canonical.com>
Cc: Ioanna Alifieraki <ioanna-maria.alifieraki@canonical.com>
Cc: Jay Vosburgh <jay.vosburgh@canonical.com>
Cc: Matthew Ruffell <matthew.ruffell@canonical.com>
Cc: Ponnuvel Palaniyappan <ponnuvel.palaniyappan@canonical.com>
Cc: <stable@vger.kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[mfo: backport: replace folio/test_flag with page/flag equivalents;
 real Fixes: 854e9ed09d ("mm: support madvise(MADV_FREE)") in v4.]
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-04-13 20:59:14 +02:00
Linus Torvalds
2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
Muchun Song
fe3df441ef mm: remove redundant compound_head() calling
There is a READ_ONCE() in the macro of compound_head(), which will prevent
compiler from optimizing the code when there are more than once calling of
it in a function.  Remove the redundant calling of compound_head() from
page_to_index() and page_add_file_rmap() for better code generation.

Link: https://lkml.kernel.org/r/20210811101431.83940-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
Linus Torvalds
aa99f3c2b9 \n
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAmEmTZcACgkQnJ2qBz9k
 QNkkmAgArW6XoF1CePds/ZaC9vfg/nk66/zVo0n+J8xXjMWAPxcKbWFfV0uWVixq
 yk4lcLV47a2Mu/B/1oLNd3vrSmhwU+srWqNwOFn1nv+lP/6wJqr8oztRHn/0L9Q3
 ZSRrukSejbQ6AvTL/WzTNnCjjCc2ne3Kyko6W41aU6uyJuzhSM32wbx7qlV6t54Z
 iint9OrB4gM0avLohNafTUq6I+tEGzBMNwpCG/tqCmkcvDcv3rTDVAnPSCTm0Tx2
 hdrYDcY/rLxo93pDBaW1rYA/fohR+mIVye6k2TjkPAL6T1x+rxeT5qnc+YijH5yF
 sFPDhlD+ZsfOLi8stWXLOJ+8+gLODg==
 =pDBR
 -----END PGP SIGNATURE-----

Merge tag 'hole_punch_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs

Pull fs hole punching vs cache filling race fixes from Jan Kara:
 "Fix races leading to possible data corruption or stale data exposure
  in multiple filesystems when hole punching races with operations such
  as readahead.

  This is the series I was sending for the last merge window but with
  your objection fixed - now filemap_fault() has been modified to take
  invalidate_lock only when we need to create new page in the page cache
  and / or bring it uptodate"

* tag 'hole_punch_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
  filesystems/locking: fix Malformed table warning
  cifs: Fix race between hole punch and page fault
  ceph: Fix race between hole punch and page fault
  fuse: Convert to using invalidate_lock
  f2fs: Convert to using invalidate_lock
  zonefs: Convert to using invalidate_lock
  xfs: Convert double locking of MMAPLOCK to use VFS helpers
  xfs: Convert to use invalidate_lock
  xfs: Refactor xfs_isilocked()
  ext2: Convert to using invalidate_lock
  ext4: Convert to use mapping->invalidate_lock
  mm: Add functions to lock invalidate_lock for two mappings
  mm: Protect operations adding pages to page cache with invalidate_lock
  documentation: Sync file_operations members with reality
  mm: Fix comments mentioning i_mutex
2021-08-30 10:24:50 -07:00
Jan Kara
730633f0b7 mm: Protect operations adding pages to page cache with invalidate_lock
Currently, serializing operations such as page fault, read, or readahead
against hole punching is rather difficult. The basic race scheme is
like:

fallocate(FALLOC_FL_PUNCH_HOLE)			read / fault / ..
  truncate_inode_pages_range()
						  <create pages in page
						   cache here>
  <update fs block mapping and free blocks>

Now the problem is in this way read / page fault / readahead can
instantiate pages in page cache with potentially stale data (if blocks
get quickly reused). Avoiding this race is not simple - page locks do
not work because we want to make sure there are *no* pages in given
range. inode->i_rwsem does not work because page fault happens under
mmap_sem which ranks below inode->i_rwsem. Also using it for reads makes
the performance for mixed read-write workloads suffer.

So create a new rw_semaphore in the address_space - invalidate_lock -
that protects adding of pages to page cache for page faults / reads /
readahead.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
2021-07-13 13:14:27 +02:00
Hugh Dickins
efdb6720b4 mm/rmap: fix munlocking Anon THP with mlocked ptes
Many thanks to Kirill for reminding that PageDoubleMap cannot be relied on
to warn of pte mappings in the Anon THP case; and a scan of subpages does
not seem appropriate here.  Note how follow_trans_huge_pmd() does not even
mark an Anon THP as mlocked when compound_mapcount != 1: multiple mlocking
of Anon THP is avoided, so simply return from page_mlock() in this case.

Link: https://lore.kernel.org/lkml/cfa154c-d595-406-eb7d-eb9df730f944@google.com/
Fixes: d9770fcc1c ("mm/rmap: fix old bug: munlocking THP missed other mlocks")
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-12 11:30:56 -07:00
Jan Kara
9608703e48 mm: Fix comments mentioning i_mutex
inode->i_mutex has been replaced with inode->i_rwsem long ago. Fix
comments still mentioning i_mutex.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
2021-07-12 18:31:16 +02:00
Hugh Dickins
6c855fce2e mm/rmap: try_to_migrate() skip zone_device !device_private
I know nothing about zone_device pages and !device_private pages; but if
try_to_migrate_one() will do nothing for them, then it's better that
try_to_migrate() filter them first, than trawl through all their vmas.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Link: https://lore.kernel.org/lkml/1241d356-8ec9-f47b-a5ec-9b2bf66d242@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Hugh Dickins
023e1a8dd5 mm/rmap: fix new bug: premature return from page_mlock_one()
In the unlikely race case that page_mlock_one() finds VM_LOCKED has been
cleared by the time it got page table lock, page_vma_mapped_walk_done()
must be called before returning, either explicitly, or by a final call
to page_vma_mapped_walk() - otherwise the page table remains locked.

Fixes: cd62734ca6 ("mm/rmap: split try_to_munlock from try_to_unmap")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/lkml/20210711151446.GB4070@xsang-OptiPlex-9020/
Link: https://lore.kernel.org/lkml/f71f8523-cba7-3342-40a7-114abc5d1f51@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Hugh Dickins
d9770fcc1c mm/rmap: fix old bug: munlocking THP missed other mlocks
The kernel recovers in due course from missing Mlocked pages: but there
was no point in calling page_mlock() (formerly known as
try_to_munlock()) on a THP, because nothing got done even when it was
found to be mapped in another VM_LOCKED vma.

It's true that we need to be careful: Mlocked accounting of pte-mapped
THPs is too difficult (so consistently avoided); but Mlocked accounting
of only-pmd-mapped THPs is supposed to work, even when multiple mappings
are mlocked and munlocked or munmapped.  Refine the tests.

There is already a VM_BUG_ON_PAGE(PageDoubleMap) in page_mlock(), so
page_mlock_one() does not even have to worry about that complication.

(I said the kernel recovers: but would page reclaim be likely to split
THP before rediscovering that it's VM_LOCKED? I've not followed that up)

Fixes: 9a73f61bdb ("thp, mlock: do not mlock PTE-mapped file huge pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/lkml/cfa154c-d595-406-eb7d-eb9df730f944@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Hugh Dickins
64b586d192 mm/rmap: fix comments left over from recent changes
Parallel developments in mm/rmap.c have left behind some out-of-date
comments: try_to_migrate_one() also accepts TTU_SYNC (already commented
in try_to_migrate() itself), and try_to_migrate() returns nothing at
all.

TTU_SPLIT_FREEZE has just been deleted, so reword the comment about it
in mm/huge_memory.c; and TTU_IGNORE_ACCESS was removed in 5.11, so
delete the "recently referenced" comment from try_to_unmap_one() (once
upon a time the comment was near the removed codeblock, but they drifted
apart).

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Link: https://lore.kernel.org/lkml/563ce5b2-7a44-5b4d-1dfd-59a0e65932a9@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-11 15:05:15 -07:00
Alistair Popple
b756a3b5e7 mm: device exclusive memory access
Some devices require exclusive write access to shared virtual memory (SVM)
ranges to perform atomic operations on that memory.  This requires CPU
page tables to be updated to deny access whilst atomic operations are
occurring.

In order to do this introduce a new swap entry type
(SWP_DEVICE_EXCLUSIVE).  When a SVM range needs to be marked for exclusive
access by a device all page table mappings for the particular range are
replaced with device exclusive swap entries.  This causes any CPU access
to the page to result in a fault.

Faults are resovled by replacing the faulting entry with the original
mapping.  This results in MMU notifiers being called which a driver uses
to update access permissions such as revoking atomic access.  After
notifiers have been called the device will no longer have exclusive access
to the region.

Walking of the page tables to find the target pages is handled by
get_user_pages() rather than a direct page table walk.  A direct page
table walk similar to what migrate_vma_collect()/unmap() does could also
have been utilised.  However this resulted in more code similar in
functionality to what get_user_pages() provides as page faulting is
required to make the PTEs present and to break COW.

[dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()]
  Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda

Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple
a98a2f0c8c mm/rmap: split migration into its own function
Migration is currently implemented as a mode of operation for
try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag
or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE.

However it does not have much in common with the rest of the unmap
functionality of try_to_unmap_one() and thus splitting it into a separate
function reduces the complexity of try_to_unmap_one() making it more
readable.

Several simplifications can also be made in try_to_migrate_one() based on
the following observations:

 - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK.
 - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON.
 - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH.

TTU_SPLIT_FREEZE is a special case of migration used when splitting an
anonymous page.  This is most easily dealt with by calling the correct
function from unmap_page() in mm/huge_memory.c - either try_to_migrate()
for PageAnon or try_to_unmap().

Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple
cd62734ca6 mm/rmap: split try_to_munlock from try_to_unmap
The behaviour of try_to_unmap_one() is difficult to follow because it
performs different operations based on a fairly large set of flags used in
different combinations.

TTU_MUNLOCK is one such flag.  However it is exclusively used by
try_to_munlock() which specifies no other flags.  Therefore rather than
overload try_to_unmap_one() with unrelated behaviour split this out into
it's own function and remove the flag.

Link: https://lkml.kernel.org/r/20210616105937.23201-4-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Alistair Popple
4dd845b5a3 mm/swapops: rework swap entry manipulation code
Both migration and device private pages use special swap entries that are
manipluated by a range of inline functions.  The arguments to these are
somewhat inconsistent so rework them to remove flag type arguments and to
make the arguments similar for both read and write entry creation.

Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Yang Shi
1fb08ac63b mm: rmap: make try_to_unmap() void function
Currently try_to_unmap() return bool value by checking page_mapcount(),
however this may return false positive since page_mapcount() doesn't check
all subpages of compound page.  The total_mapcount() could be used
instead, but its cost is higher since it traverses all subpages.

Actually the most callers of try_to_unmap() don't care about the return
value at all.  So just need check if page is still mapped by page_mapped()
when necessary.  And page_mapped() does bail out early when it finds
mapped subpage.

Link: https://lkml.kernel.org/r/bb27e3fe-6036-b637-5086-272befbfe3da@google.com
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
Jue Wang
31657170de mm/thp: fix page_address_in_vma() on file THP tails
Anon THP tails were already supported, but memory-failure may need to
use page_address_in_vma() on file THP tails, which its page->mapping
check did not permit: fix it.

hughd adds: no current usage is known to hit the issue, but this does
fix a subtle trap in a general helper: best fixed in stable sooner than
later.

Link: https://lkml.kernel.org/r/a0d9b53-bf5d-8bab-ac5-759dc61819c1@google.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Hugh Dickins
494334e43c mm/thp: fix vma_address() if virtual address below file offset
Running certain tests with a DEBUG_VM kernel would crash within hours,
on the total_mapcount BUG() in split_huge_page_to_list(), while trying
to free up some memory by punching a hole in a shmem huge page: split's
try_to_unmap() was unable to find all the mappings of the page (which,
on a !DEBUG_VM kernel, would then keep the huge page pinned in memory).

When that BUG() was changed to a WARN(), it would later crash on the
VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma) in
mm/internal.h:vma_address(), used by rmap_walk_file() for
try_to_unmap().

vma_address() is usually correct, but there's a wraparound case when the
vm_start address is unusually low, but vm_pgoff not so low:
vma_address() chooses max(start, vma->vm_start), but that decides on the
wrong address, because start has become almost ULONG_MAX.

Rewrite vma_address() to be more careful about vm_pgoff; move the
VM_BUG_ON_VMA() out of it, returning -EFAULT for errors, so that it can
be safely used from page_mapped_in_vma() and page_address_in_vma() too.

Add vma_address_end() to apply similar care to end address calculation,
in page_vma_mapped_walk() and page_mkclean_one() and try_to_unmap_one();
though it raises a question of whether callers would do better to supply
pvmw->end to page_vma_mapped_walk() - I chose not, for a smaller patch.

An irritation is that their apparent generality breaks down on KSM
pages, which cannot be located by the page->index that page_to_pgoff()
uses: as commit 4b0ece6fa0 ("mm: migrate: fix remove_migration_pte()
for ksm pages") once discovered.  I dithered over the best thing to do
about that, and have ended up with a VM_BUG_ON_PAGE(PageKsm) in both
vma_address() and vma_address_end(); though the only place in danger of
using it on them was try_to_unmap_one().

Sidenote: vma_address() and vma_address_end() now use compound_nr() on a
head page, instead of thp_size(): to make the right calculation on a
hugetlbfs page, whether or not THPs are configured.  try_to_unmap() is
used on hugetlbfs pages, but perhaps the wrong calculation never
mattered.

Link: https://lkml.kernel.org/r/caf1c1a3-7cfb-7f8f-1beb-ba816e932825@google.com
Fixes: a8fa41ad2f ("mm, rmap: check all VMAs that PTE-mapped THP can be part of")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Hugh Dickins
732ed55823 mm/thp: try_to_unmap() use TTU_SYNC for safe splitting
Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE
(!unmap_success): with dump_page() showing mapcount:1, but then its raw
struct page output showing _mapcount ffffffff i.e.  mapcount 0.

And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed,
it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)),
and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG():
all indicative of some mapcount difficulty in development here perhaps.
But the !CONFIG_DEBUG_VM path handles the failures correctly and
silently.

I believe the problem is that once a racing unmap has cleared pte or
pmd, try_to_unmap_one() may skip taking the page table lock, and emerge
from try_to_unmap() before the racing task has reached decrementing
mapcount.

Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that
follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding
TTU_SYNC to the options, and passing that from unmap_page().

When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same
for both: the slight overhead added should rarely matter, except perhaps
if splitting sparsely-populated multiply-mapped shmem.  Once confident
that bugs are fixed, TTU_SYNC here can be removed, and the race
tolerated.

Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com
Fixes: fec89c109f ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 09:24:42 -07:00
Shijie Luo
cb152a1a95 mm: fix some typos and code style problems
fix some typos and code style problems in mm.

gfp.h: s/MAXNODES/MAX_NUMNODES
mmzone.h: s/then/than
rmap.c: s/__vma_split()/__vma_adjust()
swap.c: s/__mod_zone_page_stat/__mod_zone_page_state, s/is is/is
swap_state.c: s/whoes/whose
z3fold.c: code style problem fix in z3fold_unregister_migration
zsmalloc.c: s/of/or, s/give/given

Link: https://lkml.kernel.org/r/20210419083057.64820-1-luoshijie1@huawei.com
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07 00:26:33 -07:00
Miaohe Lin
ad8a20cf6d mm/rmap: correct obsolete comment of page_get_anon_vma()
Since commit 746b18d421 ("mm: use refcounts for page_lock_anon_vma()"),
page_lock_anon_vma() is renamed to page_get_anon_vma() and converted to
return a refcount increased anon_vma.  But it forgot to change the
relevant comment.

Link: https://lkml.kernel.org/r/20210203093215.31990-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
b7e188ec98 mm/rmap: use page_not_mapped in try_to_unmap()
page_mapcount_is_zero() calculates accurately how many mappings a hugepage
has in order to check against 0 only.  This is a waste of cpu time.  We
can do this via page_not_mapped() to save some possible atomic_read
cycles.  Remove the function page_mapcount_is_zero() as it's not used
anymore and move page_not_mapped() above try_to_unmap() to avoid
identifier undeclared compilation error.

Link: https://lkml.kernel.org/r/20210130084904.35307-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
90aaca852c mm/rmap: fix obsolete comment in __page_check_anon_rmap()
Commit 21333b2b66 ("ksm: no debug in page_dup_rmap()") has reverted
page_dup_rmap() to an inline atomic_inc of mapcount.  So page_dup_rmap()
does not call __page_check_anon_rmap() anymore.

Link: https://lkml.kernel.org/r/20210128110209.50857-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
e0af87ff7a mm/rmap: remove unneeded semicolon in page_not_mapped()
Remove extra semicolon without any functional change intended.

Link: https://lkml.kernel.org/r/20210127093425.39640-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Miaohe Lin
aaf1f990ae mm/rmap: correct some obsolete comments of anon_vma
commit 2b575eb64f ("mm: convert anon_vma->lock to a mutex") changed
spinlock used to serialize access to vma list to mutex.  And further, the
commit 5a505085f0 ("mm/rmap: Convert the struct anon_vma::mutex to an
rwsem") converted the mutex to an rwsem for solving scalability problem.
So replace spinlock with rwsem to make comment uptodate.

Link: https://lkml.kernel.org/r/20210123072459.25903-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:01 -08:00
Li Xinhai
ee8ab1903e mm: rmap: explicitly reset vma->anon_vma in unlink_anon_vmas()
In case the vma will continue to be used after unlink its relevant
anon_vma, we need to reset the vma->anon_vma pointer to NULL.  So, later
when fault happen within this vma again, a new anon_vma will be prepared.

By this way, the vma will only be checked for reverse mapping of pages
which been fault in after the unlink_anon_vmas call.

Currently, the mremap with MREMAP_DONTUNMAP scenario will continue use the
vma after moved its page table entries to a new vma.  For other scenarios,
the vma itself will be freed after call unlink_anon_vmas.

Link: https://lkml.kernel.org/r/20210119075126.3513154-1-lixinhai.lxh@gmail.com
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:30 -08:00
Muchun Song
380780e718 mm: memcontrol: convert NR_FILE_PMDMAPPED account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_FILE_PMDMAPPED account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
a1528e21f8 mm: memcontrol: convert NR_SHMEM_PMDMAPPED account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_SHMEM_PMDMAPPED account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-6-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
69473e5de8 mm: memcontrol: convert NR_ANON_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_ANON_THPS account to pages.  This patch is consistent
with 8f182270df ("mm/swap.c: flush lru pvecs on compound page arrival").
Doing this also can make the unit of vmstat counters more unified.
Finally, the unit of the vmstat counters are pages, kB and bytes.  The
B/KB suffix can tell us that the unit is bytes or kB.  The rest which is
without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Hugh Dickins
15b4473617 mm/lru: revise the comments of lru_lock
Since we changed the pgdat->lru_lock to lruvec->lru_lock, it's time to fix
the incorrect comments in code.  Also fixed some zone->lru_lock comment
error from ancient time.  etc.

I struggled to understand the comment above move_pages_to_lru() (surely
it never calls page_referenced()), and eventually realized that most of
it had got separated from shrink_active_list(): move that comment back.

Link: https://lkml.kernel.org/r/1604566549-62481-20-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:04 -08:00
Alex Shi
16f5e707d6 mm/rmap: stop store reordering issue on page->mapping
Hugh Dickins and Minchan Kim observed a long time issue which discussed
here, but actully the mentioned fix in

  https://lore.kernel.org/lkml/20150504031722.GA2768@blaptop/

was missed.

The store reordering may cause problem in the scenario:

	CPU 0						CPU1
   do_anonymous_page
	page_add_new_anon_rmap()
	  page->mapping = anon_vma + PAGE_MAPPING_ANON
	lru_cache_add_inactive_or_unevictable()
	  spin_lock(lruvec->lock)
	  SetPageLRU()
	  spin_unlock(lruvec->lock)
						/* idletacking judged it as LRU
						 * page so pass the page in
						 * page_idle_clear_pte_refs
						 */
						page_idle_clear_pte_refs
						  rmap_walk
						    if PageAnon(page)

Johannes give detailed examples how the store reordering could cause
trouble: "The concern is the SetPageLRU may get reorder before
'page->mapping' setting, That would make CPU 1 will observe at
page->mapping after observing PageLRU set on the page.

1. anon_vma + PAGE_MAPPING_ANON

   That's the in-order scenario and is fine.

2. NULL

   That's possible if the page->mapping store gets reordered to occur
   after SetPageLRU. That's fine too because we check for it.

3. anon_vma without the PAGE_MAPPING_ANON bit

   That would be a problem and could lead to all kinds of undesirable
   behavior including crashes and data corruption.

   Is it possible? AFAICT the compiler is allowed to tear the store to
   page->mapping and I don't see anything that would prevent it.

That said, I also don't see how the reader testing PageLRU under the
lru_lock would prevent that in the first place.  AFAICT we need that
WRITE_ONCE() around the page->mapping assignment."

[alex.shi@linux.alibaba.com: updated for comments change from Johannes]
  Link: https://lkml.kernel.org/r/e66ef2e5-c74c-6498-e8b3-56c37b9d2d15@linux.alibaba.com

Link: https://lkml.kernel.org/r/1604566549-62481-7-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:03 -08:00
Shakeel Butt
013339df11 mm/rmap: always do TTU_IGNORE_ACCESS
Since commit 369ea8242c ("mm/rmap: update to new mmu_notifier semantic
v2"), the code to check the secondary MMU's page table access bit is
broken for !(TTU_IGNORE_ACCESS) because the page is unmapped from the
secondary MMU's page table before the check.  More specifically for those
secondary MMUs which unmap the memory in
mmu_notifier_invalidate_range_start() like kvm.

However memory reclaim is the only user of !(TTU_IGNORE_ACCESS) or the
absence of TTU_IGNORE_ACCESS and it explicitly performs the page table
access check before trying to unmap the page.  So, at worst the reclaim
will miss accesses in a very short window if we remove page table access
check in unmapping code.

There is an unintented consequence of !(TTU_IGNORE_ACCESS) for the memcg
reclaim.  From memcg reclaim the page_referenced() only account the
accesses from the processes which are in the same memcg of the target page
but the unmapping code is considering accesses from all the processes, so,
decreasing the effectiveness of memcg reclaim.

The simplest solution is to always assume TTU_IGNORE_ACCESS in unmapping
code.

Link: https://lkml.kernel.org/r/20201104231928.1494083-1-shakeelb@google.com
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:39 -08:00
Mike Kravetz
336bf30eb7 hugetlbfs: fix anon huge page migration race
Qian Cai reported the following BUG in [1]

  LTP: starting move_pages12
  BUG: unable to handle page fault for address: ffffffffffffffe0
  ...
  RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63
  Call Trace:
    rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864
    try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763
    migrate_pages+0x1005/0x1fb0
    move_pages_and_store_status.isra.47+0xd7/0x1a0
    __x64_sys_move_pages+0xa5c/0x1100
    do_syscall_64+0x5f/0x310
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Hugh Dickins diagnosed this as a migration bug caused by code introduced
to use i_mmap_rwsem for pmd sharing synchronization.  Specifically, the
routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED
flag to try_to_unmap() while holding i_mmap_rwsem.  This is wrong for
anon pages as the anon_vma_lock should be held in this case.  Further
analysis suggested that i_mmap_rwsem was not required to he held at all
when calling try_to_unmap for anon pages as an anon page could never be
part of a shared pmd mapping.

Discussion also revealed that the hack in hugetlb_page_mapping_lock_write
to drop page lock and acquire i_mmap_rwsem is wrong.  There is no way to
keep mapping valid while dropping page lock.

This patch does the following:

 - Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when
   calling try_to_unmap.

 - Remove the hacky code in hugetlb_page_mapping_lock_write. The routine
   will now simply do a 'trylock' while still holding the page lock. If
   the trylock fails, it will return NULL. This could impact the
   callers:

    - migration calling code will receive -EAGAIN and retry up to the
      hard coded limit (10).

    - memory error code will treat the page as BUSY. This will force
      killing (SIGKILL) instead of SIGBUS any mapping tasks.

   Do note that this change in behavior only happens when there is a
   race. None of the standard kernel testing suites actually hit this
   race, but it is possible.

[1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/
[2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/

Fixes: c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Reported-by: Qian Cai <cai@lca.pw>
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 11:26:04 -08:00
Matthew Wilcox (Oracle)
5eaf35ab12 mm/rmap: fix assumptions of THP size
Ask the page what size it is instead of assuming it's PMD size.  Do this
for anon pages as well as file pages for when someone decides to support
that.  Leave the assumption alone for pages which are PMD mapped; we don't
currently grow THPs beyond PMD size, so we don't need to change this code
yet.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Link: https://lkml.kernel.org/r/20200908195539.25896-9-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:15 -07:00
Alistair Popple
ad7df764b7 mm/rmap: fixup copying of soft dirty and uffd ptes
During memory migration a pte is temporarily replaced with a migration
swap pte.  Some pte bits from the existing mapping such as the soft-dirty
and uffd write-protect bits are preserved by copying these to the
temporary migration swap pte.

However these bits are not stored at the same location for swap and
non-swap ptes.  Therefore testing these bits requires using the
appropriate helper function for the given pte type.

Unfortunately several code locations were found where the wrong helper
function is being used to test soft_dirty and uffd_wp bits which leads to
them getting incorrectly set or cleared during page-migration.

Fix these by using the correct tests based on pte type.

Fixes: a5430dda8a ("mm/migrate: support un-addressable ZONE_DEVICE page in migration")
Fixes: 8c3328f1f3 ("mm/migrate: migrate_vma() unmap page from vma while collecting pages")
Fixes: f45ec5ff16 ("userfaultfd: wp: support swap and page migration")
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200825064232.10023-2-alistair@popple.id.au
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-05 12:14:30 -07:00
Qian Cai
9c1177b62a mm/rmap: annotate a data race at tlb_flush_batched
mm->tlb_flush_batched could be accessed concurrently as noticed by
KCSAN,

 BUG: KCSAN: data-race in flush_tlb_batched_pending / try_to_unmap_one

 write to 0xffff93f754880bd0 of 1 bytes by task 822 on cpu 6:
  try_to_unmap_one+0x59a/0x1ab0
  set_tlb_ubc_flush_pending at mm/rmap.c:635
  (inlined by) try_to_unmap_one at mm/rmap.c:1538
  rmap_walk_anon+0x296/0x650
  rmap_walk+0xdf/0x100
  try_to_unmap+0x18a/0x2f0
  shrink_page_list+0xef6/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  balance_pgdat+0x652/0xd90
  kswapd+0x396/0x8d0
  kthread+0x1e0/0x200
  ret_from_fork+0x27/0x50

 read to 0xffff93f754880bd0 of 1 bytes by task 6364 on cpu 4:
  flush_tlb_batched_pending+0x29/0x90
  flush_tlb_batched_pending at mm/rmap.c:682
  change_p4d_range+0x5dd/0x1030
  change_pte_range at mm/mprotect.c:44
  (inlined by) change_pmd_range at mm/mprotect.c:212
  (inlined by) change_pud_range at mm/mprotect.c:240
  (inlined by) change_p4d_range at mm/mprotect.c:260
  change_protection+0x222/0x310
  change_prot_numa+0x3e/0x60
  task_numa_work+0x219/0x350
  task_work_run+0xed/0x140
  prepare_exit_to_usermode+0x2cc/0x2e0
  ret_from_intr+0x32/0x42

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 4 PID: 6364 Comm: mtest01 Tainted: G        W    L 5.5.0-next-20200210+ #5
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

flush_tlb_batched_pending() is under PTL but the write is not, but
mm->tlb_flush_batched is only a bool type, so the value is unlikely to be
shattered.  Thus, mark it as an intentional data race by using the data
race macro.

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Link: http://lkml.kernel.org/r/1581450783-8262-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:57 -07:00
Matthew Wilcox (Oracle)
6c357848b4 mm: replace hpage_nr_pages with thp_nr_pages
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.

[akpm@linux-foundation.org: fix mm/migrate.c]

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Mike Kravetz
34ae204f18 hugetlbfs: remove call to huge_pte_alloc without i_mmap_rwsem
Commit c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing
synchronization") requires callers of huge_pte_alloc to hold i_mmap_rwsem
in at least read mode.  This is because the explicit locking in
huge_pmd_share (called by huge_pte_alloc) was removed.  When restructuring
the code, the call to huge_pte_alloc in the else block at the beginning of
hugetlb_fault was missed.

Unfortunately, that else clause is exercised when there is no page table
entry.  This will likely lead to a call to huge_pmd_share.  If
huge_pmd_share thinks pmd sharing is possible, it will traverse the
mapping tree (i_mmap) without holding i_mmap_rwsem.  If someone else is
modifying the tree, bad things such as addressing exceptions or worse
could happen.

Simply remove the else clause.  It should have been removed previously.
The code following the else will call huge_pte_alloc with the appropriate
locking.

To prevent this type of issue in the future, add routines to assert that
i_mmap_rwsem is held, and call these routines in huge pmd sharing
routines.

Fixes: c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A.Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/e670f327-5cf9-1959-96e4-6dc7cc30d3d5@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:56 -07:00
Michel Lespinasse
c1e8d7c6a7 mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Johannes Weiner
468c398233 mm: memcontrol: switch to native NR_ANON_THPS counter
With rmap memcg locking already in place for NR_ANON_MAPPED, it's just a
small step to remove the MEMCG_RSS_HUGE wart and switch memcg to the
native NR_ANON_THPS accounting sites.

[hannes@cmpxchg.org: fixes]
  Link: http://lkml.kernel.org/r/20200512121750.GA397968@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>	[build-tested]
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner
be5d0a74c6 mm: memcontrol: switch to native NR_ANON_MAPPED counter
Memcg maintains a private MEMCG_RSS counter.  This divergence from the
generic VM accounting means unnecessary code overhead, and creates a
dependency for memcg that page->mapping is set up at the time of charging,
so that page types can be told apart.

Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED.  We use
lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the
same way we do for NR_FILE_MAPPED.

With the previous patch removing MEMCG_CACHE and the private NR_SHMEM
counter, this patch finally eliminates the need to have page->mapping set
up at charge time.  However, we need to have page->mem_cgroup set up by
the time rmap runs and does the accounting, so switch the commit and the
rmap callbacks around.

v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo)

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Palmer Dabbelt
4708f31885 mm: prevent a warning when casting void* -> enum
I recently build the RISC-V port with LLVM trunk, which has introduced a
new warning when casting from a pointer to an enum of a smaller size.
This patch simply casts to a long in the middle to stop the warning.  I'd
be surprised this is the only one in the kernel, but it's the only one I
saw.

Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200227211741.83165-1-palmer@dabbelt.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:41 -07:00
Peter Xu
f45ec5ff16 userfaultfd: wp: support swap and page migration
For either swap and page migration, we all use the bit 2 of the entry to
identify whether this entry is uffd write-protected.  It plays a similar
role as the existing soft dirty bit in swap entries but only for keeping
the uffd-wp tracking for a specific PTE/PMD.

Something special here is that when we want to recover the uffd-wp bit
from a swap/migration entry to the PTE bit we'll also need to take care of
the _PAGE_RW bit and make sure it's cleared, otherwise even with the
_PAGE_UFFD_WP bit we can't trap it at all.

In change_pte_range() we do nothing for uffd if the PTE is a swap entry.
That can lead to data mismatch if the page that we are going to write
protect is swapped out when sending the UFFDIO_WRITEPROTECT.  This patch
also applies/removes the uffd-wp bit even for the swap entries.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200220163112.11409-11-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:39 -07:00
Matthew Wilcox (Oracle)
396bcc5299 mm: remove CONFIG_TRANSPARENT_HUGE_PAGECACHE
Commit e496cf3d78 ("thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE")
notes that it should be reverted when the PowerPC problem was fixed.  The
commit fixing the PowerPC problem (953c66c2b2) did not revert the
commit; instead setting CONFIG_TRANSPARENT_HUGE_PAGECACHE to the same as
CONFIG_TRANSPARENT_HUGEPAGE.  Checking with Kirill and Aneesh, this was an
oversight, so remove the Kconfig symbol and undo the work of commit
e496cf3d78.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/20200318140253.6141-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:38 -07:00
Li Xinhai
23ab76bf90 Revert "mm/rmap.c: reuse mergeable anon_vma as parent when fork"
This reverts commit 4e4a9eb921 ("mm/rmap.c: reuse mergeable
anon_vma as parent when fork").

In dup_mmap(), anon_vma_fork() is called for attaching anon_vma and
parameter 'tmp' (i.e., the new vma of child) has same ->vm_next and
->vm_prev as its parent vma.  That causes the anon_vma used by parent been
mistakenly shared by child (In anon_vma_clone(), the code added by that
commit will do this reuse work).

Besides this issue, the design of reusing anon_vma from vma which has gone
through fork should be avoided ([1]).  So, this patch reverts that commit
and maintains the consistent logic of reusing anon_vma for
fork/split/merge vma.

Reusing anon_vma within the process is fine.  But if a vma has gone
through fork(), then that vma's anon_vma should not be shared with its
neighbor vma.  As explained in [1], when vma gone through fork(), the
check for list_is_singular(vma->anon_vma_chain) will be false, and
don't share anon_vma.

With current issue, one example can clarify more.  Parent process do
below two steps:

1. p_vma_1 is created and p_anon_vma_1 is prepared;

2. p_vma_2 is created and share p_anon_vma_1; (this is allowed,
   becaues p_vma_1 didn't gothrough fork()); parent process do fork():

3. c_vma_1 is dup from p_vma_1, and has its own c_anon_vma_1
   prepared; at this point, c_vma_1->anon_vma_chain has two items, one
   for p_anon_vma_1 and one for c_anon_vma_1;

4. c_vma_2 is dup from p_vma_2, it is not allowed to share
   c_anon_vma_1, because

c_vma_1->anon_vma_chain has two items.
[1] commit d0e9fe1758 ("Simplify and comment on anon_vma re-use for
    anon_vma_prepare()") explains the test of "list_is_singular()".

Fixes: 4e4a9eb921 ("mm/rmap.c: reuse mergeable anon_vma as parent when fork")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1581150928-3214-3-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:37 -07:00
Mike Kravetz
c0d0381ade hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2.

While discussing the issue with huge_pte_offset [1], I remembered that
there were more outstanding hugetlb races.  These issues are:

1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become
   invalid via a call to huge_pmd_unshare by another thread.
2) hugetlbfs page faults can race with truncation causing invalid global
   reserve counts and state.

A previous attempt was made to use i_mmap_rwsem in this manner as
described at [2].  However, those patches were reverted starting with [3]
due to locking issues.

To effectively use i_mmap_rwsem to address the above issues it needs to be
held (in read mode) during page fault processing.  However, during fault
processing we need to lock the page we will be adding.  Lock ordering
requires we take page lock before i_mmap_rwsem.  Waiting until after
taking the page lock is too late in the fault process for the
synchronization we want to do.

To address this lock ordering issue, the following patches change the lock
ordering for hugetlb pages.  This is not too invasive as hugetlbfs
processing is done separate from core mm in many places.  However, I don't
really like this idea.  Much ugliness is contained in the new routine
hugetlb_page_mapping_lock_write() of patch 1.

The only other way I can think of to address these issues is by catching
all the races.  After catching a race, cleanup, backout, retry ...  etc,
as needed.  This can get really ugly, especially for huge page
reservations.  At one time, I started writing some of the reservation
backout code for page faults and it got so ugly and complicated I went
down the path of adding synchronization to avoid the races.  Any other
suggestions would be welcome.

[1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/
[2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/
[3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com
[4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/
[5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/

This patch (of 2):

While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table.  Consider the following:

A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep.  Suppose the returned ptep points to a
shared pmd.

Now, another task truncates the hugetlbfs file.  As part of truncation, it
unmaps everyone who has the file mapped.  If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called.  For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd.  If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse.  This leads to bad things such as incorrect page
map/reference counts or invalid memory references.

To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
  huge_pmd_share is only called via huge_pte_alloc, so callers of
  huge_pte_alloc take i_mmap_rwsem before calling.  In addition, callers
  of huge_pte_alloc continue to hold the semaphore until finished with
  the ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called.

One problem with this scheme is that it requires taking i_mmap_rwsem
before taking the page lock during page faults.  This is not the order
specified in the rest of mm code.  Handling of hugetlbfs pages is mostly
isolated today.  Therefore, we use this alternative locking order for
PageHuge() pages.

         mapping->i_mmap_rwsem
           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
             page->flags PG_locked (lock_page)

To help with lock ordering issues, hugetlb_page_mapping_lock_write() is
introduced to write lock the i_mmap_rwsem associated with a page.

In most cases it is easy to get address_space via vma->vm_file->f_mapping.
However, in the case of migration or memory errors for anon pages we do
not have an associated vma.  A new routine _get_hugetlb_page_mapping()
will use anon_vma to get address_space in these cases.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:32 -07:00
Anshuman Khandual
222100eed2 mm/vma: make is_vma_temporary_stack() available for general use
Currently the declaration and definition for is_vma_temporary_stack() are
scattered.  Lets make is_vma_temporary_stack() helper available for
general use and also drop the declaration from (include/linux/huge_mm.h)
which is no longer required.  While at this, rename this as
vma_is_temporary_stack() in line with existing helpers.  This should not
cause any functional change.

Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1582782965-3274-4-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
John Hubbard
47e29d32af mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pages
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS
scheme tends to overflow too easily, each tail page increments the head
page->_refcount by GUP_PIN_COUNTING_BIAS (1024).  That limits the number
of huge pages that can be pinned.

This patch removes that limitation, by using an exact form of pin counting
for compound pages of order > 1.  The "order > 1" is required because this
approach uses the 3rd struct page in the compound page, and order 1
compound pages only have two pages, so that won't work there.

A new struct page field, hpage_pinned_refcount, has been added, replacing
a padding field in the union (so no new space is used).

This enhancement also has a useful side effect: huge pages and compound
pages (of order > 1) do not suffer from the "potential false positives"
problem that is discussed in the page_dma_pinned() comment block.  That is
because these compound pages have extra space for tracking things, so they
get exact pin counts instead of overloading page->_refcount.

Documentation/core-api/pin_user_pages.rst is updated accordingly.

Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200211001536.1027652-8-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:27 -07:00
Kirill A. Shutemov
f1fe80d4ae mm, thp: do not queue fully unmapped pages for deferred split
Adding fully unmapped pages into deferred split queue is not productive:
these pages are about to be freed or they are pinned and cannot be split
anyway.

Link: http://lkml.kernel.org/r/20190913091849.11151-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:09 -08:00
Yang Shi
30c4638285 mm/rmap.c: use VM_BUG_ON_PAGE() in __page_check_anon_rmap()
The __page_check_anon_rmap() just calls two BUG_ON()s protected by
CONFIG_DEBUG_VM, the #ifdef could be eliminated by using VM_BUG_ON_PAGE().

Link: http://lkml.kernel.org/r/1573157346-111316-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:19 -08:00